正比例函数

合集下载

19.2 正比例函数(原卷版)

19.2 正比例函数(原卷版)
【变式5-2】(2022秋•任城区校级期末)在正比例函数y=(m+1)x|m|﹣1中,若y随x的增大而减小,则m=.
【变式5-3】(2022秋•句容市期末)在正比例函数y=(m﹣2)x中,y的值随着x值的增大而减小,则m的取值范围是.
【变式5-4】(2022春•曲阜市期末)已知正比例函数y=(3m﹣1)x|m|(m为常数),若y随x的增大而减小,则m=.
【变式2-7】已知正比例函数y x,下列结论:①y随x的增大而增大;②y随x的减小而减小;③当x>0时,y>0;④当x>1时,y>1.其中,正确的有( )
A.1个B.2个C.3个D.4个
【变式2-8】(2022秋•渠县校级期中)三个正比例函数的表达式分别为①y=ax;②y=bx;③y=cx,其在平面直角坐标系中的图象如图所示,则a,b,c的大小关系为( )
C.y随x的增大而减小
D.它的图象经过第二、四象限
【变式2-2】(2022秋•太原期中)下列正比例函数中,y随x的增大而增大的是( )
A.y=2xB.y=﹣2xC.y xD.y=﹣8x
【变式2-3】(2021•湘西州模拟)下列图象中,表示正比例函数图象的是( )
A. B.
C. D.
【变式2-4】在下列各图象中,表示函数y=﹣kx(k<0)的图象的是( )
A.第一、二象限B.第一、三象限
C.第一、四象限D.第二、四象限
解题技巧提炼
本题考查的是正比例函数的图象与系数的关系,根据正比例函数的性质判断k的范围是解题的关键.
【变式2-1】(2022春•古冶区期末)下列关于正比例函数y=3x的说法中,正确的是( )
A.当x=3时,y=1
B.它的图象是一条过原点的直线
是( )

正比例函数知识点整理

正比例函数知识点整理

正比例函数知识点整理一、正比例函数的定义。

1. 定义形式。

- 一般地,形如y = kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数。

例如y = 2x,y=(1)/(3)x都是正比例函数,这里k = 2和k=(1)/(3)分别是它们的比例系数。

2. 对定义的理解。

- 函数表达式必须是y = kx这种形式,x的次数为1,且不能有其他项。

比如y = 2x+1就不是正比例函数,因为它多了常数项1;y=x^2也不是,因为x的次数是2。

- k不能为0,如果k = 0,那么函数y = 0× x=0,它是一个常数函数,而不是正比例函数。

二、正比例函数的图象与性质。

1. 图象。

- 正比例函数y = kx(k≠0)的图象是一条经过原点(0,0)的直线。

- 当k>0时,例如y = 2x,图象经过一、三象限,从左向右上升;当k < 0时,比如y=-2x,图象经过二、四象限,从左向右下降。

2. 性质。

- 增减性。

- 当k>0时,y随x的增大而增大。

例如在y = 3x中,如果x_1 = 1,y_1 = 3×1 = 3;当x_2=2时,y_2 = 3×2 = 6,因为2>1且6 > 3,所以y随x增大而增大。

- 当k < 0时,y随x的增大而减小。

例如在y=-2x中,若x_1 = 1,y_1=-2×1=-2;当x_2 = 2时,y_2=-2×2=-4,因为2 > 1且-4<-2,所以y随x增大而减小。

- 倾斜程度。

- | k|越大,直线越靠近y轴,即直线越陡。

例如y = 5x比y = 2x的图象更陡,因为|5|>|2|;y=-5x比y=-2x的图象更陡,同样是因为| - 5|>|-2|。

三、正比例函数解析式的确定。

1. 方法。

- 因为正比例函数y = kx(k≠0),只需要知道一个点的坐标(除原点外)就可以确定k的值,从而确定函数解析式。

物理中的正比例反比例函数关系

物理中的正比例反比例函数关系

物理中的正比例反比例函数关系正比例函数和反比例函数是物理学中非常重要的概念,被广泛应用于各种物理学问题中。

正比例函数指的是两个变量之间存在着线性关系,而反比例函数则指的是两个变量之间存在着倒数的关系。

在物理学中,这些函数关系经常出现在各种实验测试和数据记录中,因此了解和理解这些函数关系是非常重要的。

一、正比例函数的定义正比例函数是指,存在两个变量之间的线性关系,即当一个变量的值增加时,另一个变量也随之增加,且两个变量在图表上形成一条直线。

具体地说,一个变量的值随着另一个变量的值增加而增加,且增加的幅度与另一个变量的值成比例。

当我们测量一个运动物体的速度时,如果我们将时间和速度作为两个变量绘制成图表,我们会发现,当时间增加时,速度也随之增加,并形成一条经过原点的直线。

这种关系就是正比例函数关系,表达式为:v = k*t,其中v表示速度,t表示时间,k是速度和时间的比例系数。

三、正比例函数和反比例函数的应用正比例函数和反比例函数在物理学中有广泛的应用,下面分别介绍一些常见的应用:(1)正比例函数的应用在机械学中,正比例函数关系最广泛地应用于速度和加速度之间的关系。

当一个物体的速度越快,它的加速度也会越大,它受到的阻力也会越大。

而这种关系可以用正比例函数来表示,表达式为:a = k*v,其中a表示加速度,v表示速度,k是加速度和速度的比例系数。

在空气中飞行的飞机所受到的空气阻力就是一个正比例函数关系。

电阻与电流的关系也可以用正比例函数来表示。

当电路中的电流增加时,电阻也会随之增加,这是因为电流的增加会导致电路中的热量增加,而热量又会引起电阻的增加。

这种关系可以用欧姆定律来表示,即R = V/I,其中R表示电阻,V表示电压,I表示电流。

压力和体积之间的关系也可以用反比例函数来表示。

根据波义尔定理,当温度不变时,气体的体积和压力呈反比例关系,即P1V1 = P2V2,其中P1和V1表示气体压力和体积的初始值,P2和V2表示气体压力和体积的末值。

第十五讲 正比例函数

第十五讲   正比例函数

第十五讲正比例函数、反比例函数、几何证明复习正比例函数:解析式:y=kx(k为常数,k≠0) ,k叫做函数的比例系数;(注意:x的指数为1)图像:过原点的直线;必过点:(0,0)和(1,k);走向:k>o,图像过一三象限,k<0,图像过二四象限;yx倾斜度:|k|越大,倾斜度越大,也就是越靠近y轴,|k|越小,倾斜度越小,也就是越靠近x轴;如图:x增减性:k>0,y随x的增大而增大;k<0,y随x的增大而减小;反比例函数:解析式:y=k/x(k为常数,k≠0)图像:双曲线(图像无限靠近坐标轴,但永不相交。

)所在象限:k>0图像经过一三象限;k<0图像经过二四象限。

kx增减性:k>0,y随x的增大而减小;k<0,y随x的增大而增大;1. 已知:点P (m ,4)在反比例函数xy 12=的图像上,正比例函数的图像经过点P 和点Q (6,n ).(1)求正比例函数的解析式;(2)在x 轴上求一点M ,使△MPQ 的面积等于18. 1.函数12-+x x 的定义域是 2.已知函数53)(-=x xx f ,那么=)(x f . 3. 如果反比例函数的图像经过点(-8,3),那么当0〉x 时y 的值随x 的值的增大而··( ) (A) 增大 (B)不变; (C) 减小 (D)无法确定 4.某人从甲地行走到乙地的路程S (千米)与时间t (时)的函数关系如图所示,那么此人行走3千米,所用的时间 (时)5. 在同一坐标系中,正比例函数y=x 与反比例函数的图象大致是( )A .B .C .D .6. 已知反比例函数y=(k<0)的图象上有两点A(x1,y1)、B(x2,y2),且x1<x2<0,则y1与y2的大小关系是()A. y1<y2B. y1>y2C. y1=y2D.不能确定7. 请写出符合以下条件的一个函数的解析式.①过点(3,1);②当x>0时,y随x的增大而减小.8. 如图,已知点P(x,y)是反比例函数图象上一点,O是坐标原点,PA⊥x轴,S△PAO=4,且图象经过(1,3m﹣1);求:(1)反比例函数解析式.(2)m的值.9. 假定甲乙两人在一次赛跑中,路程S(米)与时间t(秒)的关系式如图所示,那么可以知道:(1)这是一次米赛跑.(2)甲乙两人中,先到达终点的是.(3)乙在这次赛跑中的速度为.10. 如图,直线y=x与双曲线y=(k>0)交于A点,且点A的横坐标为4,双曲线y=(k>0)上有一动点C(m,n),(0<m<4),过点A作x轴垂线,垂足为B,过点C作x轴垂线,垂足为D,连接OC.(1)求k的值.(2)设△COD与△AOB的重合部分的面积为S,求S关于m的函数解析式.(3)连接AC,当第(2)问中S的值为1时,求△OAC的面积.命题和证明1、我们现在学习的证明方式是演绎证明,简称证明2、能界定某个对象含义的句子叫做定义3、判断一件事情的句子叫做命题;其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题4、数学命题通常由题设、结论两部分组成5、命题可以写成“如果……那么……”的形式,如果后是题设,那么后市结论证明举例平行的判定,全等三角形的判定逆命题和逆定理1、在两个命题中,如果第一个命题的题设是第二个命题的结论,二第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题,如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题2、如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理线段的垂直平分线1、线段的垂直平分线定理:线段垂直平分线上的任意一点到这条线段两个端点的距离相等。

19.2 正比例函数(原卷版)

19.2 正比例函数(原卷版)
A. B.
C. D.
【变式2-5】在直角坐标系中,y随x的增大而减小的正比例函数y=kx的图象是( )
A. B.
C. D.
【变式2-6】(2022秋•丰顺县校级期末)在y=k1x中,y随x的增大而减小,k1k2<0,则在同一平面直角坐标系中,y=k1x和y=k2x的图象大致为( )
A. B.
C. D.
八年级下册数学《第十九章一次函数》
19.2正比例函数
◆正比例函数的概念:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.
◆正比例函数反应的是两个变量之间的关系,是正比例关系.
【注意】判断一个函数是正比例函数:(1)所给等式是形如y=kx的等式,自变量的指数只能是1.
A.a>b>cB.c>b>aC.b>a>cD.b>c>a
【变式2-9】已知正比例函数y=(m﹣1) 的图象在第二、四象限,求m的值.
【例题3】画出正比例函数y=2x的图象.
解题技巧提炼
正比例函数的图象是一条经过原点的直线,因此可以用“两点法”画正比例函数的图象,所以经过原点与点(1,k)的直线是y=kx(k是常数,k≠0)的图象.
A.y=xB.y=x+1C.y=x2D.y
【变式1-2】(2022春•长安区校级期中)已知函数:①y=2x﹣1;②y ;③y ;④y=2x2,其中属于正比例函数的有( )
A.1个B.2个C.3个D.4个
【变式1-3】(2022秋•无为市月考)若y关于x的函数y=(a﹣4)x+b是正比例函数,则a,b应满足的条件是( )
A.第一、二象限B.第一、三象限
C.第一、四象限D.第二、四象限
解题技巧提炼
本题考查的是正比例函数的图象与系数的关系,根据正比例函数的性质判断k的范围是解题的关键.

正比例 函数

正比例 函数

正比例函数简介:正比例函数是数学中常见的一类函数,它们的图像是一条通过原点的直线。

本文将介绍正比例函数的定义、特点以及相关示例,以帮助读者更好地理解和应用正比例函数。

定义正比例函数是指一种函数关系,其中两个变量的比例保持不变。

设x和y是两个变量,若存在常数k使得对于任意的x,有y=kx成立,则称y是x的正比例函数。

k被称为比例系数。

通常用符号y ∝ x表示两者成比例的关系。

特点1.直线关系:正比例函数的图像是一条通过原点的直线。

这是因为当x为0时,y=k×0=0,因此原点(0,0)必然在图像上。

2.比例系数:比例系数k决定了直线的斜率。

斜率为正值时表示正相关关系,斜率为负值时则表示负相关关系。

斜率的绝对值越大,变化越快,反之则变化越慢。

3.例外情况:当比例系数k为0时,该函数不再成立。

因为此时代表变量无法通过相等的乘法关系相互联系。

示例以下是几个正比例函数的示例:示例1:函数表达式:y = 2xx | -2 | 0 | 3 | 5 |y | -4 | 0 | 6 | 10 |这个函数描述了一个正相关关系,且比例系数k为2。

当x增加1个单位时,y也增加2个单位。

以原点(0,0)为起点,连接所有的点就得到了一条通过原点的直线。

示例2:函数表达式:y = 0.5xx | -4 | 0 | 2 | 6 |y | -2 | 0 | 1 | 3 |这个函数仍然描述了一个正相关关系,但比例系数k为0.5。

即当x增加1个单位时,y增加0.5个单位。

通过连接所有的点,我们得到一条斜率较小的直线。

示例3:函数表达式:y = -3xx | -3 | 0 | 2 | 5 |y | 9 | 0 | -6 | -15 |这个例子展示了一个负相关关系,当x增加1个单位时,y减少3个单位。

我们可以通过连接所有的点得到一条斜率为负的直线。

应用正比例函数在实际生活中有许多应用。

例如:1.比例尺:地图上的比例尺可以用正比例函数来表示,其中地图上的距离与实际距离之间存在着直接成比例的关系。

正比例函数的图象和性质课件

正比例函数的图象和性质课件

们只相交于原点。
06
CHAPTER
03
正比例函数的性质
增减性
01
02
03
增减性
正比例函数在定义域内是 单调的,即随着x的增大 (或减小),y也相应增 大(或减小)。
增减性的判断
根据斜率k的正负来判断 。当k>0时,函数为增函 数;当k<0时,函数为减 函数。
增减性的应用
在解决实际问题时,可以 利用增减性判断函数的值 域或最值。
y=-3/x
提升练习题
01
总结词
深化理解与运用
02
03
04
题目1
已知某物体的速度v与时间t的 关系为v=kt,其中k为常数。 求该物体在t=3时的速度v。
题目2
画出函数y=0.5x和y=-0.2x的 图象,并比较它们的性质。
题目3
已知某物体的位移s与时间t的 关系为s=2t^2,求该物体在
t=5时的位移s。
斜率
1 2 3
斜率定义
正比例函数y=kx(k≠0)的斜率是k。
斜率与函数图像的关系
斜率决定了函数图像的形状和倾斜程度。当k>0 时,图像从左下到右上上升;当k<0时,图像从 左上到右下下降。
斜率的应用
在解决实际问题时,可以利用斜率判断函数的单 调性和变化趋势。
截距
截距定义
正比例函数y=kx(k≠0)的截距是0。
正比例函数的图象和性 质ppt课件
CONTENTS
目录
• 正比例函数的概念 • 正比例函数的图象 • 正比例函数的性质 • 正比例函数的应用 • 练习与思考
CHAPTER
01
正比例函数的概念
正比例函数的定义

正比例函数的定义

正比例函数的定义

02
正比例函数的应用
物理应用
自由落体运动
在自由落体运动中,物体的速度 与时间成正比,即速度v=gt,其
中g是重力加速度。
弹簧伸长
在弹性限度内,弹簧的伸长量与作 用在其上的力成正比,即x=F/k, 其中F是力,k是弹簧的劲度系数。
电流与电压
在纯电阻电路中,电流与电压成正 比,即I=U/R,其中U是电压,R是 电阻。
数学应用
线性回归分析
函数单调性
在回归分析中,当自变量和因变量之 间存在线性关系时,可以使用正比例 函数进行拟合。
正比例函数在其定义域内是单调递增 或递减的,取决于其系数k的正负。
斜率计算
在平面坐标系中,直线的斜率等于其 上两点间纵坐标差与横坐标差之商, 即m=(y2-y1)/(x2-x1),当x2=x1时, 斜率不存在。
04
正比例函数与其他函数的区别与 联系
与一次函数的区别与联系
一次函数的一般形式为 $y = ax + b$,其中 $a neq 0$,而正比例函数 是特殊的一次函数,形式为 $y = kx$,其中 $k neq 0$。正比例函数可 以看作是一次函数中 $b = 0$ 的特殊情况。
正比例函数和一次函数的图像都是直线,但正比例函数的图像过原点, 而一次函数的图像不过原点。
类比学习
通过与其他函数进行类比,找出正比例函数的特殊性质和一般规律。
解题技巧
掌握解题技巧,如代数运算、函数代换等,提高解题效率。
学习建议
1 2
注重基础
在学习正比例函数时,应注重基础知识的学习, 不要急于求成。
多做练习
通过大量的练习,加深对正比例函数的理解和掌 握。
3
及时复习
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如果 y关于x的函数y=(k2+1) x是正比例函数,那么k的取值范 围是( )。 2、y与x成正比例,当x=2时,y=8, 那么当y=16时x为( )。 3、(中考●河北)已知正比例函 数中自变量每增加1,函数值就减 少2,那么函数的关系式是( )。
1、正比例函数的概念。 2、如何确定正比例表达式。
你们真棒!
y k ( k 0) x
y kx(k 0)
2、x=-2,y=10
y kx(k 0) y 2( x 1) y 1 3( x 5)
y+1与x-5成正比例
y与x成正比例 y与x+1成正比例
y+1与x-5成正比例 y 1 k ( x 5)(k 0)
一般地,我们把形如 y=kx(k为常数,且k≠0)的 函数,
1、若y=mx+m-1是关于x的正比 例函数,则m的值为( )。
(2018河北中考) 2 2、若函数y=(m+1)x+m -1是 正比例函数,则m的值为( )。
y与x成正比例
1、比例系数为-5
两个相关联的量,一种量变化 , 另一种量也随着变化。如果这两种量 中相对应的两个数的比值(也就是商) 一定,这两种量就叫做成正比例的量, 它们的关系叫做正比例关系。
y k(一定) 正比例关系可以用 x 表示
学习目标: 1、初步理解正比例函数的概 念。 2、能够判断两个变量是否能 够构成正比例函数关系。 3、能够利用正比例函数解决 简单的数学问题。
例2:已知y与2x成正比例, 且当x=3时,y=1 2, 求y与x的函数关系式。 巩固训练:已知y-1与x+1成 正比例,且x=-2时,y=-1, 则x=-5时,y的值是多少?
确定正比例函数表达式的一般步骤:
1、设:设出正比例函数表达式y=kx(k≠0). 2、代:将已知条件代入函数表达式. 3、求:求k的值. 4、还原:写出正比例函数表达式.
相关文档
最新文档