2012年加拿大数学奥林匹克试题及解答

合集下载

2012年美国数学奥林匹克(USAMO)试题及其解答

2012年美国数学奥林匹克(USAMO)试题及其解答
杏 坛 孔 门
2012 年美国数学奥林匹克试题(USAMO)及其解答
田开斌 解答
1、求所有整数 n≥3,使得对于任意 n 个正实数a1 、a2 、a3 、 … … 、an ,如果满足 Max�a1 、a2 、a3 、 … … 、an � ≤ n · Min�a1 、a2 、a3 、 … … 、an �,则其中可以取出三个数, 它们能够构成一个锐角三角形的三条边的长度。 解:对于任意 n≤12,在序列 1、1、√2、√3、√5、√8、√13、√21、√34、√55、√89、12中取前 n 个数,都有 Max�a1 、a2 、a3 、 … … 、an � ≤ n · Min�a1 、a2 、a3 、 … … 、an �,但任意三个数都不能构成 锐角三角形的三条边。所以满足条件的 n≥13。 下面我们用反证法证明 n≥13 时,都满足条件。 我们给 n 个正实数从小到大排序为a1 ≤ a2 ≤ a3 ≤ ⋯ ≤ an ,若其中任意三个数,都不 能构成一个锐角三角形的三条边,则有a1 2 ≤ a2 2 ,ak 2 + ak+1 2 ≤ ak+2 2 ,其中 1≤k≤n-2。 于是知an 2 ≥ fn · a1 2 ,即an ≥ �fn · a1 ,其中fn 为斐波那契数列的第 n 项。又当 n≥13 时, 根据数学归纳法易知都有�fn >n,此时则有an ≥ �fn · a1 >na1 ,与 Max�a1 、a2 、a3 、 … … 、an � ≤ n · Min�a1 、a2 、a3 、 … … 、an �矛盾。所以当 n≥13 时,都 满足条件。 综上所述知,满足条件的 n 为所有不小于 13 的自然数。 2、一个圆被 432 个点等分为 432 段弧,将其中 108 个点染成红色,108 个点染成绿色, 108 个点染成蓝色,108 个点染成黄色。求证:可以在每种颜色的点中各选 3 个点,使得由 同色点构成的四个三角形都全等。 解:我们记 f(m)表示 m 除以 432 的余数,其中 0≤f(m)≤431。 我们从某点开始,按顺时针方向依次给 432 个点排序为 0、1、2、3、……431。设 108 个 红点所在位置依次为a1 、a2 、a3 、 … … 、a108 ,108 个绿点依次为b1 、b2 、b3 、 … … 、b108 , 108 个蓝点依次为c1 、c2 、c3 、 … … 、c108 ,108 个黄点依次为d1 、d2 、d3 、 … … 、d108 。 记Xi = �f(a1 + i)、f(a2 + i)、f(a3 + i)、 … … 、f(a108 + i)� ∩ �b1 、b2 、b3 、 … … 、b108 � b1、b2、b3、……、b108=108(j=1、2、3、……108),所以

2012年世界奥林匹克数学竞赛六年级试题

2012年世界奥林匹克数学竞赛六年级试题

2012赛季世界奥林匹克数学竞赛(中国区)选拔赛地方海选赛 A 卷--------------------------------------------------------------------------------- 考生须知:1. 每位考生将获得考题一份。

考试期间,不得使用计算工具或手机。

2. 本卷共100分,填空题每小题5分,解答题每题10分。

3. 请将答案写在本卷上。

考试完毕时,所有考题及草稿纸会被收回。

4. 若计算结果是分数,请化至最简,并确保为真分数或带分数。

六年级试卷(本试卷满分100分 ,考试时间90分钟 )一、填空题。

(每题5分,共60分)1.规定a b =ba ab 求的值是__________________。

2.有甲、乙、丙三个梯形,它们的高之比是1:2:3;上底之比依次是6:9:4;下底之比依次12:15:10.已知甲梯形的面积是30平方厘米,那么乙与丙两个梯形的面积之和是_________________平方厘米。

3.从1到1989中,共有______________个完全平方数。

4.某次数学比赛,分两种方法给分:一种是答对一题给5分,不答给2分,答错不给分;另一种是先给40分,答对一题给3分,不答不给分,答错扣1分,某考生两种评分方法均得81分,这次比赛共有__________________题。

5.某水果商店运来一批梨和苹果。

已知梨重量的32与苹果共620千克,梨重量的41与苹果重量的52相等。

求运来梨子有__________________千克。

6.一条绳子第一次剪掉1米,第二次剪掉剩余部分的21,第三次剪掉1米,第四次剪掉剩余部分的32,第五次剪掉1米,第六次剪掉剩余部分的43,这条绳子还剩下1米.这条绳子原长__________________米。

7.制造一批零件,按计划18天可以完成它的21,如果工作3天后,工作效率提高了31,那么完成这批零件的31,一共需要________________天。

2012亚洲国际数学奥林匹克总决赛真题(四年级)

2012亚洲国际数学奥林匹克总决赛真题(四年级)

甲部:每題 3 分 甲部:每题 3 分 Section A – each question carries 3 marks 1) 求 1 3 5 7 ... 37 39 的值。 求 1 3 5 7 ... 37 39 的值。 Evaluate 1 3 5 7 ... 37 39 . 2) 求 200 40 200 50 200 10 的值。 求 200 40 200 50 200 10 的值。 Evaluate 200 40 200 50 200 10 . 3) 求 (633 324) (30 73) (163 137) 的值。 求 (633 324) (30 73) (163 137) 的值。 Evaluate (633 324) (30 73) (163 137) . 定義符號「 」的程序計算有以下的結果:
(C) 2012 Asia International Mathematical Olympiad Union (AIMO) All Rights Reserved. No part of this publication maybe reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic mechanical, photocopying, recording or otherwise, without the prior permission of Asian International Mathematical Olympiad Union. 未经亚洲国际数学奥林匹克公开赛中国区组委会许可,任何单位或个人不得复制、流通及出售本试题集。 P.1

国际数学奥林匹克竞赛试题及解答

国际数学奥林匹克竞赛试题及解答

国际数学奥林匹克竞赛试题及解答国际数学奥林匹克竞赛是世界范围内最具影响力和声誉的数学竞赛之一。

每年,来自各个国家的数学高手们聚集在一起,参与这项激烈而充满挑战的竞赛。

本文将介绍一些历年的国际数学奥林匹克竞赛试题,并提供相应的解答。

试题一:证明:当n为正整数时,4^n + n^4不是素数。

解答一:我们可以通过反证法来证明这个命题。

假设4^n + n^4是一个素数,即不存在其他因子能够整除它。

考虑到任何正整数n都可以写成2k或2k+1的形式,其中k是整数。

当n为偶数时,可以将n表示为2k的形式。

那么我们有:4^n + n^4 = (2^2)^n + (2k)^4 = 2^(2n) + (2k)^4我们可以看出,2^(2n)是一个完全平方数,而(2k)^4也是一个完全平方数。

根据完全平方数的性质,它们的和2^(2n) + (2k)^4也是一个完全平方数。

因此,当n为偶数时,4^n + n^4不可能是素数。

当n为奇数时,可以将n表示为2k+1的形式。

那么我们有:4^n + n^4 = (2^2)^n + (2k+1)^4 = 2^(2n) + (2k+1)^4同样地,我们可以看出,2^(2n)是一个完全平方数,而(2k+1)^4也是一个完全平方数。

根据完全平方数的性质,它们的和2^(2n) + (2k+1)^4也是一个完全平方数。

因此,当n为奇数时,4^n + n^4同样不可能是素数。

综上所述,我们可以得出结论:当n为正整数时,4^n + n^4不是素数。

试题二:证明:对于任意正整数n,n^2 + 3n + 1不是完全平方数。

解答二:我们同样可以使用反证法来证明这个命题。

假设n^2 + 3n + 1是一个完全平方数,即存在另一个正整数m,使得m^2 = n^2 + 3n + 1。

根据完全平方数的性质,m^2必然是一个奇数,因为奇数的平方也是奇数。

我们可以将n^2 + 3n + 1拆分为两部分,即(n^2 + 2n + 1) + n。

2012赛季世界奥林匹克数学竞赛

2012赛季世界奥林匹克数学竞赛

2012赛季世界奥林匹克数学竞赛(中国区)选拔赛地方晋级赛 A卷---------------------------------------------------------------------------------考生须知:每位考生将获得考题一份。

考试期间,不得使用计算工具或手机。

本卷共100分,填空题每小题5分,解答题每题10分。

请将答案写在本卷上。

考试完毕时,所有考题及草稿纸会被收回。

若计算结果是分数,请化至最简,并确保为真分数或带分数。

三年级试卷(本试卷满分100分,考试时间90分钟)一、填空题。

(每题5分,共60分)1、计算:1+2+3+…+98+99+98+…+3+2+1= 。

2、有一张边长为18厘米的正方形纸片,按图中虚线所示剪成两张小纸片,这两张小纸片的周长之和为厘米。

有一列数1、3、7、13、21……,第8个数是。

有一个数,比200小比150大,这个数被7除余3,被9除也余3,这个数是。

数一数,图中有个长方形。

6、2011年的国庆节是星期六,那么2012年的国庆节是星期。

7、将数字0、1、3、4、5、6填入下面的□内,使等式成立。

÷ = × = 28、欧欧、小美各有一些漫画书。

欧欧的漫画书比小美少18本,小美的漫画书是欧欧的3倍少14本,那么欧欧和小美一共有本。

9、3只猫在3天里抓3只老鼠,那么,只猫在30天里抓30只老鼠。

有一盒牛奶,奥斑马12天可以喝完,如果和欧欧一起喝,8天喝完。

那么,欧欧单独喝这盒牛奶可以喝天。

11、有14个连续自然数,前7个连续自然数的和是105。

那么,这14个连续自然数的和是。

12、黑白团队做换座位的游戏,开始时奥斑马、小泉、小美、欧欧分别坐在1、2、3、4号座位上(如图),第一次是前后排互换座位,第二次是左右列互换座位……按此规律交替进行下去,那么在第2011次互换座位后,欧欧的座位编号是号。

开始第一次第二次第三次二、解答题。

国际数学奥林匹克试题分类解析—A数论_A5整数综合问题

国际数学奥林匹克试题分类解析—A数论_A5整数综合问题

A5 整数综合问题A5-002在n³n(n为奇数)的方格表里的每一个方格中,任意填上一个+1或-1,在每一列的下面写上该列所有数的乘积;在每行的右边写上该行所有数的乘积,证明:这2n个乘积的和不等于0.【题说】1962年全俄数学奥林匹克八、九年级题5.【证】设p1,p2,…,p n是各行数字乘积,q1,q2,…,q n是各列数字乘积,它们都是+1或-1,而应有p1p2…p n=q1q2…q n,所以p1、p2、…、p n、q1、q2…、q n中应有偶数个-1.设为2k个,则其中+1的个数为2(n-k).由于n为奇数,k≠n-k,所以p1+p2+…+p n+q1+q2+…+q n≠0A5-003已知任意n个整数a1,a2,…,a n,由此得到一列新的数.由这n个数依同样法则又得到一列新数,并如此做下去.假如所有这些新数都是整数,证明原来所给各数a i(i=1,2,…,n)都相等.【题说】1964年全俄数学奥林匹克八年级题4.n为偶数时有一种例外情况使结论不成立.【证】对于任给的n个数x i(1≢i≢n),如果它们不全相等,那么施行如上运算若干次后得的新数中,最大值要变小,最小值要变大,因此,如若不能得出一组n个相同的数的话,其中最大数不能永远是整数.假设从一组n个数z1,z2,…,z n得到n个相同的数那么,当n是奇数时,易知z1=z2=…=z n;当n是偶数时,z1,…,z n中奇数项相等,偶数项相等.若z i(1≢i≢n)由y i(1≢i≢n)经运算得出,且设则有 2(y1+y2+…+y n)=2na及 2(y2+y3+…+y n+y1)=2nb从而 2na=2nb,a=b由此得出z1=z2=…=z n=a因此,我们的命题成立.仅当n为偶数时,有一种例外情况:n个整数a,b,a,b,…,a,b,(a与b的奇偶性相同,a ≠b)满足题中条件,但结论不成立.A5-004某整数集合A既含有正整数,也含有负整数,而且如果a和b是它的元素,那么2a 和a+b也是它的元素,证明:集合A包含它的任意两个元素之差.【题说】1967年匈牙利数学奥林匹克题1.【证】不难证明:如果整数c是集合A的元素,而n是自然数,那么nc也属于集合A.因为集合A既含有正整数,也含有负整数,根据最小数原理,集合A存在最小的正整数a和绝对值最小的负整数b.这两个数的和a+b也应该属于集合A,而且满足不等式.b<a+b<a但是集合A不含有小于a的正数和大于b的负数,所以a+b只能等于0.因此,数0属于集合A,且b=-a.根据前面所证,集合A包含数a的所有整数倍.设x∈A,则由带余数除法,存在整数q、r,使x=qa+r(0≢r<a).于是r=x+(-qa)∈A.由于0≢r<a,必有r=0.即A中的数均为a的整数倍.既然集合A的元素都是a的整数倍,因此集合A的任意两个元素之差也是元素a的整数倍,因而属于集合A.A5-005证明:任何不大于n!的自然数,都能表示成不多于n个数的和,在这些加数中,没有两个是相同的,而且任何一个都是n!的因数.【题说】第二届(1968年)全苏数学奥林匹克九年级题5.【证】对n用数学归纳法,n=1时,显然.设n时结论真.对a≢(n+1)!,将a除以n+1得a=d(n+1)+r,这里d≢n!,0≢r<n+1.由归纳假设,d=d1+d2+…+d l,l≢n.且所有d i是n!的不同因数(i=1,2,…,l).于是 a=d1(n+1)+…+d l(n+1)+r这个和中的加数不多于n+1个,其中每一个都是(n+1)!的因数,且全不相等.A5-006找出具有下列性质的所有正整数n:设集合{n,n+1,n+2,n+3,n+4,n+5}可以划分成两个无公共元素的非空子集,使得一个子集中所有元素的乘积等于另一子集中所有元素的乘积.【题说】第十二届(1970年)国际数学奥林匹克题4.本题由捷克斯洛伐克提供.【解】假定n具有所述性质,那么六个数n,n+1,n+2,n+3,n+4,n+5中任一个素因数p 必定还整除另一个数(在另一个子集中).因而p整除这两个数的差,所以p只能为2,3,5.再考虑数n+1,n+2,n+3,n+4.它们的素因数不能为5(否则上面的六个数中只有一个被5整除),因此只能为2与3.这四个数中有两个为连续奇数.它们必须是3的正整数幂(因为没有其它因数),但这样两个幂的差被3整除,决不能等于2.矛盾!这就说明具有所述性质的n是不存在的.A5-007证明:任何一个正的既约真分数m/n可以表示成两两互异的自然数的倒数之和.【题说】1972年~1973年波兰数学奥林匹克三试题5.【证】对m用数学归纳法.m=1时,显然成立.假设对小于m的自然数命题成立,我们证明它对m>1也成立.为此,设n=qm+r(0≢r<m) (1)因为m/n是正的既约真分数,所以q>0,r>0.又因0<m-r<m,所以由归纳假设,其中t1<t2<…<t k为自然数.因为n>m,所以由(3)知:t1>q+1,将(3)代入(2)得所以,命题对任何自然数m都成立.A5-008 8分和15分的邮票可以无限制地取用.某些邮资额数,例如7分、29分,不能够刚好凑成.求不能凑成的最大额数n,即大于n的额数都能够凑成,并证明你的答案.【题说】第六届(1974年)加拿大数学奥林匹克题6.【解】因为98=8²1+15²699=8²3+15²5100=8²5+15²4101=8²7+15²3102=8²9+15²2103=8²11+15²1104=8²13+15²0105=8²0+15²7比105大的数,可用以上8数加上8的适当倍数而得到.而97不能用8与15凑成.故所求的n 值为97.【注】一般地,当正整数p、q互质时,不能用p、q凑成的最大整数pq-p-q.A5-009若整数n可表示成n=a1+a2+…+a k (1)其中a1,a2,…,a k是满足的正整数(不一定相异),那么,我们称n是好数,已知整数33至73是好数,证明:每一个不小于33的整数都是好数.【题说】第七届(1978年)英国数学奥林匹克题3.【证】我们改证命题p n:整数n,n+1,…,2n+7都是好数.已知p33为真.假设p n成立,那么n是好数,即存在正整数a1,a2,…,a k使(1)、从而这表明 2(a1+a2+…+a k)+4+4=2n+82(a1+a2+…+a k)+3+6=2n+9也是好数,因此P n成立.根据数学归纳法,对所有正整数n≣33,P n成立,原命题因而得证.A5-010设f(x)=x2-x+1.证明:对任意的m个自然数(m>1),f(m),f(f(m)),…两两互素.【题说】第十二届(1978年)全苏数学奥林匹克十年级题1.【证】因f(0)=1,所以多项式的常数项p n(0)=1.因而,对于任意的整数m,p n(m)除以m,余数等于1.用m'=p k(m)代替m,就得到p n+k(m)=p n(m')与m'=p k(m)互素.A5-011自然数n的数字和用S(n)来表示.(1)是否存在一个自然数n,使得n+s(n)=1980;(2)证明:在任意两个连续的自然数之中,至少有一个能表示成n+S(n)的形式,其中n为某个自然数.【题说】第十四届(1980年)全苏数学奥林匹克八年级题6.【解】(1)当n=1962时,n+S(n)=1980.(2)令S n=n+S(n),如果n的末位数字是9,则S n+1<S n;否则S n+1=S n+2.对任意两个连续的自然数m(m≣2),m+1,在S n<m的n中,选择最大的,并用N表示.这时S N+1≣m>S N,所以N 的末位数字不是9,从而S N+1=S N+2.由m≢S N+1=S N+2<m+2,即得S N+1=m或S N+1=m+1.A5-012设n为≣2的自然数.证明方程x n+1=y n+1在x与n+1互质时无正整数解.【题说】1980年芬兰等四国国际数学竞赛题3.本题由匈牙利提供.【证】x n=y n+1-1=(y-1)(y n+y n-1+…+1).如果质数p是y-1与y n+y n-1+…+1的公因数,则p整除x n,从而p是x的因数.但y除以p余1,所以y n+y n-1+…+1除以p与n+1除以p 的余数相同,即n+1也被p整除,这与x、n+1互质矛盾.因此y-1与y n+y n-1+…+1互质,从而y-1=s n,y n+y n-1+…+1=t n,其中s、t为自然数,st=x.但y n<y n+y n-1+…+1<(y +1)n,所以y n+y n-1+…+1≠t n,矛盾,原方程无解.A5-013设a、b、c是两两互素的正整数,证明:2abc-be-ac-ab是不能表示为xbc+yac +zab形式的最大整数(其中x、y、z是非负整数).【题说】第二十四届(1983年)国际数学奥林匹克题3.【证】熟知在a、b互素时,对任意整数n有整数x、y,使ax+by=n.当n>ab-a-b时,首先取0≢x<b(若x>b则用x-b、y+a代替x、y),我们有by=n-ax>ab-a-b-ax≣ab-a-b-a(b-1)=-b所以y>-1也是非负整数.即n>ab-a-b时,有非负整数x、y使ax+by=n.因为a、b、c两两互素,所以(bc,ac,ab)=1.令(bc,ac)=d.则(ab,d)=1,所以方程abz+dt=n (1)有整数解,并且0≢z<d(若z>d则用z-d、t+ab代替z、t).设 bc=da1,ac=db1,那么(a1,b1)=1.在n>2abc-bc-ca-ab时,即 t>a1b1-a1-b1从而方程a1x+b1y=t (2)有非负整数解(x,y).由(1)与(2)消去t可得bcx+acy+abz=n有非负整数解.另一方面,若有非负整数x、y、z使2abc-bc-ac-ah=xbc+yac+zab则 bc(x+1)+ac(y+1)+ab(z+1)=2abc于是应有,a整除bc(x+1),因(a,bc)=1.所以,a整除x+1,从而c≢x+1.同理有,b≢y+1,c≢z+1.因此3abc=bca+acb+abc≢bc(x+1)+ac(y+1)+ab(z+1)=2abc由于a、b、c都是正整数,这是不可能的,故2abc-bc-ca-ab不能表成xbc+yca+zab(x、y、z为非负整数)的形式.A5-014能否选择1983个不同的正整数都不大于105,且其中没有三个正整数是算术级数中的连续项,并证明你的论断.【题说】第二十四届(1983年)国际数学奥林匹克题5.本题由波兰提供.【解】考虑三进制表示中,不含数字2并且位数≢11的数所成的集合M.显然|M|=211-1>1983.M中最大的数为若x、y、z∈M并且x+z=2y,则由于2y的各位数字为0或2,所以x+z的各位数字也为0或2.从而x、z在同一位上的数字同为0或同为2,即x=z.因此M中任三个互不相同的数不成等差数列.于是回答是肯定的,M即是一例.A5-015将19分成若干个正整数之和,使其积为最大.【题说】1984年上海市赛一试题2(9).【解】由于分法只有有限种,其中必有一种分法,分成的各数的积最大.我们证明这时必有:(1)分成的正整数只能是2和3.因为4=2+2,且4=2³2,若分出的数中有4,拆成两个2其积不变;若分出的数中有数a≣5.则只要把a拆成2与a-2,由2(a-2)>a知道积将增大.(2)分成的正整数中,2最多两个.若2至少有3个,则由3+3=2+2+2及3³3>2³2³2可知,将3个2换成2个3,积将增大.所以,将19分成5个3与2个2的和,这些数的积35³22=972是最大的.A5-016设a、b、c、d是奇整数,0<a<b<c<d,且ad=bc.证明:如果对某整数k和m有a+d=2k和b+c=2m,那末a=1.【题说】第二十五届(1984年)国际数学奥林匹克题6.【证】因为a[(a+d)-(b+c)]=a2+ad-ab-ac=a2+bc-ab-ac=(a-b)(a-c)>0所以a+d>b+c,即2k>2m,k>m.又由ad=bc,有 a(2k-a)=b(2m-b)2m(b-2k-m a)=b2-a2=(b+a)(b-a)可知2m整除(b+a)(b-a).但b+a和b-a不能都被4整除(因为它们的和是2b,而b是奇数),所以2m-1必整除b+a或b-a之一.因为b+a<b+c=2m,所以b+a=2m-1或b-a=2m-1.因为a、b是奇数,它们的公因数也是奇数,且是b+a和b-a的因数,从而是2m-1的奇因数,即1.所以a与b互质,同理a与c也互质.但由ad=bc,知a能整除bc,故a=1.A5-017对正整数n≣1的一个划分π,是指将n分成一个或若干个正整数之和,且按非减顺序排列(如n=4,划分π有1+1+1+1,1+1+2,1+3,2+2及4共5种).对任一划分π,定义A(π)为划分π中数1出现的个数;B(π)为π中出现不同的数的个数(如对n=13的一个划分π:1+1+2+2+2+5而言,A(π)=2,B(π)=3).求证:对任意正整数n,其所有划分π的A(π)之和等于B(π)之和.【题说】第十五届(1986年)美国数学奥林匹克题5.【证】设p(n)表示n划分的个数.那么第一个位置是1的划分有p(n-1)个,第二个位置上是1的(当然它第一个位置上也是1)的划分有p(n-2)个.等等.第n-1个位置上是1的划分有P(1)=1个,第n个位置上是1的只有1种.若令P(0)=1.则所有划分中含1的数A(π)之和等于P(n-1)+P(n-2)+…+P(1)+P(0).另一方面,从含有1的每个划分中拿去一个1,都成为一个(n-1)的划分,共拿去P(n-1)个1.再从含有2的每个划分中拿去一个2,都成为n-2的划分,共拿去P(n-2)个2.…从含有(n-1)的划分(只有一个:1+(n-1),拿去(n-1),即拿去了P(1)=1个1.再加上含有n的一个划分,n为P(0)=1个,故B(π)总和也等于P(n-1)+P(n-2)+…+P(1)+P(0).因此,A(π)=B(π).A5-018在直角坐标系xoy中,点A(x1,y1)和点B(x2,y2)的坐标均为一位正整数.OA与x轴正方向的夹角大于45°,OB与x轴正方向的夹角小于45°,B在x轴上的射影为B',A在y轴上的射影为A',△OB'B的面积比△OA'A的面积大33.5.由x1、求出所有这样的四位数,并写出求解过程.【题说】1985年全国联赛二试题1.>67.又由于x2、y2均为一位正整数,所以x2y2=72或x2y2=81.因为∠BCB'<45°,所以x2>y2.故由x2y2=72可知x2=9,y2=8.此时x1y1=5.同样可求得x1=1,y1=5.综上可知,1985为符合条件的唯一的四位数.A5-019设n、k为互素自然数,0<k<n,在集合M={1,2,…,n-1}(n≣3)中的各数,要么着蓝色,要么着白色,已知(1)对于各i∈M,i和n-i同色;(2)对于各i∈M,i≠k, i和|i-k|同色.证明:在M中的所有数均同色.【题说】第二十六届(1985年)国际数学奥林匹克题2.本题由澳大利亚提供.【证】设lk=nq l+r l(l=1,2,…,n-1;1≢r l≢n-1).若r l=r l',则(l-l')k被n整除,但n、k互素,所以n|(l-l')这表明在l=1,2…,n-1时,r1,r2,…,r n-1互不相同,所以M={r1,r2,…,r n-1}.若r l<n-k,即r l+k<n,则r l+1=r l+k,由条件(2),r l+1与r l+1-k=r l同色.若r l≣n-k,即r l+k≣n,则r l+1=r l+k-n,于是r l+1与k-r l+1=n-r l同色.再由条件(1)n-r l与r l同色.综上所述,r i+1与r l同色(l=1,2,…,n-2),因此M中所有数同色.A5-020如n是不小于3的自然数,以f(n)表示不是n的因数的最小自然数(例如f(12)=5).如果f(n)≣3,又可作f(f(n)).类似地,如果f(f(n))≣3,又可作f(f(f(n)))果用L n表示n的长度,试对任意的自然数n(n≣3),求L n并证明你的结论.【题说】第三届(1988年)全国冬令营赛题6.【解】很明显,若奇数n≣3,那么f(n)=2,因此只须讨论n为偶数的情况,我们首先证明,对任何n≣3,f(n)=p s,这里P是素数,s为正整数.假若不然,若f(n)有两个不同的素因子,这时总可以将f(n)表为f(n)=ab,其中a、b是大于1的互素的正整数.由f的定义知,a与b都应能整除n,因(a,b)=1,故ab也应整除n,这与f(n)=ab矛盾.所以f(n)=p s.由此可以得出以下结论:(1)当n为大于1的奇数时,f(n)=2,故L n=1;(2)设n为大于2的偶数,如果f(n)=奇数,那么f(f(n))=2,这时L n=2;如果f(n)=2s,其中自然数s≣2,那么f(f(n))=f(2s)=3,从而f(f(f(n)))=f(3)=2,这时L n=3.A5-021一个正整数,若它的每个质因数都至少是两重的(即在这数的分解式中每个质因数的幂指数都不小于2),则称该正整数为“漂亮数”.相邻两个正整数皆为“漂亮数”,就称它们是一对“孪生漂亮数”,例如8与9就是一对“孪生漂亮数”.请你再找出两对“孪生漂亮数”来.【题说】1989年北京市赛高一题5.【解】设(n,n+1)是一对“孪生漂亮数”,则4n(n+1)是漂亮数,并且4n(n+1)+1=4n2+4n+1=(2n+1)2是平方数,而平方数必为漂亮数.所以,(4n(n+1)、4n(n+1)+1)也是一对“孪生漂亮数”.于是,取n=8,得一对“孪生漂亮数”(288,289).再取n=288,得另一对“孪生漂亮数”(332928,332929).两个自然数的平方差,则称这个自然数为“智慧数”比如16=52-32,16就是一个“智慧数”.在自然数列中从1开始数起,试问第1990个“智慧数”是哪个数?并请你说明理由.【题说】1990年北京市赛高一复赛题4.【解】显然1不是“智慧数”,而大于1的奇数2k+1=(k+1)2-k2,都是“智慧数”.4k=(k+1)2-(k-1)2可见大于4且能被4整除的数都是“智慧数”而4不是“智慧数”,由于x2-y2=(x+y)(x-y)(其中x、y∈N),当x,y奇偶性相同时,(x+y)(x-y)被4整除.当x,y奇偶性相异时,(x+y)(x -y)为奇数,所以形如4k+2的数不是“智慧数”在自然数列中前四个自然数中只有3是“智慧数”.此后每连续四个数中有三个“智慧数”.由于1989=3³663,所以2656=4³664是第1990个“智慧数”.A5-023有n(≣2)名选手参加一项为期k天的比赛,每天比赛中,选手的可能得分数为1,2,3,…,n,且没有两人的得分数相同,当k天比赛结束时,发现每名选手的总分都是26分.试确定数对(n,k)的所有可能情况.【题说】第二十二届(1990年)加拿大数学奥林匹克题1.【解】所有选手得分总和为kn(n+1)/2=26n,即k(n+1)=52(n,k)取值可以是(3,13),(12,4),(25,2)及(51,1),但最后一种选择不满足要求.当(n,k)=(3,13)时,3名选手13天得分配置为(1,2,3)+2(2,3,1)+2(3,1,2)+3(1,3,2)+2(3,2,1)+3(2,1,3)=(26,26,26).当(n,k)=(12,4)时,12名选手4天得分配置为2(1,2,…,11,12)+2(12,11,…,2,1)=(26,26,…,26).当(n,k)=(25,2)时,25名选手两天得分配置为(1,2,…,24,25)+(25,24,…,2,1)=(26,26,…,26).A5-024设x是一个自然数.若一串自然数x0=1,x1,x2,…,x t-1,x t=x,满足x i-1<x i,x i -1|x i,i=1,2,…,t.则称{x0,x1,x2,…x t}为x的一条因子链,t为该因子链的长度.T(x)与R(x)分别表示x的最长因子链的长度和最长因子链的条数.对于x=5k³31m³1990n(k,m,n是自然数)试求T(x)与R(x).【题说】第五届(1990年)全国冬令营赛题2.【解】设x的质因数分解式为其中p1、p2、…、p n为互不相同的质数,α1、α2、…、αn为正整数.由于因子链上,每一项至少比前一项多一个质因数,所以T(x)≢α1+α2+…+αn.将α1+α2+…+αn个质因数(其中α1个p1,α2个p2,…,αn个p n)依任意顺序排列,每个排列产生一个长为α1+α2+…+αn的因子链(x1为排列的第一项,x2为x1乘排列的第二项,x3为x2乘第三项,…),因此T(x)=α1+α2+…+αn,R(x)即排列对于x=5k³31m³1990n=2n³5k+n³31m³199n,T(x)=3n+k+mA5-025证明:若则为整数.【题说】1990年匈牙利阿拉尼²丹尼尔数学竞赛低年级普通水平题1.【证】若x+y+z+t=0,则由题设条件可得于是此时(1)式的值等于-4.若x+y+z+t≠0,则由此可得x=y=z=t.于是(1)式的值等于4.A5-026课间休息时,n个学生围着老师坐成一圈做游戏,老师按顺时针方向并按下列规则给学生们发糖:他选择一个学生并给一块糖,隔一个学生给下一个学生一块,再隔2个学生给下一个学生一块,再隔3个学生给下一个学生一块….试确定n的值,使最后(也许绕许多圈)所有学生每人至少有一块糖.【题说】1991年亚太地区数学奥林匹克题4.【解】问题等价于确定正整数n,使同余式1+2+3+…+x=a(modn) (1)对任意正整数a都有解.我们证明当且仅当n是2的方幂时,(1)式总有解.若n不是2的方幂,则n有奇素因数p.由于1,1+2,1+2+3,…,1+2+…+(p-1),1+2+…+p至多表示mod p的p-1个剩余类(最后两个数在同一个剩余类中),所以1+2+…+x也至多表示mod p的p-1个剩余类,从而总有a使1+2+…+x≡a(mod p)无解,这时(1)也无解.若n=2k(k≣1),考察下列各数:0³1,1³2,2³3,…,(2k-1)2k (2)设x(x+1)≡y(y+1)、(mod 2k+1),其中0≢x,y≢2k-1,则x2-y2+x-y≡(x-y)(x+y+1)≡0(mod 2k+1)因为x-y,x+y+1中,一个是奇数,一个是偶数,所以x-y≡0(mod2k+1)或x+y+1≡0(mod 2k +1)由后者得:2k+1≢x+y+1≢2k-1+2k-1+1=2k+1-1矛盾.故 x≡y(mod 2k+1),即x=y.因此(2)中的2k个偶数mod 2k+1互不同余,从而对任意整数a,方程x(x+1)≡2a(mod 2n)有解,即(1)有解.A5-027设S={1,2,3,…,280}.求最小的自然数n使得S的每个有n个元素的子集都含有5个两两互素的数.【题说】第三十二届(1991年)国际数学奥林匹克题3.本题由中国提供.【解】令A i={S中一切可被i整除的自然数},i=2,3,5,7.记A=A2∪A3∪A5∪A7,利用容斥原理,容易算出A中元素的个数是216.由于在A中任取5个数必有两个数在同一个A i之中,从而他们不互素.于是n≣217.另一方面,令B1=(1和S中的一切素数}B2=(22,32,52,72,112,132}B3={2³131,3³89,5³53,7³37,11³23,13³19}B4={2³127,3³83,5³47,7³31,11³19,13³17}B5={2³113,3³79,5³43,7³29,11³17}B6={2³109,3³73,5³41,7³23,11³13}易知B1中元素的个数为60.令B=B1∪B2∪B3∪B4∪B5∪B6,则B中元素的个数为88,S-B中元素的个数为192.在S中任取217个数,由于217-192=25>4³6,于是存在i(1≢i≢6),使得这217个数中有5个数在Bi中.显然这5个数是两两互素的,所以n≢217.于是n=217.A5-028对于每个正整数n,以s(n)表示满足如下条件的最大正整数:对于每个正整数k≢s(n),n2都可以表示成k个正整数的平方之和.1.证明:对于每个正整数n≣4,都有s(n)≢n2-14;2.试找出一个正整数n,使得s(n)=n2-14;3.证明:存在无限多个正整数n,使得s(n)=n2-14.【题说】第三十三届(1992年)国际数学奥林匹克题6.本题由英国提供.【解】用反证法证明如下:假设对某个n≣4,有s(n)≣n2-14,则存在k=n2-13个正整数a1,a2,…,a k,使得于是就有从而3b+8c=13 这表明c=0或1;但相应的b不为整数,矛盾.2.每个大于13的正整数m可以表为3b+8c,其中b、c为非负整数.事实上,若m=3s+1,则s≣5,m=3(s-5)+2³8.若m=3s+2,则s≣4,m=3(s-2)+8.由即知n2可表为n2-m个平方和,从而n2可表为n2-14,n2-15,…,对于n=13,有n2=122+52=122+42+32=82+82+52+42由于82可表为4个42的和,42可表为4个22的和,22可表为4个12的和,所以132=82+82+52+42可表为4,7,10,...,43个平方的和,又由于52=42+32,132可表为5,8,11, (44)平方的和.由于122可表为4个62的和,62可表为4个32的和,所以132=122+42+32可表为3,6,9,…,33个平方的和.为18+2³9=36,18+2³12=42个平方的和.再由42为4个22的和,132也可表为39个平方的和.综上所述,132可表为1,2,…,44个平方的和.3.令n=2k³13.因为132可表为1,2,…,155个平方的和,22可表为4个平方的和,所以132³22可表为1,2,…,155³4个平方的和,132³24可表为1,2,…,155³42个平方的和,…,n2=132³22k可表为1,2,…,155³4k个平方的和.s(n)=n2-14A5-029每个正整数都可以表示成一个或者多个连续正整数的和.试对每个正整数n,求n有多少种不同的方法表示成这样的和.【题说】第一届(1992年)中国台北数学奥林匹克题2.【解】设m为n的正的奇因数,m=nd,则若(1)的每一项都是正的,则它就是n的一种表示(表成连续正整数的和).若(1)式右边有负数与0,则这些负数与它们的相反数抵消(因以略去,这样剩下的项是连续的正整数,仍然得到n的一种表示,其项数为偶数(例如7=(-2)+(-1)+0+1+2+3+4=3+4)于是n的每一个正奇因数产生一个表示.反过来,若n有一个表示,项数为奇数m,则它就是(1)的形式,而m是n的奇因数,若n有一个表示,项数为偶数,最小一项为k+1,则可将这表示向负的方向“延长”,增加2k+1项,这些项中有0及±1,±2,…,±k.这样仍成为(1)的形式,项数是n的奇因数.因此,n的表示法正好是n的正奇因数的个数,如果n的标准分解A5-030 x、y为正整数,x4+y4除以x+y的商是97,求余数.【题说】1992年日本数学奥林匹克预选赛题7.【解】由题知x4+y4<98(x+y),不妨设x≣y,则x4<98³2x,所以x≢5.注意到14=1,24=16,34=81,44=256,54=625.对x,y∈{1,2,3,4,5},x4+y4>97(x+y)的仅有54+44=881=(5+4)³97+8,所以所求的余数为8.A5-031设p=(a1,a2,…,a17)是1,2,…,17的任一排列,令k p是满足不等式a1+a2+…+a k<a k+1+…+a17的最大下标k,求k p的最大值和最小值,并求所有不同的排列p相应的k p的和.【题说】1992年捷克和斯洛伐克数学奥林匹克(最后一轮)题1.【解】若k p≣12,则这与k p的定义相矛盾,所以k p≢11.又当p=(1,2,…,17)时,1+2+…+11=66<87=12+13+…+17,故此时k p=11.所以,k p的最大值为11,并且kp的最小值为5,此时p=(17,16,…,2,1).设p=(a1,a2,…,a17)是1,2,…,17的任一排列,由kp的定义,知且但(2)的等号不可能成立,否则矛盾.所以由(1)和(3)可知,对排列p=(a1,a2,…,a17)的反向排列p'=(a17,a16,…,a1),k p'=17-(k p+2)+1=16-k p所以k p+k p'=16.于是可把1,2,…,17的17!个不同排列与它的反向排列一一配对.所求之和为A5-032确定所有正整数n,使方程x n+(2+x)n+(2-x)n=0有整数解.【题说】1993年亚太地区数学奥林匹克题4.【解】显然,n只能为奇数.当n=1时,x=-4.当n为不小于3的奇数时,方程左边是首项系数为1的非负整系数多项式,常数项是2n+1,所以它的整数解只能具有-2t的形式,其中t为非负整数.若t=0,则x=-1,它不是方程的解;若t=1,则x=-2,也不是方程的解;当t≣2时,方程左边=2n[-2n(t-1)+(1-2t-1)n+(1+2t -1)n],而-2n(t-1)+(1-2t-1)n+(1+2t-1)n≡2(mod 4),从而方程左边不等于零.综上所述,当且仅当n=1时,原方程有一个整数解x=-4.A5-033每一个大于2的自然数n都可以表示为若干个两两不等的正整数之和.记这些相加数个数的最大值为A(n),求A(n).【题说】1993年德国数学奥林匹克(第一轮)题1.【解】对任意自然数n(n≣3),存在自然数m,使-1)之和,所以A(n)=m.A5-034完全平方数对(a,b)满足:(1)a和b的十进制表示位数相同;(2)将b的十进制表示续写在a的十进制表示之后,恰好构成一个新的完全平方数的十进制表示,例如a=16,b=81,1681=412.求证:这样的数对(a,b)有无穷多对.【题说】1993年德国数学奥林匹克(第一轮)题3.【证】取a1=42,a2=492,…,a n=(5³10n-1-1)2,…;b1=92,b2=992,…,b n=(10n-1)2,….其中n为正整数.显然,a n,b n均为2n位数,且=25³104n-2-103n+2³102n-2³102n+1=(5³102n-1-10n+1)2即对任意正整数n,(a n,b n)均满足条件.A5-035证明:对于任意整数x,是一个整数.【题说】1994年澳大利亚数学奥林匹克一试题2.由于连续n个整数中必有一个是n的倍数,所以上式为整数.A5-037设n=231²319.n2有多少个小于n,但不能整除n的正整数因子?【题说】第十三届(1995年)美国数学邀请赛题6.【解】n2的因子必为2α²3β形,其中0≢α≢62,0≢β≢38.于是(α,β)是属于图中矩形的格点,显然对I、IV中的格点(α,β),2α.3β不满足要求(2α²3β|n 或2α²3β≣n),II中任一格点(约定β=19或α=31的点属于I或IV,不属于II或III)(α,β),若2α²3β≣n,则对III中格点(62-α,31-β),有262-α²331-β<n.反之,对III中格点(α,β),若2α²3β≣n,则对II中格点(62-α,31-β),有262-α²331-β<n.因此II、III 中恰有一半的格点(α,β),使2α²3β满足要求.即所求的正整数因子个数为19³31=589A5-038在满足y<x≢100的有序正整数对(x,y)中,有【题说】第十三届(1995年)美国数学邀请赛题8.=49+16+8+4+3+2+1+1+1=85A5-039对于每个正整数n,将n表示成2的非负整数次方的和,令f(n)为正整数n的不同表示法的个数.如果两个表示法的差别仅在于它们中各个数相加的次序不同,这两个表示法就被视为是相同的.例如,f(4)=4,因为4恰有下列四种表示法:4;2+2;2+1+1;1+1+1+1.【题说】第三十八届(1997年)国际数学奥林匹克题6.本题由立陶宛提供.【证】对于任意一个大于1的奇数n=2k+1,n的任一表示中必含一个1.去掉这个1就得到2k 的一个表示.反之,给2k的任一表示加上一个1就得到2k+1的一个表示.这显然是2k+1和2k的表示之间的一个一一对应.从而有如下递归式:f(2k+1)=f(2k) (1)对于任意正偶数n=2k,其表示可以分为两类:含有1的与不含1的.对于前者,去掉一个1就得到2k-1的一个表示;对于后者,将每一项除以2,就得到k的一个表示.这两种变换都是可逆的,从而都是一一对应.于是得到第二个递归式:f(2k)=f(2k-1)+f(k) (2)(1)、(2)式对于任意k≣1都成立.显然f(1)=1.定义f(0)=1,则(1)式对于k=0也成立.根据(1)、(2)式,函数f是不减的.由(1)式,可以将(2)式中的f(2k-1)换成f(2k-2),得到f(2k)-f(2k-2)=f(k),k=1,2,3,…,给定任一正整数n≣1,将上式对于k=1,2,…,n求和,得到f(2n)=f(0)+f(1)+...+f(n),n=1,2,3, (3)下面先证明上界,在(3)式中,右端所有的项都不大于最后一项,对于n≣2,2=f(2)≢f(n).于是有f(2n)=2+(f(2)+…+f(n))≢2+(n-1)f(n)≢f(n)+(n-1)f(n)=nf(n)n=2,3,4,…从而得到f(2n)≢2n-1²f(2n-1)≢2n-1²2n-2²f(2n-1)≢2n-1²2n-2²2n-3²f(2n-3)≢…≢2(n-1)+(n-2)+…+1²f(2)=2n(n-1)/2²2为了证明下界,我们先证明对于具有相同奇偶性的正整数b≣a≣0,有如下不等式成立:f(b+1)-f(b)≣f(a+1)-f(a) (4)事实上,如果a、b同为偶数,则由(1)式知上式两端均等于0.而当a、b同为奇数时,由(2)式知f(b+1)-f(b)=f(b+1)/2),f(a+1)-f(a)=f((a+1)/2).由函数f是不减的即得不等式(4)成立.任取正整数r≣k≣1,其中r为偶数,在(4)式中依次令a=r-j,b=r+j,j=0,1,…,k-1.然后将这些不等式加起来,得到f(r+k)-f(r)≣f(r+1)-f(r-k+1)因为r是偶数,所以f(r+1)=f(r).从而f(r+k)+f(r-k+1)≣2f(r),k=1,…,r对于k=1,…,r,将上述不等式相加,即得f(1)+f(2)+…+f(2r)≣2rf(r)根据(3)式,上式左端等于f(4r)-1.从而对于任意偶数r≣2,f(4r)>2rf(r)+1>2rf(r).取r=2m-2即得f(2m)≣2m-1f(2m-2) (5)要使r=2m-2为偶数,m须为大于2的整数,但是(5)式对于m=2也成立.因此对一切n≣2下界成立.。

八年级数学竞赛例题专题讲解:面积法

八年级数学竞赛例题专题讲解:面积法

八年级数学竞赛例题专题讲解:面积法阅读与思考平面几何学的产生源于人们测量土地面积的需要,面积关联着几何图形的重要元素边与角.所谓面积法是指借助面积有关的知识来解决一些直接或间接与面积问题有关的数学问题的一种方法.有许多数学问题,虽然题目中没有直接涉及面积,但由于面积联系着几何图形的重要元素,所以借助于有关面积的知识求解,常常简捷明快.用面积法解题的基本思路是:对某一平面图形面积,采用不同方法或从不同角度去计算,就可得到一个含边或角的关系式,化简这个面积关系式就可得到求解或求证的结果.下列情况可以考虑用面积法:(1)涉及三角形的高、垂线等问题;(2)涉及角平分线的问题.例题与求解【例1】如图,从等边三角形内一点向三边作垂线,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的边长为______________.(全国初中数学联赛试题) 解题思路:从寻求三条垂线段与等边三角形的高的关系入手.等腰三角形底边上任一点到两腰距离之和等于一腰上的高,那么等边三角形呢?等腰梯形呢?【例2】如图,△AOB中,∠O=,OA=OB,正方形CDEF的顶点C在DA上,点D在OB上,点F在AB上,如果正方形CDEF的面积是△AOB的面积的,则OC:OD等于( )A.3:1 B.2:1C.3:2 D.5:3解题思路:由面积关系,可能想到边、角之间的关系,这时通过设元,即可把几何问题代数化来解决.【例3】如图,在□ABCD中,E为AD上一点,F为AB上一点,且BE=DF,BE与DF交于G,求证:∠BGC=∠DGC.(长春市竞赛试题)解题思路:要证∠BGC=∠DGC,即证CG为∠BGD的平分线,不妨用面积法寻找证题的突破口.【例4】如图,设P为△ABC内任意一点,直线AP,BP,CP交BC,CA,AB于点D、E、F.求证:(1);(2).(南京市竞赛试题)解题思路:过P点作平行线,产生比例线段.【例5】如图,在△ABC中,E,F,P分别在BC,CA,AB上,已知AE,BF,CP相交于一点D,且,求的值.解题思路:利用上例的结论,通过代数恒等变形求值.(黄冈市竞赛试题)【例6】如图,设点E,F,G,H分别在面积为1的四边形ABCD的边AB,BC,CD,DA上,且(是正数),求四边形EFGH的面积.(河北省竞赛试题)解题思路:连对角线,把四边形分割成三角形,将线段的比转化为三角形的面积比.线段比与面积比的相互转化,是解面积问题的常用技巧.转化的基本知识有:(1) 等高三角形面积比,等于它们的底之比;(2) 等底三角形面积比,等于它们的高之比;(3) 相似三角形面积比,等于它们相似比的平方.能力训练1.如图,正方形ABCD的边长为4cm,E是AD的中点,BM⊥EC,垂足为M,则BM=______.(福建省中考试题)2.如图,矩形ABCD中,P为AB上一点,AP=2BP,CE⊥DP于E,AD=,AB=,则CE=__________.(南宁市中考试题)第1题图第2题图第3题图3.如图,已知八边形ABCDEFGH中四个正方形的面积分别为25,48,121,114,PR=13,则该八边形的面积为____________.(江苏省竞赛试题) 4. 在△ABC中,三边长为,,,表示边上的高的长,,的意义类似,则(++)的值为____________. (上海市竞赛试题)5.如图,△ABC的边AB=2,AC=3,Ⅰ,Ⅱ,Ⅲ分别表示以AB,BC,CA为边的正方形,则图中三个阴影部分的面积之和的最大值是__________.(全国竞赛试题) 6.如图,过等边△ABC内一点P向三边作垂线,PQ=6,PR=8,PS=10,则△ABC的面积是 ( ).A. B.C.D.(湖北省黄冈市竞赛试题)第5题图第6题图第7题图7.如图,点D是△ABC的边BC上一点,若∠CAD=∠DAB=,AC=3,AB=6,则AD的长是( ).A.2 B. C.3 D.8.如图,在四边形ABCD中,M,N分别是AB,CD的中点,AN,BN,DM,CM划分四边形所成的7个区域的面积分别为,,,,,,,那么恒成立的关系式是( ).A.+=B.+=C.+= D.+=9.已知等边△ABC和点P,设点P到△ABC三边AB,AC,BC的距离分别为,,,△ABC的高为.若点P在一边BC上(如图1),此时,可得结论:++=.请直接用上述信息解决下列问题:当点P在△ABC内(如图2)、点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立.请给予证明;若不成立,,,与之间又有怎样的关系?请写出你的猜想,不需证明.(黑龙江省中考试题)10.如图,已知D,E,F分别是锐角△ABC的三边BC,CA,AB上的点,且AD、BE、CF相交于P点,AP=BP=CP=6,设PD=,PE=,PF=,若,求的值.(“希望杯”邀请赛试题)11.如图,在凸五边形ABCDE中,已知AB∥CE,BC∥AD,BE∥CD,DE∥AC,求证:AE∥BD.(加拿大数学奥林匹克试题)12.如图,在锐角△ABC中,D,E,F分别是AB,BC,CA边上的三等分点. P,Q,R分别是△ADF,△BDE,△CEF的三条中线的交点.(1) 求△DEF与△ABC的面积比;(2) 求△PDF与△ADF的面积比;(3) 求多边形PDQERF与△ABC的面积比.13.如图,依次延长四边形ABCD的边AB,BC,CD,DA至E,F,G,H,使,若,求的值.(上海市竞赛试题)14.如图,一直线截△ABC的边AB,AC及BC的延长线分别交于F,E,D三点,求证:.(梅涅劳斯定理)15.如图,在△ABC中,已知,求的值.(“华罗庚金杯”少年数学邀请赛试题)。

2012年IMO国际数学奥林匹克试题解答

2012年IMO国际数学奥林匹克试题解答

2012年IMO国际数学奥林匹克试题解答第一题设J是三角形ABC顶点A所对旁切圆的圆心. 该旁切圆与边BC相切于点M, 与直线AB和AC分别相切于点K和L. 直线LM和BJ相交于点F, 直线KM与CJ相交于点G. 设S是直线AF和BC的交点, T是直线AG和BC的交点. 证明: M是线段ST的中点.2012年IMO国际数学奥林匹克试题第一题解答: 因为∠JFL=∠JBM−∠FMB=∠JBM−∠CML=12(∠A+∠C)−12∠C=12∠A=∠JAL,所以A、F、J、L四点共圆. 由此可得AF⊥FJ, 而BJ是∠ABS的角平分线, 于是三角形ABS的角平分线与高重合, 从而AB=BS; 同理可得AC=CT.综上, 有SM=SB+BM=AB+BK=AK=AL=AC+CL=CT+CM=MT,即M是线段ST的中点.第二题设n⩾3, 正实数a2,a3,⋯,a n满足a2⋅a3⋅⋯⋅a n=1, 证明:(a2+1)2(a3+1)3⋯(a n+1)n>n n.解答:由均值不等式, 我们有(a k+1)k=⩾(a k+1k−1+⋯+1k−1)k(ka k⋅(1k−1)k−1−− − − − − − − − − − −−√k)k=k k(k−1)k−1a k,当a k=1k−1时等号成立, 其中k=2,3,⋯,n. 于是(a2+1)2(a3+1)3⋯(a n+1)n⩾221a2⋅3322a3⋅⋯⋅n n(n−1)n−1a n=n n.当对任意的k=2,3,⋯,n时, 若恒有a k=1k−1, 此时由n⩾3知a2⋅a3⋅⋯⋅a n=1(n−1)!≠1,因此上述不等式等号不成立, 从而不等式得证.第三题"欺诈猜数游戏" 在两个玩家甲和乙之间进行, 游戏依赖于两个甲和乙都知道的正整数k和n.游戏开始时甲先选定两个整数x和N, 1⩽x⩽N. 甲如实告诉乙N的值, 但对x 守口如瓶. 乙现在试图通过如下方式的提问来获得关于x的信息: 每次提问, 乙任选一个由若干正整数组成的集合S(可以重复使用之前提问中使用过的集合), 问甲"x是否属于S?". 乙可以提任意数量的问题. 在乙每次提问之后, 家必须对乙的提问立刻回答"是" 或"否", 甲可以说谎话, 并且说谎的次数没有限制, 唯一的限制是甲在任意连续k+1次回答中至少又一次回答是真话.在乙问完所有想问的问题之后, 乙必须指出一个至多包含n个正整数的集合X, 若x属于X, 则乙获胜; 否则甲获胜. 证明:(1) 若n⩾2k, 则乙可保证获胜;(2) 对所有充分大的整数k, 存在正整数n⩾1.99k, 使得乙无法保证获胜.解答: (1)可以认为n=2k,N=n+1. 采用二进制.把1,2,…,2k都写成二进制: a1a2…a k+1¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯, 这里a i(i=1,2,…,k+1)是0或者1; 然后, 记T为这2k个二进制数组成的集合. 2 k+1的二进制表示是100…01¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ .令S1={100…0¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ },S i={a1a2…a k+1¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯¯ ¯ ¯ ¯∈T|a1=0,a i=1},i=2,3,…,k+1,也就是说, S i就是T中所有满足a i=1的元素组成的子集(i=1,2,…,k+1).乙采用如下问题, 可保证获胜: 第一次提问, 选择S1, 并且接下来也一直选取S 1, 甲的回答会出现两种情况:▪连续k+1次回答“否”, 则100…0¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯可以排除;▪在至多k+1次回答中, 一旦出现”是”, 乙接下来的k次提问, 依次选取S2,S3,…,S k+1, 就取得胜利. 事实上, 若甲最后的k次回答都是”是”, 则x∈T; 若甲最后的k次回答有一些是”否”, 则x绝对不可能是a1a2…ak+1¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯, 这里a1=0, a i=0还是1取决于甲对S i的答案: 若甲的回答是”是”, a i=0, 否则a i=1(i=2,3,…,k+1). (2). 先将问题转化成等价形式: 甲从集合S中取定一个元素x(|S|=N), 乙提出一系列的问题. 乙的第j个问题题就是取S的子集D j, 随后甲选取集合P j∈{D j,D c j}, 使得对任意的j⩾1都有x∈P j∪P j+1∪⋯∪P j+k,当乙提完他想问的一系列问题后, 如果乙能选取一个集合X满足|X|⩽n, 使得x∈X, 那么乙获胜; 否则甲获胜.解答1. 任取实数p使得2>p>1.99, 再选取正整数k0, 使得当k>k0时(2−p)p k+1−1.99k>1.设N使得(2−p)p k+1>N>1.99k. 我们来证明, 若|S|=N, 不妨S={1,2,…,N}, 甲有办法使乙无法胜利.记D j是乙的第j个问题展示的集合, 定义P j为D j或者D C j, 取决于甲对D j的答案: 若甲的回答是”是”, P j=D j, 否则P j=D C j; 再记P0=S. 定义A j如下:A j=A j(P j)=a0+pa1+p2a2+⋯+p j a j,这里a0=∣∣P j∣∣,a i=∣∣P j−i∖(P j∪P j−1∪⋯∪P j−i+1)∣∣(i=1,2,…,j).此时∑i=0j a i=N.注意A0=N.我们指出, 甲可以使得N2−p>A j成为事实: N2−p>A0=N.假设已有N2−p>A j, 甲可选取P j+1∈{D j+1,D C j+1}使得N2−p>A j+1. 事实上,A j+1(D j+1)=b0+pb1+p2b2+…+p j b j+p j+1b j+1,A j+1(D C j+1)=c0+pc1+p2c2+…+p j c j+p j+1c j+1.注意b0+c0=N,b i+c i=a i−1(i=1,2,…,j+1),于是A j+1(D j+1)+A j+1(D C j+1)=N+p(a0+pa1+p2a2+…+p j a j)<N+p⋅N2−p,因之min{A j+1(D j+1),A j+1(D C j+1)}<N2+p2⋅N2−p=N2−p.于是, 可以选取P j+1∈{D j+1,D C j+1}达到我们的要求.既然p k+1>N2−p>A j, 那么, 只要i⩾k+1,必定a i=0,这导致乙无法排除S的任何一个元素, 不能取得胜利.解答2. 记p,q是满足2>q>p>1.99的实数, 选取正整数k0使得(p q)k0⩽2(1−q2),p k0−1.99k0>1.我们来指出, 对任意k⩾k0, 若|S|∈(1.99k,p k), 那么甲有策略, 通过回答”是”或者”否”, 使得下式对所有j∈N成立:P j∪P j+1∪⋯∪P j+k=S,这里P i是D i或者D C i, 取决于甲对D i的答案: 若甲的回答是”是”, P i=D i, 否则P i=D C i; D i是乙的第i个问题所问的集合(i∈N).假定S={1,2,…,N}. 定义(x)∞j=0=(x j1,x j2,…,x j N)如下: x01=x02=⋯=x0 N=1; P0=S, 在P j+1选定之后, 定义x j+1:x j+1i={1,qx j i,i∈P j+1,i∉P j+1.(1)只要甲使得成立x j i⩽q k(1⩽i⩽N,j⩾1), 那么乙就不能取得胜利. 记T(x)=∑i=1N x i, 甲只要使得T(x j)⩽q k(j⩾1)即可. 这是可以做到的: 显而易见的事情是, T(x0)=N⩽p k<q k. 假设已有T(x j)⩽q k, 甲可以就乙的D j+1选取P j+1∈{D j+1,D C j+1}使得T(x j+1)⩽q k. 假定甲回答”是”, 此时P j+1=D j+1, 记y是根据(1)得到的序列; 相应地, 记z是甲回答”否”, P j+1=D C j+1, 根据(1)得到的序列. 于是T(y)=∑i∈D C j+1qx j i+∣∣D j+1∣∣,T(z)=∑i∈D j+1qx j i+∣∣D C j+1∣∣.因此T(y)+T(z)=q⋅T(x j)+N⩽q k+1+p k,根据选取的k0的性质, 得min{T(y),T(z)}⩽q2⋅q k+p k2⩽q k.第四题求所有的函数f:Z→Z使得对任意满足a+b+c=0的整数a,b,c恒有f(a)2+f(b)2+f(c)2=2f(a)f(b)+2f(b)f(c)+2f(c)f(a).解答: 令a=b=c=0可得3f(0)2=6f(0)2, 这说明f(0)=0. 现在我们令b=−a, c=0可得到f(a)2+f(−a)2=2f(a)f(−a)即(f(a)−f(−a))2, 于是f(a)=f(−a), 即f(n)为偶函数.假设对某个整数a使得f(a)=0, 则对任意整数b我们有a+b+(−a−b)=0, 因此f(a)2+f(b)2+f(a+b)2=2f(b)f(a+b),这等价于(f(b)−f(a+b))2=0, 即f(a+b)=f(b). 因此对某个整数a使得f(a)=0时, f是一个以a为周期的函数.令b=a及c=−2a代入题目条件中的等式f(2a)⋅(f(2a)−4f(a))=0. 取a=1我们得到f(2)=0或f(2)=4f(1).如果f(2)=0, 那么f以 2 为周期, 对任意奇数n有f(n)=f(1). 容易验证对任意的c∈Z函数f(x)={0,c,2∣n,2∤n满足题目条件.现在假设f(2)=4f(1)并且f(1)≠0. 如果对任意的整数n都有f(n)=n2⋅f(1)成立,那么此时问题解决了. 如果存在整数n使得f(n)≠n2f(1), 由于f是偶函数, 不妨将n看做自然数, 那么显然n⩾3, 我们设n是使得f(n)≠n2f(1)的最小的正整数.令a=1, b=n−1, c=−n代入可得f(1)2+(n−1)4f(1)2+f(n)2=2(n−1)2f(1)2+2((n−1)2+1)f(n)f(1)即(f(n)−(n)2f(1))⋅(f(n)−(n−2)2f(1))=0,由假设可得此时f(n)=(n−2)2f(1).令a=n, b=2−n, c=−2代入可得2(n−2)4f(1)2+16f(1)2=2⋅4⋅2(n−2)2f(1)2+2⋅(n−2)4f(1),这说明(n−2)2=1即n=3. 因此f(3)=f(1). 令a=1, b=3, c=4(因为f为偶函数, 所以条件改成c=a+b时仍然成立)代入可得f(4)2=4f(4)f(1), 即f(4)=0或f(4)=4f(1)=f(2).如果f(4)≠0, 令a=2, b=2, c=4代入可得f(2)2+f(2)2+f(4)2=2f(2)2+4f(2)f(4),即f(4)=4f(2). 又因为我们已经推得f(4)=f(2), 这说明f(2)=0, 矛盾. 因此f(4)=0, 从而f以4 为周期. 于是f(4k)=0, f(4k+1)=f(4k+3)=c, 以及f(4k+2)=4c, 容易验证这个解满足题目条件.综上所述, 函数方程的解为: f(x)=cx2, 其中c∈Z; f(x)={0,c,2∣n,2∤n其中c ∈Z; 以及f(x)=⎧⎩⎨⎪⎪ 0,c,4c,4∣n,2∤n,n≡2 (mod 4)其中c∈Z.第五题已知三角形ABC中, ∠BAC=90∘, D是过顶点C的高的垂足. 设X是线段CD内部一点. K是线段AX上一点, 使得BK=BC. L是线段BX上一点, 使得AL=AC. 设M是AL与BK的交点. 证明: MK=ML.2012年IMO国际数学奥林匹克试题第五题解答: 因为AL2=AC2=AD⋅AB, 所以△ALD和△ABL相似, 因此∠ALD=∠XBA.设R是射线DC上一点, 使得DX⋅DR=BD⋅AD. 由于∠BDX=∠RDA=90∘我们可以推得△RAD∼△BXD, 因此∠XBD=∠ARD, 从而∠ALD=∠ARD 即R, A, D, 和L四点共圆. 这说明∠RLA=90∘, 于是RL2=AR2−AL2=AR2−AC2. 类似地, 我们可以得到RK2=BR2−BC2和∠RKB=90∘. 因为RC⊥AB我们有AR2−AC2=BR2−BC2, 因此RL2=RK2即RL=RK.又因为∠RLM=∠RKM=90∘我们可以推得MK2=RM2−RK2=RM2−RL2=ML2,从而MK=ML.第六题求所有正整数n, 使得存在非负整数a1,a2,⋯,a n, 满足12a1+12a2+⋯+12a n=13a1+23a2+⋯+n3a n=1.解答: 所求n≡1,2(mod4). 设M=max{a1,a2,⋯,a n}, 则有3M=∑k=1n k⋅3M−a k≡∑k=1n k=n(n+1)2(mod2),所以n(n+1)2是奇数, 从而n≡1,2(mod4).若对奇数n=2m+1, 此时存在非负整数序列(a1,a2,⋯,a n)使得12a1+12a2+⋯+12a n=13a1+23a2+⋯+n3a n=1.注意到12a m+1=12a m+1+1+12a m+1+1,m+13a m+1=m+13a m+1+1+2(m+1)3a m+1+1=m+13a m+1+1+n+13a m+1+1.因此此时对n+1, 可以验证(a1,a2,⋯,a m,a m+1+1,a m+2,⋯,a n,a m+1+1)为满足题意的序列. 这说明对奇数n若满足题目条件, 则n+1也满足题目条件.剩下的问题只要解决n=4m+1时的构造问题即可.设序列(a1,a2,⋯,a2k+1)是(1,2,⋯,2k+1)的一个排列, 设G=(1,2,⋯,2k,2k), 用g i表示它的分量.定义D(X)=∑i=12k+1a i3g i, 由于∑i=12k+112g i=1, 所以我们只要求出一个排列X使得D(X)=1, 问题就解决了. 令X=(2,1,4,3,6,5,...,2k,2k−1,2k+1), 用归纳法可算得此时D(X)=1+k32k.现在假设上面的k是正偶数, 即k=2m, 则X=(2,1,4,3,...,2m,2m−1,2m+2,2m+1,...,4m,4m−1,4m+1),定义Y=(2,1,4,3,...,2m,2m−1,2m+1,...,4m,4m−1,4m+1,2m+2),即将X的第2m+1个分量移动到最后形成的. 简单计算可得D(X)−D(Y)=2m3 4m, 所以D(Y)=1. 当k=0时, 此时取a1=0时即可. 这说明n=4m+1时的构造问题已经解决.综上所述, 要求的为满足n≡1,2(mod4)的正整数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


+
xy 2 2
+
xy z 2 4
+
xy z 2 4
+
A B J M P D N C K
第四题:在一个 m×n 的长方形迷宫的一些单元格内放了机器人,在一个单元格内可以 放多个机器人,迷宫的边界都砌了围墙,有一些单元格的一些边也砌了墙,机器人无法穿 越围墙。你可以给这些机器人下一条指令(上、下、左、右之一),所有的机器人在同一 时间遵照这一指令走到与之相邻的单元格内,但此方向上有围墙时,机器人就呆在原单元 格内不动。接着你可以下下一条指令,这个过程可以不断地进行下去。已知迷宫是连通的, 也即任意指定一个单元格、任意指定一个机器人,此机器人都可以通过若干步走到这个单 元格。证明:你可以通过有限条指令,使得所有机器人都在同一个单元格内。 证明:为了简化思考,由于一个方格中的所有机器人行动都一致,我们可以将这些机 器人捆绑成一个机器人处理。假设 k 个方格中有机器人,我们对 k 进行归纳证明。 当 k=2 时,也即只有两个方格中有机器人,我们可以捆绑成两个机器人处理,设为 A 和 B。我们考虑 A、B 之间的最短连通路径。显然,若某条路径是从 A 到 B 的最短连通路径, 那么这条路径也是从 B 到 A 的最短连通路径。我们将 B 通过最短连通路径移动到 A 现在所

杏 壇 孔 門
在的位置称为一次操作。设开始时 A、B 之间的最短连通路径为L0 ,L0 上有p0 个方格。第 t 次操作后,最短路径为Lt ,Lt 上有pt 个方格。我们考虑pt+1 和pt 之间的关系。假设第 t+1 次 操作,在 B 向 A 运动的过程中,A 受阻q t+1 次,则 A 从原来位置移动到新的位置走了 pt − q t+1 个方格,即在 A 原来位置到新位置之间存在一条pt − qt+1 个方格的路径,于是知 pt+1 ≤ pt − q t+1 。由于迷宫的边界都砌了围墙,所以我们总可以在任意连续的 max{m、n} 次操作中,让 A 至少受阻一次,即使得q t ≥ 1,也即使得pt+1 ≤ pt − 1。那么最多通过不超 过p0 × max{m、n}条指令,就可以使得 A、B 在同一个单元格内。 假设当 k≤r 时,结论成立,则我们考虑 k=r+1 时的情况。 当 k=r+1 时,我们先任取两个方格中的机器人,可以通过 k=2 时的操作方式,将它们 移动到同一个方格内。这时便最多有 r 个方格内有机器人。根据归纳假设知,可以将这些 机器人赶到移动到同一个方格内。 根据数学归纳法知,可以通过有限条指令,使得所有机器人都在同一个单元格内。 第五题:编号为 1、2、3、……、n 的 n 本书排成一排(开始顺序是乱的),图书管理 员想把它们按照正确的顺序排序(从左到右依次为 1、2、3、……、n)。每次他选一本位 于它本该所处位置右边的书将它插入正确的位置。例如,若 n=4,四本书依次为 1、3、2、 4 时,管理员可以将编号为 2 的书放在第 2 个位置,这样四本书顺序变为 1、2、3、4。求 证: (1)无论如何选择操作顺序,只要操作不断地进行,肯定可以将所有的书排列成正确 的顺序; (2)他最多可以操作多少步? 解答:(1)我们将图书管理员选一本位于它本该所处位置右边的书,将它插入正确的 位置,称为一次操作。 我们先证明,只要还没有将所有书放回正确位置,操作就可以不断进行下去。 否则,假设存在某个时刻,还没有将所有书都放回正确位置,操作就无法再进行。此 时,任一本书要么在正确位置,要么在正确位置左侧,且至少有一本书在正确位置左侧。 假设此时编号为 k 的书所在位置为bk (k=1、2、3、……、n),则 {b1 、b2 、b3 、 … … 、bn }={1、2、3、……、n},且b1 ≤ 1,b2 ≤ 2,b3 ≤ 3,……, bn ≤ n,且至少有一个等号不成立。此时有1 + 2 + 3 + ⋯ + n = b1 + b2 + b3 + ⋯ + bn <1 + 2 + 3 + ⋯ + n,矛盾。所以只要还没有将所有书放回正确位置,操作就可以不断 进行下去。 我们考虑如下 n 元有序数组(a1 、a2 、a3 、 … … 、an ),令 1,第 k 本书在正确的位置 ak = � ,其中 k=1、2、3 、……、n 。我们证明在操作过程中, 0,第 k 本书不在正确的位置 n 元有序数组(a1 、a2 、a3 、 … … 、an )不会出现重复。 否则,我们假设一个 n 元有序数组(a1 ∗ 、a2 ∗ 、a3 ∗ 、 … … 、an ∗ )在 p 次操作后再次出 现。假设在这 p 次操作中,被操作的书的最小编号为 m,由于每次操作都是将书从右向左 移,所以编号为 m 的书被且仅被操作过一次,所以原来的am ∗ = 0,而 p 次操作后的 am ∗ = 1,矛盾。所以 n 元有序数组(a1 、a2 、a3 、 … … 、an )不会出现重复。 而 n 元有序数组(a1 、a2 、a3 、 … … 、an )最多有2n 种不同的情况,且操作可以一直 进行下去,所以最多可以进行2n − 1次操作,必然会出现(1、1、1、……、1),也即所 有的书都排列成了正确的顺序。 (2)假设 n 本书最多可以操作 f(n)次,我们用数学归纳法证明 f(n)≤2n −1 − 1。 当 n=2 时,最多可以操作 1 次,结论成立。 假设当 n=t 时,有 f(t)≤2t −1 − 1。 当 n=t+1 时,我们证明 f(t+1)≤2t − 1。由于书只能从右向左移,所以编号为 1 的书 移回到正确位置后,便不能再移动,剩下的 t 本书,编号和位置都减 1,则可以按 n=t 时 处理,即最多只能再进行 f(t)≤2t −1 − 1次操作。另一方面,当编号为 t+1 的书回到正确 的位置后,也不能再移动,剩下的 t 本书也可以按 n=t 时处理,即最多只能再进行 f(t)≤ 2t −1 − 1次操作。
E
xy z 2 4
第一题:对于任意正实数 x、y、z,求证:x 2 + xy 2 + xyz 2 ≥ 4xyz − 4。 + 4 ≥ 8 �x 2 ·
8
+
xy 2 2
·
xy 2 2
·
xy z 2 4
·
xy z 2 4
·
xy z 2 4
·
xy z 2 4
xy 2
· 4 = 4xyz,所以x 2 + xy 2 + xyz 2 ≥

杏 壇 孔 門
我们考虑编号为 1 和编号为 t+1 的书都不在正确位置的情况,此时a1 = 0,at+1 = 0, t+1 元有序数组(a1 、a2 、a3 、 … … 、at+1 )最多有2t −1 种不同的情况。由于操作过程中 t+1 元有序数组不会出现重复,所以在进行2t −1 次操作后,必有编号为 1 的书或者编号为 t+1 的书回到正确位置。此时最多再进行2t −1 − 1次操作,就可以将所有书都放回正确的位 置。所以 f(t+1)≤2t −1 + (2t −1 − 1) = 2t − 1。 根据数学归纳法知,对于任意自然数 n,都有 f(n)≤2n −1 − 1。 另一方面,若开始时 n 本书排列为 n、1、2、3、……n-1,每次对最右边的书进行操 作,此时操作2n −1 − 1次,才将所有书都放回正确位置。 综上所述,图书管理员最多可以操作2n −1 − 1步。
杏 壇 孔 門
2012 年加拿大数学奥林匹克竞赛试题解答 田开斌 解答
解法一:根据均值不等式知:x 2 + xy 2 + xyz 2 + 4 = x 2 +
xy z 2 4
4xyz − 4,等号当且仅当x = y = z = 2时等号成立。 解法二:因为x 2 + xy 2 + xyz 2 + 4 − 4xyz = (x − 2)2 + x(y − 2)2 + xy(z − 2)2 ≥ 0,等 号当且仅当x = y = z = 2时成立。所以x 2 + xy 2 + xyz 2 ≥ 4xyz − 4,等号当且仅当 x = y = z = 2时等号成立。 解法三:令f(z) = xy · z 2 − 4xy · z + (x 2 + xy 2 + 4),则△= (−4xy)2 − 4xy · (x 2 + xy 2 + 4=4xy4xy−x2+xy2+4=−4xyx2+xy2+4−4xy。又 x2+xy2+4−4xy≥xy2+4x−4xy=x(y−2)2≥0, 所以△≤ 0。于是知f(z) ≥ 0,即x 2 + xy 2 + xyz 2 ≥ 4xyz − 4。 注:由解法三知:x、y>0,z 为任意实数,都有不等式x 2 + xy 2 + xyz 2 ≥ 4xyz − 4。 解法四:x 2 + xy 2 + xyz 2 + 4 ≥ 4x + xy 2 + xyz 2 = x(4 + y 2 + yz 2 ) ≥ x(4y + yz 2 ) = xy(4 + y 2 ) ≥ 4xyz ,所以x 2 + xy 2 + xyz 2 ≥ 4xyz − 4 ,等号当且仅当x = y = z = 2 时等号成立。 第二题:对任意正整数 n、k,定义 L(n,k)为 n、n+1、n+2、……、n+k-1 的最小公倍 数。求证:对于任意正整数 b,存在正整数 n、k,使得L(n,k)>bL(n + 1,k)。 证明:我们取素数p = 2t + 1>4b。令n = p,k = 2t − 1,则n + k = (2t + 1) + (2t − 1) = 4t。令L(n + 1,k − 1) = d。因为 p 是素数,且n + k − 1 = 4t − 1<2p,所以 (p,d) = 1 ,于是 L�n,k� = pd 。又因为 n + 1 = 2t + 2<3t<4t − 1 = n + k − 1 ,所以 t|d , 于是知L�n + 1,k� = �d,4t� ≤ 4d。于是知L�n,k� = pd>4bd ≥ bL�n + 1,k�。命题得 证。 第三题:凸四边形 ABCD 中,对角线 AC、BD 交于点 P,AC+AD=BC+BD。求证:∠ACB、 ∠ADB、∠APB 的内角平分线交于一点。 证明:如图,设∠ADB 和∠ACB 的角平分线交于点 E,我们只需证明 EP 平分∠APB 即可。 作 B 关于 EC 的对称点 M,则 M 在 AC 上,且 EB=EM、CB=CM;作 A 关于 ED 的对称点 N, 则 N 在 BD 上,且 EA=EN、DA=DN。又因为 AC+AD=BC+BD,所以 AC-BC=BD-AD,即 AM=BN。于 是知△EAM≌△ENB。作 EJ⊥AC 于 J,EK⊥BD 于 K,则 EJ=EK,所以 EP 平分∠APB。证毕。
相关文档
最新文档