人教版数学第十章复习专题

合集下载

人教版七年级数学下册第十章数据的收集、整理与描述第一节统计调查复习试题(含答案) (76)

人教版七年级数学下册第十章数据的收集、整理与描述第一节统计调查复习试题(含答案) (76)

人教版七年级数学下册第十章数据的收集、整理与描述第一节统计调查复习题(含答案)某校为了解七年级学生体育测试情况,在七年级各班随机抽取了部分学生的体育测试成绩,按,,,A B C D四个等级进行统计(说明:A级:90分~100分;B 级:75分~89分;C级:60分~74分;D级:60分以下),并将统计结果绘制成两个不完整的统计图,请你结合统计图中所给信息解答下列问题:(1)学校在七年级各班共随机调查了________名学生;(2)在扇形统计图中,D级所在的扇形圆心角的度数是_________;(3)请把条形统计图补充完整;(4)若该校七年级有500名学生,请根据统计结果估计全校七年级体育测试中A级学生约有多少名?【答案】(1)50;(2)36°;(3)作图见解析;(4)100名.【解析】【分析】(1)根据条形统计图和扇形统计图的对应关系,用条形统计图中某一类的频数除以扇形统计图中该类所占百分比即可解决.(2)用单位1减掉A、B、C所占的百分比,得出D项所占的百分比,然后与360°相乘即可解决.(3)用总数减去A 、B 、C 的频数,得出D 项的频数,然后画出条形统计图即可.(4)用七年级所有学生乘A 项所占的百分比,即可解决.【详解】(1)10÷20%=50;(2)()360146%24%20%36010%36︒⨯---=︒⨯=︒;(3)D 项的人数:50-10-23-12=5.补全条形统计图如图所示.(4)因为500×20%=100(名).所以估计全校七年级体育测试中A 级学生人数约为100名.【点睛】本题考查了条形图和扇形统计图结合题型,解决本题的关键是正确理解题意,熟练掌握扇形统计图和条形图的各类量的对应关系.52.某校初三有2000名学生,为了解初三学生的体能,从人数相等的甲、乙两个班进行了抽样调查,过程如下,请补充完整.收集数据:从甲、乙两个班各随机抽取20名学生.进行了体能测试,测试成绩(百分制)如下:甲:78,86,74,81,75,76,87,70,75,90,75,79, 81,70, 74, 80 ,86, 69 ,83, 77.乙:93,73,88,81,72,81,94,83,77,83,80,81,70,81,73,78,82,80,70,40.整理、描述数据:按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为体能优秀,70~79分为体能良好,60~69分为体能合格,60分以下为体能不合格)分析数据:两组样本数据的平均数、中位数、众数如下表所示:问题解决:(1)表中a= ,b= ,c ;(2)估计一下该校初三体能优秀的人数有多少人?(3)通过以上数据的分析,你认为哪个班的学生的体能水平更高,并说明理由.【答案】1)80.5,75,60%;(2)1000人;(3)甲班好,见解析;或乙班好,见解析【解析】【分析】(1)由题意将每组数据整理排序,依据中位数、众数的意义、以及优秀率的求法,进行计算即可得到答案;(2)根据题意用学校校初三的总人数乘以该校初三体能优秀的学生所占的百分比即可;(3)根据题意可以通过平均、中位数、众数、优秀率中两个方面进行分析判断即可.【详解】解:(1)把这些数从小到大排列,则中位数a=80.5,∵75出现了3次,出现的次数最多,∴b=75,12100%60%20c=⨯=,所以答案为:80.5,75,60%.(2)由题意可知该校初三体能优秀的人数有812200010002020+⨯=+(人). 答:该校初三体能优秀的人有1000人.(3)甲班好.∵甲班平均数78.3,乙班平均数78,78.3>78∵甲班好或者乙班好∵乙班优秀率60%,甲班优秀率40%60%>40%∵乙班好.【点睛】 本题考查平均数、中位数、众数、优秀率的意义和求法等知识,注意体会各个统计量反映数据的特点,同时体会和应用样本估计总体的统计思想.53.为调查本校学生对“关灯一小时”有关情况的了解程度.学校政教处随机抽取部分同学进行了调查,将调查结果分为:“A —不太了解、B —基本了解、C —了解较多、D —非常了解”四个等级,依据相关数据绘制成如下两幅统计图.(1)这次调查抽取了多少名学生?(2)根据两个统计图提供的信息,补全这两个统计图;(3)若该校有 3000 名学生,请你估计全校对“关灯一小时”非常了解的学生有多少名?【答案】(1)这次调查抽取了50名学生;(2)图见解析;(3)对“关灯一小时”非常了解的学生有600名.【解析】【分析】(1)由A 的百分比及人数进一步计算出答案即可;(2)先求出B 的人数为,从而得出D 的人数,然后进一步计算出图中缺失的信息来补全图形即可;(3)用对“关灯一小时”非常了解的学生占的百分比乘以总人数即可.【详解】(1)510%50÷=(名),答:这次调查抽取了50名学生;(2)B 的人数为:5030%15⨯=(名),D 的人数为:505152010---=(名),C 所占的百分比为:()2050100%40%÷⨯=,D 所占的百分比为:()1050100%20%÷⨯=,∴补全的图形如下所示:⨯=(名),(3)300020%600答:对“关灯一小时”非常了解的学生有600名.【点睛】本题主要考查了数据的统计与分析的综合运用,熟练掌握相关方法是解题关键.54.为了解阳光社区年龄20~60岁居民对垃圾分类的认识,学校课外实践小组随机抽取了该社区、该年龄段的部分居民进行了问卷调查,并将调查数据整理后绘成如下两幅不完整的统计图.图中A表示“全部能分类”,B表示“基本能分类”,C表示“略知一二”,D表示“完全不会”.请根据图中信息解答下列问题:(1)补全条形统计图并填空:被调查的总人数是人,扇形图中D部分所对应的圆心角的度数为;(2)若该社区中年龄20~60岁的居民约3000人,请根据上述调查结果,估计该社区中C类有多少人?(3)根据统计数据,结合生活实际,请你对社区垃圾分类工作提一条合理的建议.【答案】(1)见解析,50,36°;(2)1800人;(3)该社区多数居民对垃圾分类知识了解不够,社区工作人员可以通过宣传橱窗加强垃圾分类知识的普及【解析】【分析】(1)用A类的人数除以相应的百分比即可求出总数,用D类的人数除以总数再乘以360°即可求出扇形图中D部分所对应的圆心角的度数,用总人数减去A,C,D三类的人数即可求出B类的人数,即可补全条形统计图;(2)先求出样本中C类所占的百分比,然后用总人数3000乘以这个百分比即可;(3)根据数据反映的信息,建议合理即可.【详解】÷=(人),解:(1)调查的总人数为510%50扇形图中D部分所对应的圆心角的度数为536036⨯︒=︒,50---=(人)B类的人数是50530510条形统计图如下:(2)3030001800⨯=(人)50答:根据样本估计总体,该社区中C类约有1800人(3)通过数据分析可知,该社区多数居民对垃圾分类知识了解不够,社区工作人员可以通过宣传橱窗加强垃圾分类知识的普及.【点睛】本题主要考查条形统计图和扇形统计图,能够从图中获取有用信息并用样本估计整体是解题的关键.55.为了丰富学生的课余生活,宣传我县的旅游景点,某校将举行“我为松桃旅游代言”的活动,现随机抽取了部分学生进行主题为“你想去的景点是”的问卷调查,要求学生只能去“A(正大苗王成),B(寨英古镇),C(盘石黔东草海),D(乌罗潜龙洞)”四个景点选择一项,根据调查结果,绘制了如下两幅不完整的统计图.回答下列问题:⑴本次共调查了多少名学生;⑵请把条形统计图补充完整;⑶该学校共有3000名学生,试估计该校最想去盘石黔东草海的学生人数.【答案】⑴本次调查的学生的人数为60人;⑵补全条形图见解析;⑶估计该校最想去该校去盘石黔东草海的学生人数约为1150人.【解析】【分析】(1)用A的人数15除以所占比例25%即可得出总人数;(2)总人数减去A、B、D的人数即可得出C的人数;(3)用C的人数除以本次调查的总人数60,再乘以学校总人数即可.【详解】解:(1)由题意知,本次调查的学生的人数为:÷=人1525%60()(2)60-15-10-12=23(人)补全条形图如图:(3)由题意可知;233000=1150⨯(人)60答:估计该校最想去该校去盘石黔东草海的学生人数约为1150人.【点睛】本题考查的知识点是条形统计图以及扇形统计图,解此题的关键是能够从图中找出相关的信息.56.某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)请补全条形统计图(图2);(2)在扇形统计图中,“篮球”部分所对应的圆心角是____________度?(3)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.【答案】(1)见解析;(2)144;(3)16【解析】【分析】(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用360°乘以喜欢篮球人数所占的百分比即可;(3)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.【详解】(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50-8-20-6-2=14(人),补全条形统计图如下:(2)“篮球”部分所对应的圆心角=360×40%=144°;(3)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,所以抽取的两人恰好是甲和乙的概率:21.126【点睛】本题考查了条形统计图和扇形统计图的综合运用以及列表法与树状图法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.57.我校对八年级学生的学习态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图①的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名学生;(2)通过计算达到C级的有多少人?并补全条形图.(3)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标指的是学习兴趣达到A级和B级)?【答案】(1)共调查了200名学生;(2)达到C级的有30人,图见解析;(3)大约有68000名学生学习态度达标【解析】【分析】(1)从两个统计图中可以得到B组的有120人,占调查人数的60%,可求出调查人数,(2)求出C组人数,即可补全条形统计图,(3)样本估计总体,用样本中A、B两组的百分比估计总体的百分比,进而求出人数即可.【详解】解:(1)120÷60%=200人,答:本次抽样调查中,共调查了200名学生,(2)200×15%=30人,200﹣120﹣50=30人,补全条形统计图如图所示:=68000人,(3)80000×50120200答:全校80000名八年级学生中大约有68000名学生学习态度达标.【点睛】本题主要考查了条形统计图、扇形统计图的意义和制作方法,从两个统计图中获取数量和数量之间的关系是解决问题的关键.58.七年级同学最喜欢看哪一类课外书?某校随机抽取七年级部分同学对此进行问卷调査(每人只选择一种最喜欢的书籍类型).如图是根据调查结果绘制的两幅统计图(不完整).请根据统计图信息,解答下列问题:(1)一共有多少名学生参与了本次问卷调查;(2)补全条形统计图,并求出扇形统计图中“其他”所在扇形的圆心角度数;(3)若该年级有400名学生,请你估计该年级喜欢“科普常识”的学生人数.【答案】(1)200;(2)见解析,36°;(3)120【解析】【分析】(1)从两个统计图可得,“小说”的有80人,占调查人数的40%,可求出调查人数;(2)求出“科普常识”人数,即可补全条形统计图:)样本中,“其它”的占调,因此圆心角占360°的,10%,可求出度数;查人数的20200(3)样本估计总体,样本中“科普常识”占30%,估计总体400人的30%是喜欢“科普常识”的人数.【详解】(1)80÷40%=200人,答:一共有200名学生参与了本次问卷调查;(2)200×30%=60人,补全条形统计图如图所示:=36°,360°×20200(3)400×30%=120人,答:该年级有400名学生喜欢“科普常识”的学生有120人.【点睛】本题考查扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.59.为增加学生的阅读兴趣,学校新购进一批图书.为了解学生对图书类别的喜欢情况,学校随机抽取部分学生进行了问卷调查,规定被调查学生从“文学、历史、科学、生活”中只选择自己最喜欢的一类,根据调查结果绘制了下面不完整的统计图.请根据图表信息,解答下列问题:(1)此次共调查了多少人;(2)通过计算补全条形统计图;(3)若该校共有学生3600人,请估计这所学校喜欢科学类图书的学生人数.【答案】(1)总共被调查的人数为200人;(2)补全条形统计图见解析;(3)估计这所学校喜欢科学类图书的学生人数为576人.【解析】【分析】(1)从两个统计图中可得文学的人数为78人占调查人数的39%,可求调查人数,(2)求出“历史”的人数,再求出“科学”的人数,即可补全条形统计图,(3)样本估计总体,求出样本中“科学”占的百分比即为总体中“科学”所占比,从而可求出人数,【详解】解:(1)总共被调查的人数为3978200÷=(人)100答:次共调查了200人;(2)被调查的学生中,喜欢历史的人数为33⨯=(人),20066100---=,∴喜欢科学的人数为20078662432补全条形统计图如图所示:(3)该校共3600人,估计这所学校喜欢科学类图书的学生人数为323600576⨯=(人)200答:该校3600名学生中喜欢“科学”类书的大约有576人.【点睛】考查条形统计图、扇形统计图的制作方法,从两个统计图中获取有用的数据是解决问题的关键,理清统计图中的各个数据之间的关系是前提.60.为了解某校七年级学生对A(极限挑战);B(奔跑吧),C(王牌对王牌);D(向往的生活)四个点数节目的喜爱情况,某调查组从该校七年级学生中随机抽取了位m学生进行调查统计(要求每位选出并且只能选一个自己喜爱的节目),并将调查结果绘制成如下两幅不完整的统计图(图1,图2).根据以上信息,回答下列问题:(1)m=_____________,n=________________;(2)在图1中,喜爱(奔跑吧)节目所对应的扇形的圆心角的度数是___________;(3)请根据以上信息补全图2的条形统计图;(4)已知该校七年级共有540名学生,那么他们当中最喜爱(王牌对王牌)这个节目的学生有多少人?【答案】(1)0060,20;(2)144°;(3)见解析;(4)他们喜欢(王牌对王牌)这个节目的学生约有108人.【解析】【分析】(1)从两个统计图中可以得到“D《向往的生活》”有6人,占调查人数的10%,可求出调查人数,即m的值,进而可求出“B”的人数,计算出“C”组所占的百分比;(2)“B”组占40%,因此圆心角占360°的40%;(3)补齐“B”组的条形即可;(4)C组占调查人数的1260,因此估计总体中,540人的1260喜欢《王牌对王牌》节目.【详解】(1)m=6÷10%=60,B的人数为:60×40%=24人,12÷60=20%,因此n=20.故答案为:60,20.(2)360°×40%=144°.故答案为:144°;(3)补全条形统计图如图所示:(4)5401260⨯=108人,答:他们当中最喜欢《王牌对王牌》这个节目的学生有108人.【点睛】本题考查了条形统计图、扇形统计图的意义和制作方法,从统计图中获取数据及数据之间的关系是解答本题的关键.。

2023年人教版高中数学第十章概率知识点总结(超全)

2023年人教版高中数学第十章概率知识点总结(超全)

(名师选题)2023年人教版高中数学第十章概率知识点总结(超全)单选题1、在一次试验中,随机事件A ,B 满足P(A)=P(B)=23,则( ) A .事件A ,B 一定互斥B .事件A ,B 一定不互斥C .事件A ,B 一定互相独立D .事件A ,B 一定不互相独立答案:B分析:根据互斥事件和独立事件的概率的定义进行判断即可若事件A ,B 为互斥事件,则P(A +B)=P(A)+P(B)=43>1,与0≤P(A +B)≤1矛盾,所以P(A +B)≠P(A)+P(B),所以事件A ,B 一定不互斥,所以B 正确,A 错误,由题意无法判断P(AB)=P(A)P(B)是否成立,所以不能判断事件A ,B 是否互相独立,所以CD 错误, 故选:B2、设条件甲:“事件A 与事件B 是对立事件”,结论乙:“概率满足P (A )+P (B )=1”,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A解析:将两个条件相互推导,根据能否推导的情况选出正确答案.①若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P (A )+P (B )=1;②投掷一枚硬币3次,满足P (A )+P (B )=1,但A ,B 不一定是对立事件,如:事件A :“至少出现一次正面”,事件B :“出现3次正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件.所以甲是乙的充分不必要条件.故选:A小提示:本小题主要考查充分、必要条件的判断,考查对立事件的理解,属于基础题.3、饕餮纹是青铜器上常见的花纹之一,最早见于长江中下游地区的良渚文化陶器和玉器上,盛行于商代至西周早期.将青铜器中的饕餮纹的一部分画到方格纸上,如图所示,每个小方格的边长为一个单位长度,有一点P 从点A 出发,每次向右或向下跳一个单位长度,且向右或向下跳是等可能的,那么点P 经过3次跳动后恰好是沿着饕餮纹的路线到达点B 的概率为( )A .116B .18C .14D .12答案:B分析:利用古典概型的概率求解.解:点P 从点A 出发,每次向右或向下跳一个单位长度,跳3次,则样本空间Ω={(右,右,右),(右,右,下),(右,下,右),(下,右,右),(右,下,下),(下,右,下),(下,下,右),(下,下,下)},记“3次跳动后,恰好是沿着饕餮纹的路线到达点B ”为事件C ,则C ={(下,下,右)},由古典概型的概率公式可知P (C )=18.故选:B .4、2020年1月,教育部出台《关于在部分高校开展基础学科招生改革试点工作的意见》(简称“强基计划”),明确从2020年起强基计划取代原有的高校自主招生方式.如果甲、乙、丙三人通过强基计划的概率分别为45,34,34,那么三人中恰有两人通过的概率为( )A .2180B .2780C .3380D .2740答案:C分析:根据积事件与和事件的概率公式可求解得到结果.记甲、乙、丙三人通过强基计划分别为事件A,B,C,显然A,B,C为相互独立事件,则“三人中恰有两人通过”相当于事件ABC+ABC+ABC,且ABC,ABC,ABC互斥,∴所求概率P(ABC+ABC+ABC)=P(ABC)+P(ABC)+P(ABC)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=15×34×34+45×14×34+45×34×14=3380.故选:C.5、抛掷一枚质地均匀的正方体骰子,若事件A=“向上的点数为3”,B=“向上的点数为6”,C=“向上的点数为3或6”,则有()A.A⊆B B.C⊆B C.A∩B=C D.A∪B=C答案:D分析:根据事件的关系、和事件、积事件的定义逐一判断四个选项的正误,即可得出正确选项对于A:事件A=“向上的点数为3”发生,事件B=“向上的点数为6”一定不发生,故选项A不正确;对于B:事件C=“向上的点数为3或6”发生,事件B=“向上的点数为6”不一定发生,但事件B=“向上的点数为6”发生,事件C=“向上的点数为3或6”一定发生,所以B⊆C,故选项B不正确;对于C:事件A和事件B不能同时发生,A∩B=∅,故选项C不正确;对于D:事件A=“向上的点数为3”或事件B=“向上的点数为6”发生,则事件C=“向上的点数为3或6”发生,故选项D正确;故选:D6、某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%答案:C分析:记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A +B ,“该中学学生既喜欢足球又喜欢游泳”为事件A ⋅B ,然后根据积事件的概率公式P(A ⋅B)= P(A)+P(B)−P(A +B)可得结果.记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A +B ,“该中学学生既喜欢足球又喜欢游泳”为事件A ⋅B ,则P(A)=0.6,P(B)=0.82,P (A +B )=0.96,所以P(A ⋅B)= P(A)+P(B)−P(A +B) =0.6+0.82−0.96=0.46所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.故选:C.小提示:本题考查了积事件的概率公式,属于基础题.7、生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23B .35C .25D .15答案:B分析:本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解. 设其中做过测试的3只兔子为a,b,c ,剩余的2只为A,B ,则从这5只中任取3只的所有取法有{a,b,c},{a,b,A},{a,b,B},{a,c,A},{a,c,B},{a,A,B},{b,c,A},{b,c,B},{b,A,B},{c,A,B}共10种.其中恰有2只做过测试的取法有{a,b,A},{a,b,B},{a,c,A},{a,c,B}, {b,c,A},{b,c,B}共6种,所以恰有2只做过测试的概率为610=35,选B . 小提示:本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.8、某公司为了促进技术部门之间良好的竞争风气,公司决定进行一次信息化技术比赛,三个技术部门分别为麒麟部,龙吟部,鹰隼部,比赛规则如下:①每场比赛有两个部门参加,并决出胜负;②每场比赛获胜的部门与未参加此场比赛的部门进行下一场的比赛;③在比赛中,若有一个部门首先获胜两场,则本次比赛结束,该部门就获得此次信息化比赛的“优胜部门”.已知在每场比赛中,麒麟部胜龙吟部的概率为13,麒麟部胜鹰隼部的概率为35,龙吟部胜鹰隼部的概率为12.当麒麟部与龙吟部进行首场比赛时,麒麟部获得“优胜部门”的概率是( )A .445B .29C .415D .1345答案:D分析:由题设,麒麟部与龙吟部进行首场比赛且麒麟部获得“优胜部门”的情况有:1 、首场麒麟部胜,第二场麒麟部胜;2 、首场麒麟部胜,第二场鹰隼部胜,第三场龙吟部胜,第四场麒麟部胜;3 、首场龙吟部胜,第二场鹰隼部胜,第三场麒麟部胜,第四场麒麟部胜;再由独立事件乘法公式及互斥事件的加法公式求概率即可.设事件A :麒麟部与龙吟部先比赛麒麟部获胜;由于在每场比赛中,麒麟部胜龙吟部的概率为13,麒麟部胜鹰隼部的概率为35,龙吟部胜鹰隼部的概率为12, ∴麒麟部获胜的概率分别是:P(A)=13×35+13×(1−35)×12×13+(1−13)×(1−12)×35×13=1345,故选:D .9、种植两株不同的花卉,若它们的成活率分别为p 和q ,则恰有一株成活的概率为( )A .pqB .p +qC .p +q −pqD .p +q −2pq答案:D分析:根据题意,结合独立事件和互斥事件概率计算公式,即可求解.由题意,两株不同的花卉的成活率分别为p 和q ,则恰有一株成活的概率为P =p(1−q)+(1−p)q =p +q −2pq .故选:D.10、《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马劣于齐王的上等马,优于齐王的中等马,田忌的中等马劣于齐王的中等马,优于齐王的下等马,田忌的下等马劣于齐王的下等马,现两人进行赛马比赛,比赛规则为:每匹马只能用一次,每场比赛双方各出一匹马,共比赛三场.每场比赛中胜者得1分,否则得0分.若每场比赛之前彼此都不知道对方所用之马,则比赛结束时,田忌得2分的概率为( ).A .13B .23C .16D .12答案:C分析:根据题意,设齐王的上,中,下三个等次的马分别为a , b ,c ,田忌的上,中,下三个等次的马分别为记为A ,B ,C ,用列举法列举齐王与田忌赛马的情况,进而可得田忌胜出的情况数目,进而由等可能事件的概率计算可得答案.设齐王的上,中,下三个等次的马分别为a ,b ,c ,田忌的上,中,下三个等次的马分别为记为A ,B ,C ,双方各出上、中、下等马各1匹分组分别进行1场比赛,所有的可能为: Aa ,Bb ,Cc ,田忌得0分;Aa ,Bc ,Cb ,田忌得1分Ba ,Ab ,Cc ,田忌得1分Ba ,Ac ,Cb ,田忌得1分;Ca ,Ab ,Bc ,田忌得2分,Ca ,Ac ,Bb ,田忌得1分田忌得2分概率为P =16,故选:C11、将一个容量为1000的样本分成若干组,已知某组的频率为0.4,则该组的频数是( )A .4B .40C .250D .400答案:D分析:直接利用频率的定义求解即可.∵一个容量为1000的样本分成若干组,某组的频率为0.4,∴该组的频数为:1000×0.4=400.故选:D.小提示:本题考查频数的求法,解题时要认真审题,属于基础题.12、有一个人在打靶中,连续射击2次,事件“至少有1次中靶”的对立事件是().A.至多有1次中靶B.2次都中靶C.2次都不中靶D.只有1次中靶答案:C分析:根据对立事件的定义判断即可.对立事件的定义是:A,B两件事A,B不能同时发生,但必须有一件发生,则A,B是对立事件,事件:至少有一次中靶包括恰有一次中靶和二次都中靶,所以对立事件是二次都不中靶.故选:C.双空题13、在机动车驾驶证科目二考试中,甲、乙两人通过的概率分别为0.8,0.6,两人考试相互独立,则两人都通过的概率为__________.两人至少有一人通过的概率为__________.答案: 0.48 0.92分析:(1)利用相互独立事件的概率乘法公式求解即可.(2)先求两人都未通过的概率,再根据对立事件的概率和为1求解两人至少有一人通过的概率即可(1)因为两人考试相互独立,则两人都通过考试是相互独立事件,所以同时发生的概率为P=0.8×0.6= 0.48.(2)两人都未通过的概率为P=(1−0.8)×(1−0.6)=0.08,故两人至少有一人通过的概率为1−0.08= 0.92所以答案是:0.48;0.9214、为了研究不同性别的学生患鼻炎的比例,某调查中心调查了某学校1200名学生,其数据如下表所示. 单位:人从这1200人中随机选择1人,已知选到的是女生,则她患鼻炎的概率为_______;已知选到的学生患鼻炎,则该学生是女生的概率为_______.答案: 1200##0.005 126分析:根据表格中的数据,结合古典摡型的概率计算公式,即可求解.根据表格中的数据,可得女生共有400人,其中患鼻炎的有2人,所以她患鼻炎的概率为2400=1200,根据表格中的数据,可得患有鼻炎的共有52人,其中女生患有鼻炎的有2人,所以选到的学生患鼻炎,则该学生是女生的概率为252=126.所以答案是:1200;126. 15、一个袋子中有5个红球,6个绿球,7个黄球.如果随机地摸出一个球,记事件A =“摸出黄球”,事件B =“摸出绿球”,事件C =“摸出红球”,则P (A )=_______;P (B ∪C )=_______.答案: 718 1118分析:由题意可直接求出P (A ),P (B ),P (C ),再由P (B ∪C )=P (B )+P (C )可求.由题可得P (A )=75+6+7=718,P (B )=65+6+7=13,P (C )=55+6+7=518, 所以P (B ∪C )=P (B )+P (C )=13+518=1118.所以答案是:718;1118.16、对飞机连续射击两次,每次发射一枚炮弹.设A ={两次都击中飞机},B ={两次都没击中飞机},C ={恰有一枚炮弹击中飞机},D ={至少有一枚炮弹击中飞机},其中互为互斥事件的是__________;互为对立事件的是__________.答案: A与B、A与C,B与C、B与D B与D.解析:由互斥事件,对立事件的概念逐一判断即可.解:由于事件A与B不可能同时发生,故A与B是互斥事件;同理可得,A与C,B与C、B与D也是互斥事件. 综上可得,A与B、A与C,B与C、B与D都是互斥事件.在上述互斥事件中,再根据B、D满B∪D为必然事件,故B与D是对立事件,故答案为A与B、A与C,B与C、B与D;B与D.小提示:本题考查了互斥事件,对立事件的关系,属基础题.17、袋中有5只球,其中有3只红球,编号为1,2,3,有2只黄球,编号为4,5.现从中任意取一只球,试验A:观察颜色;试验B:观察号码.试验A的样本空间为_______________________.试验B的样本空间为_______________________.答案:{红,黄}{1,2,3,4,5}分析:由样本空间的定义即可求解.解:由题意,试验A的样本空间为{红,黄};试验B的样本空间为{1,2,3,4,5}.所以答案是:{红,黄};{1,2,3,4,5}.解答题18、某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?答案:(1)甲分厂加工出来的A级品的概率为0.4,乙分厂加工出来的A级品的概率为0.28;(2)选甲分厂,理由见解析.分析:(1)根据两个频数分布表即可求出;(2)根据题意分别求出甲乙两厂加工100件产品的总利润,即可求出平均利润,由此作出选择.=0.4,乙厂加工出来的一件产品为A级品的概(1)由表可知,甲厂加工出来的一件产品为A级品的概率为40100=0.28;率为28100(2)甲分厂加工100件产品的总利润为40×(90−25)+20×(50−25)+20×(20−25)−20×(50+25)= 1500元,所以甲分厂加工100件产品的平均利润为15元每件;乙分厂加工100件产品的总利润为28×(90−20)+17×(50−20)+34×(20−20)−21×(50+20)=1000元,所以乙分厂加工100件产品的平均利润为10元每件.故厂家选择甲分厂承接加工任务.小提示:本题主要考查古典概型的概率公式的应用,以及平均数的求法,并根据平均值作出决策,属于基础题.19、要产生1~25之间的随机整数,你有哪些方法?答案:答案见解析.分析:方法一:把25个大小形状相同的小球分别标上1,2,3,…,24,25,放入一个袋中,充分搅拌,从中摸出一个,这个球上的数就称为随机数;方法二:利用计算机产生随机数.法一:可以把25个大小形状相同的小球分别标上1,2,3,…,24,25,放入一个袋中,把它们充分搅拌,然后从中摸出一个,这个球上的数就称为随机数,放回后重复以上过程,就得到一系列的1~25之间的随机整数.法二:可以利用计算机产生随机数,以Excel 为例:(1)选定A1格,输入“=RANDBETWEEN(1,25)”,按Enter 键,则在此格中的数是随机产生的;(2)选定A1格,点击复制,然后选定要产生随机数的格,比如A2至A100,点击粘贴,则在A2至A100的格中均为随机产生的1~25之间的数,这样我们就很快得到了100个1~25之间的随机数,相当于做了100次随机试验.小提示:本题考查了随机数的产生,考查了基本知识的掌握情况,属于基础题.20、某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩在13s 内(称为合格)的概率分别为25,34,13.若对这三名短跑运动员的100跑的成绩进行一次检测,则求: (Ⅰ)三人都合格的概率;(Ⅱ)三人都不合格的概率;(Ⅲ)出现几人合格的概率最大.答案:(Ⅰ)110;(Ⅱ)110;(Ⅲ)1人.分析:记甲、乙、丙三人100米跑成绩合格分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P(A)=25,P(B)=34,P(C)=13,从而根据不同事件的概率求法求得各小题.记甲、乙、丙三人100米跑成绩合格分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P(A)=25,P(B)=34,P(C)=13设恰有k 人合格的概率为P k (k =0,1,2,3).(Ⅰ)三人都合格的概率:P 3=P(ABC)=P(A)⋅P(B)⋅P(C)=25×34×13=110(Ⅱ)三人都不合格的概率:P 0=P(A B ̅C )=P(A )⋅P(B ̅)⋅P(C )=35×14×23=110.(Ⅲ)恰有两人合格的概率:P2=P(ABC)+P(AB̅C)+P(A BC)=25×34×23+25×14×13+35×34×13=2360.恰有一人合格的概率:P1=1−P0−P2−P3=1−110−2360−110=2560=512.因为512>2360>110,所以出现1人合格的概率最大.。

人教版七年级数学下册第十章数据的收集、整理与描述综合复习试题(含答案) (9)

人教版七年级数学下册第十章数据的收集、整理与描述综合复习试题(含答案) (9)

人教版七年级数学下册第十章数据的收集、整理与描述综合复习与测试题(含答案)某校冬季会把课间操改为跑步,但是发现部分学生没有穿运动鞋的习惯,为保证学生的安全,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制出如下两幅不完整的统计图,请根据相关信息,解答下列问题.(I)本次接受随机抽样调查的学生人数为_____;(Ⅱ)在条形统计图中,请把空缺部分补充完整;(Ⅲ)求本次调查获取的样本数据的众数与中位数.【答案】(Ⅰ)40;(Ⅱ)见解析;(Ⅲ)见解析.【解析】【分析】(Ⅰ)用38号人数除以其所占百分比可得总人数;(Ⅱ)根据各鞋号人数之和等于总认识求得37号的人数即可补全图形;(Ⅲ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可.【详解】(Ⅰ)本次接受随机抽样调查的学生人数为4÷10%=40,故答案为:40;(Ⅱ)37号的人数为40﹣(6+12+10+4)=8人,补全图形如下:(Ⅲ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36.【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.82.为了了解某市课改实验区学生对新教材的喜欢程度,课改调研组从该市实验区60000名学生中随机抽查了360名学生进行了问卷调查,并绘制出了如图所示的频数分布直方图.(1)根据直方图中的数据制作扇形统计图(要求在图中注明各部分的百分比).(2)根据该调查结果,估计该市实验区约有多少名学生喜欢新教材?【答案】(1)见解析;(2)21000人.【解析】【分析】根据条形统计图得出三种人数和所占的比例,求出对应的扇形的圆心角的度数.画出扇形统计图,再由该市实验区人数乘以学生喜欢的比例求得学生喜欢新教材的人数.【详解】解:(1)从条形统计图中得出喜欢的有126人,一般的有162人,不喜欢的有72人,喜欢的人数占的比例12636035%=÷=,对应的在扇形统计图中的扇形的圆心角36035%126=⨯=一般的人数占的比例16236045%=÷=,对应的在扇形统计图中的扇形的圆心角3605%162=⨯=不喜欢的人数占的比例7236020%=÷=,对应的在扇形统计图中的扇形的圆心角36020%72=⨯=(2)全市喜欢新教材的人数约为:()6000035%45%21000⨯+=(人)【点睛】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系.83.某市青少年健康研究中心随机抽取了本市1000名小学生和若干名中学生,对他们的视力状况进行了调查,并把调查结果绘制成如下统计图.(近视程度分为轻度、中度、高度三种)(1)求这1000名小学生患近视的百分比.(2)求本次抽查的中学生人数.(3)该市有中学生8万人,小学生10万人.分别估计该市的中学生与小学生患“中度近视”的人数.【答案】(1)这1000名小学生患近视的百分比为38%. (2)本次抽查的中学生有1000人. (3)该市中学生患“中度近视”的约有2.08万人,患“中度近视”的约有1.04万人.【解析】【分析】(1)这1000名小学生患近视的百分比=小学生近视的人数÷总人数×100﹪(2)调查中学生总人数=中学生近视的人数÷中学生患近视的百分比(3)用样本估计总体,该市中学生患“中度近视”的人数=8万×1000名中学生患中度近视的百分比;该市小学生患“中度近视”的人数=10万×1000名小学生患中度近视的百分比【详解】解:(1)∵(252+104+24)÷1000=38%,∵这1000名小学生患近视的百分比为38%.(2)∵(263+260+37)÷56%=1000(人),∵本次抽查的中学生有1000人.(3)∵8×2601000=2.08(万人),∵该市中学生患“中度近视”的约有2.08万人.∵10×1041000=1.04(万人),∵该市小学生患“中度近视”的约有1.04万人.84.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查. 问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图和条形统计图(如图所示).1.请根据所给的扇形图和条形图,填写出扇形图中缺失的数据,并把条形图补充完整;2.如果该学校有500名学生,请你估计该学校中最喜欢体育运动的学生约有多少名?【答案】% 200【解析】(1)根据扇形统计图所给的数据,直接进行相减即可求出体育所占的百分比,再根据抽取体育的人数,即可求出抽取的总人数,再根据其他类所占的比例,即可求出答案.(2)根据学生中最喜欢体育运动的学生所占的百分比,再乘以总数即可求出答案.解:(1)根据题意得:体育所占的百分比是:1-32%-12%-16%=40%,抽取的总人数是:10÷40%=25(人),其他类的人数是:25×32%=8(人).如图所示:(2)根据题意可得:该年级中最喜欢体育运动的学生约有500×40%=200(名).答:该学校中最喜欢体育运动的学生约有200名85.春季流感爆发,某校为了解全体学生患流感情况,随机抽取部分班级对患流感人数的进行调查,发现被抽查各班级患流感人数只有1名、2名、3名、4名、5名、6名这六种情况,并制成如下两幅不完整的统计图:(1)抽查了个班级,并将该条形统计图补充完整;(2)如图1中患流感人数为4名所在扇形的圆心角的度数为;(3)若该校有90个班级,请估计该校此次患流感的人数.【答案】(1)20,2名的班级有2个;(2)72°;(3)360人.【解析】试题分析:(1)根据患流感人数有6名的班级有4个,占20%,可求得抽查的班级数,用求得的班级数再减去其它班级数,即可补全条形统计图;(2)用患流感人数为4名的班级数4个除以抽查的班级数,再乘以360°即可;(3)先求出该校平均每班患流感的人数,再利用样本估计总体的思想,用这个平均数乘以90即可.试题解析:(1)根据患流感人数有6名的班级有4个,占20%,可求得抽查的班级数,抽查的班级个数为4÷20%=20(个),则患流感人数只有2名的班级个数为:20﹣(2+3+4+5+4)=2(个),补图如下:(2)用患流感人数为4名的班级数4个除以抽查的班级数,再乘以360°:×360°=72°,所以患流感人数为4名所在扇形的圆心角的度数为72°;(3)先求出该校平均每班患流感的人数,∵该校平均每班患流感的人数为(1×2+2×2+3×3+4×4+5×5+6×4)÷20=4,∵若该校有90个班级,则此次患流感的人数为:4×90=360(人).考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.86.《中学生体质健康标准》规定学生体质健康等级标准为:90分及以上为优秀;80分~89分为良好;60分~79分为及格;59分及以下为不及格. 某校从九年级学生中随机抽取了10%的学生进行了体质测试,得分情况如下图.(1)在抽取的学生中不及格人数所占的百分比是,它的圆心角度数为度.(2)小明按以下方法计算出抽取的学生平均得分是:()+++÷=. 根据所学的统计知识判断小明的计算是否正确,若不94847250475正确,请计算正确结果.【答案】(1)5%;18 ;(2)不正确,详见解析【解析】【分析】(1)根据各组的百分比之和为1,计算即可.(2)利用加权平均数公式计算即可.【详解】(1)不及格人数所占的百分比=1-25%-20%-50%=5%,它的圆心角=360°×5%=18°,故答案为5%,18.(2)不正确,平均分=94×20%+84×25%+72×50%+50×5%=78.3(分).【点睛】考查条形统计图,扇形统计图,加权平均数等知识,解题的关键是熟练掌握基本知识.87.萧山区垃圾分类掀起“绿色革命”为调查居民对垃圾分类的了解情况,调查小组对某小区进行抽样调查并将调查结果绘制成了统计图(如图).已知调查中“基本了解”的人数占调查人数的60%.(1)计算此次调查人数,并补全统计图;(2)若该小区有住户1000人,请估计该小区对垃圾分类“基本了解”的人数.【答案】(1)此次调查40人,补图见解析;(2)600人.【解析】【分析】(1)根据了解和不了解的所占的百分比和频数求得总人数,然后求得基本了解的频数后补充完整统计图即可;(2)用总人数乘以基本了解所占的百分比即可.【详解】(1)∵基本了解的占60%,∴了解和不了解的共占40%,∵了解和不了解的共有14+2=16人,∴调查的总人数为:16÷40%=40人,∴基本了解的有40﹣14﹣2=24人,统计图为:(2)该小区对垃圾分类“基本了解”的人数为1000×60%=600人.【点睛】本题考查的是条形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.88.阅读下列材料:改革开放以来,我国建筑业在坚持和完善公有制为主体、多种所有制经济共同发展的基本经济制度的指引下,企业所有制呈现多元化发展,极大激发了市场活力.建国初期,建筑业企业基本是清一色的国营建筑公司,而如今,建筑业企业类型涵盖了国有、集体、股份制、私营等内资企业,以及港澳台商投资企业、外商投资企业等多种所有制形式.根据2018年国家统计局发布的数据显示:2017年,建筑业企业中,国有企业2187个,占全部企业比重仅为2.5%,比1996年减少6922个,占比下降19.5个百分点;年末从业人员183.0万人,占全部企业比重3.3%,比1996年减少672.9万人,占比下降37个百分点.股份制企业32894个,占全部企业比重达到37.3%,比1996年增加31293个,占比提高33.4个百分点;年末从业人员2828万人,占全部企业比重51.1%,比1996年增加2768万人,占比提高48.2个百分点.私营企业49645个,占全部企业比重达到56.4%,比1996年增加49110个,占比提高55.1个百分点;年末从业人员2340万人,占全部企业比重42.3%,比1996年增加2331万人,占比提高41.9个百分点.外商投资企业218个,占全部企业比重达到0.2%,比1996年减少170个,占比下降0.7个百分点;年末从业人员8万人,占全部企业比重0.1%,比1996年减少1万人,占比下降0.3个百分点.根据以上材料回答下列问题:(1)1996年私营企业有______个,占全部企业比重为______.(2)请你选择统计表或统计图,将1996年和2017年国有企业、股份制企业、私营企业、外商投资企业所占全部企业比重表示出来.(3)请你根据以上统计表或统计图,给出一个合理的结论并说明理由.【答案】(1)535;1.3%;(2)见解析;(3)见解析【解析】【分析】(1)根据2017年私营企业49645个,比1996年增加49110个,可求出1996年私营企业的数量;根据2017年私营企业占全部企业比重达到56.4%,比1996年占比提高55.1个百分点可得出结果;(2)根据2017年国有企业、股份制企业、私营企业、外商投资企业所占全部企业比重,以及与1996年对应关系,求出1996年各种企业所占比重,可制成统计表即可;(3)根据占比变化情况,提出合理的结论即可.【详解】解:(1)根据题意得,1996年私营企业为:49645-49110=535(个),1996年私营企业占全部企业比重为:56.4%-55.1%=1.3%;故答案为:535;1.3%;(2)答案不唯一,如利用统计表表示如下:建筑企业中1996年和2017年国有企业、股份制企业、私营企业、外商投资企业所占全部企业比重情况统计表(3)答案不唯一,合理即可,如:改革开放以来,股份制企业、私营企业发展迅速,占比增长很快,而国有企业和外商投资企业则占比下降,发展出现负增长.说明国家积极鼓励和发展股份制企业、私营企业,政策向股份制企业和私营企业倾斜.【点睛】本题考查了用统计图或统计表反映一组数据的发展趋势,并从中得出合理化的意见和建议,达到搜集和整理数据的目的.89.2015年是中国人民抗日战争暨世界反法西斯胜利70周年,9月3日全国各地将举行有关纪念活动.为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生答题情况,将结果分为A、B、C、D四类,其中A类表示“非常了解”、B类表示“比较了解”、C类表示“基本了解”、D类表示“不太了解”,调查的数据经整理后形成下列尚未完成的条形统计图(如图①)和扇形统计图(如图①):(1)在这次抽样调查中,一共抽查了名学生;(2)请把图①中的条形统计图补充完整;(3)图①的扇形统计图中D类部分所对应扇形的圆心角的度数为°;(4)如果这所学校共有初中学生1500名,请你估算该校初中学生中对二战历史“非常了解”和“比较了解”的学生共有多少名?【答案】(1)200;(2)详见解析;(3)36;(4)900.【解析】【分析】(1)利用A类的人数除以A类人数所占的百分比即可得这次调查的总人数;(2)用总人数乘C类人数所占的百分比即可求得C类的人数,在条形统计图上画出即可;(3)用D类的人数除以总人数再乘以360°即可得D类部分所对应扇形的圆心角的度数;(4)利用对二战历史“非常了解”和“比较了解”的学生人数除以这次抽查的人数,先计算出对二战历史“非常了解”和“比较了解”的学生所占的比例,再用总人数乘以这个比例即可得校初中学生中对二战历史“非常了解”和“比较了解”的学生的人数.【详解】解:(1)30÷15%=200,故答案为:200;(2)200×30%=60如图所示:(3)20÷200=0.1=10%,360°×10%=36°,故答案为:36;(4)30901500900200+⨯= 答:该校初中学生中对二战历史“非常了解”和“比较了解”的学生估计有900名.【点睛】此题考查了扇形统计图和频数(率)分布表,关键是正确从扇形统计图和表中得到所用的信息.90.为参加学校举办的演讲比赛,每班选拔一名学生参赛.八年级(2)班有甲、乙、丙三名候选人参加班内预赛,对他们的稿件质量成绩和口试成绩(单位:分)分别用两种方式进行了统计,如表和图①:(1)请将表和图①中的空缺部分补充完整;(2)选拔的最后一个程序是由本班的50名同学进行投票,三名候选人的得票情况如图②(没有弃权票,每名学生只能推荐一人),请计算每人的得票数;(3)若每票计1分,班委会将稿件质量、口试、得票三项测试得分按4:3:3的比例确定最后成绩,请计算三名学生的最后成绩,并根据成绩判断谁能当选.【答案】(1)如图所示:(2)甲20票、乙20票、丙10票;(3)甲67分、乙68分、丙64.5分,乙当选.【解析】试题分析:(1)仔细分析统计表及统计图中的数据即可得到结果;(2)根据扇形统计图的特征即可求得结果;(3)分别根据加权平均数的计算方法求得三名学生的最后成绩,再比较即可作出判断.(1)如图所示:(2)由题意得甲票、乙票、丙票;(3)由题意得甲的最后成绩分乙的最后成绩分丙的最后成绩分∵∵乙能当选.考点:统计的应用点评:本题是统计的基础应用题,重要考查学生对统计知识的熟练掌握程度,在中考中比较常见.。

2023年人教版高中数学第十章概率基础知识点归纳总结

2023年人教版高中数学第十章概率基础知识点归纳总结

(名师选题)2023年人教版高中数学第十章概率基础知识点归纳总结单选题1、某种心脏手术,成功率为0.6,现采用随机模拟方法估计“3例心脏手术全部成功”的概率:先利用计算器或计算机产生0~9之间取整数值的随机数,由于成功率是0.6,我们用0,1,2,3表示手术不成功,4,5,6,7,8,9表示手术成功;再以每3个随机数为一组,作为3例手术的结果,经随机模拟产生如下10组随机数:812,832,569,683,271,989,730,537,925,907由此估计“3例心脏手术全部成功”的概率为()A.0.2B.0.3C.0.4D.0.5答案:A分析:由题可知10组随机数中表示“3例心脏手术全部成功”的有2组,即求.解:由题意,10组随机数:812,832,569,683,271,989,730,537,925,907,表示“3例心脏手术全部成功”的有: 569, 989,故2个,=0.2.故估计“3例心脏手术全部成功”的概率为210故选:A.2、甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人投中次数不等的概率是()A.0.6076B.0.7516C.0.3924D.0.2484答案:A分析:先求出两人投中次数相等的概率,再根据对立事件的概率公式可得两人投中次数不相等的概率.两人投中次数相等的概率P=0.42×0.32+C21×0.6×0.4×C21×0.7×0.3+0.62×0.72=0.3924,故两人投中次数不相等的概率为:1﹣0.3924=0.6076.小提示:本题考查了对立事件的概率公式和独立事件的概率公式,属于基础题.3、从装有两个红球和三个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是()A.“恰好有一个黑球”与“恰好有两个黑球”B.“至少有一个黑球”与“至少有一个红球”C.“至少有一个黑球”与“都是黑球”D.“至少有一个黑球”与“都是红球”答案:A分析:根据互斥事件和对立事件的定义直接判断.对于A:“恰好有一个黑球”与“恰好有两个黑球”不能同时发生,但能同时不发生,故A中的两事件互斥而不对立;对于B:“至少有一个黑球”与“至少有一个红球”能同时发生,故B中的两事件不互斥;对于C:“至少有一个黑球”与“都是黑球”能同时发生,故C中的两事件不是互斥事件;对于D:“至少有一个黑球”与“都是红球”互斥并且对立.故选:A4、下列事件中不是确定事件的个数是()①从三角形的三个顶点各画一条高线,这三条高线交于一点;②水中捞月;③守株待兔;④某地区明年1月的降雪量高于今年1月的降雪量A.1B.2C.3D.4答案:B分析:根据随机事件的定义分析判断即可三角形三条高线一定交于一点,则①是必然事件;②水中捞月是不可能事件;③守株待兔是随机事件,不是确定事件;④某地区明年1月的降雪量高于今年1月的降雪量是随机事件,不是确定事件.5、造纸术、印刷术、指南针、火药被称为中国古代四大发明,此说法最早由英国汉学家艾约瑟提出并为后来许多中国的历史学家所继承,普遍认为这四种发明对中国古代的政治、经济、文化的发展产生了巨大的推动作用.某小学三年级共有学生400名,随机抽查100名学生并提问中国古代四大发明,能说出两种及其以上发明的有73人,据此估计该校三年级的400名学生中,对四大发明只能说出一种或一种也说不出的有(). A.69人B.84人C.108人D.115人答案:C分析:先求得100名学生中,只能说出一种或一种也说不出的人数,由此列出比例式,可求得400名学生中,对四大发明只能说出一种或一种也说不出的人数.在这100名学生中,只能说出一种或一种也说不出的有100−73=27人,设该校三年级的400名学生中,对四大发明只能说出一种或一种也说不出的有x人,则10027=400x,解得x=108人.故选:C.小提示:本小题主要考查利用样本估计总体,属于基础题.6、从装有两个红球和三个黑球的口袋里任取两个球,那么不互斥的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“都是红球”C.“恰好有一个黑球”与“恰好有两个黑球”D.“至多有一个黑球”与“至少有两个黑球”答案:A分析:根据互斥事件的概念判断即可.“至少有一个黑球”中包含“都是黑球”,A正确;“至少有一个黑球”与“都是红球”不可能同时发生,B不正确;“恰好有一个黑球”与“恰好有两个黑球”不可能同时发生,C不正确;“至多有一个黑球”与“至少有两个黑球”不可能同时发生,D不正确.故选:A.7、如图,“红旗-9”在国内外都被认为属于第三代防空导弹系统,其杀伤空域大,抗干扰和抗多目标饱和攻击能力强,导引系统先进(有两级指挥管制体制),最高速度4.2马赫,最大射程为200公里,射高0.5至30公里,主要攻击高空敌机或导弹,是我国高空防空导弹的杰出代表.现假设在一次实战对抗演习中,单发红旗-9防空导弹对敌方高速飞行器的拦截成功率为0.8,则两发齐射(是否成功拦截互不干扰),敌方高速飞行器被拦截的概率为()A.0.96B.0.88C.1.6D.0.64答案:A分析:根据对立事件及相互独立事件的概率公式计算可得;解:依题意敌方高速飞行器被拦截的概率为1−(1−0.8)×(1−0.8)=0.96故选:A8、抛掷一颗均匀骰子两次,E表示事件“第一次是奇数点”,F表示事件“第二次是3点”,G表示事件“两次点数之和是9”,H表示事件“两次点数之和是10”,则()A.E与G相互独立B.E与H相互独立C.F与G相互独立D.G与H相互独立答案:A分析:先根据古典概型的概率公式分别求出四个事件的概率,再利用独立事件的定义P(AB)=P(A)P(B)判断个选项的正误.解:由题意得:P(E)=1836=12,P(F)=636=16,P(G)=436=19,P(H)=336=112对于选项A :P(EG)=236=118,P(E)P(G)=12×19=118,P(EG)=P(E)P(G),所以E 和G 互相独立,故A 正确; 对于选项B :P(EH)=136,P(E)P(H)=12×112=124,P(EH)≠P(E)P(H),所以E 和H 不互相独立,故B 错误; 对于选项C :P(FG)=136,P(F)P(G)=16×19=154,P(FG)≠P(F)P(G),所以F 和G 不互相独立,故C 错误; 对于选项D :P(GH)=0,P(G)P(H)=19×112=1108,P(GH)≠P(G)P(H),所以G 和H 不互相独立,故D 错误;故选:A9、甲、乙二人玩猜数字游戏,先由甲任想一数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a,b ∈{1,2,3,4},若|a −b|≤1,则称甲乙“心有灵犀”.现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为( )A .38B .58C .316D .516 答案:B分析:利用列举法根据古典概型公式计算即可.B 两人分别从1,2,3,4四个数中任取一个,共有16个样本点,为:(1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3) ,(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2) (4,3),(4,4),这16个样本点发生的可能性是相等的.其中满足|a −b|≤1的样本点有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),共10个,故他们“心有灵犀”的概率为P =1016=58.故选:B10、等可能地从集合{1,2,3}的所有子集中任选一个,选到非空真子集的概率为( )A .78B .34C .1516D .14答案:B分析:写出集合{1,2,3}的所有子集,再利用古典概率公式计算作答.集合{1,2,3}的所有子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3},共8个,它们等可能,选到非空真子集的事件A 有:{1},{2},{3},{1,2},{1,3},{2,3},共6个,所以选到非空真子集的概率为P(A)=68=34. 故选:B11、抛掷一枚质地均匀的正方体骰子,若事件A =“向上的点数为3”,B =“向上的点数为6”,C =“向上的点数为3或6”,则有( )A .A ⊆B B .C ⊆B C .A ∩B =CD .A ∪B =C答案:D分析:根据事件的关系、和事件、积事件的定义逐一判断四个选项的正误,即可得出正确选项对于A :事件A =“向上的点数为3”发生,事件B =“向上的点数为6”一定不发生,故选项A 不正确;对于B :事件C =“向上的点数为3或6”发生,事件B =“向上的点数为6”不一定发生,但事件B =“向上的点数为6”发生,事件C =“向上的点数为3或6” 一定发生,所以B ⊆C ,故选项B 不正确;对于C :事件A 和事件B 不能同时发生,A ∩B =∅,故选项C 不正确;对于D :事件A =“向上的点数为3”或事件B =“向上的点数为6”发生,则事件C =“向上的点数为3或6”发生,故选项D 正确;故选:D12、齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.某天,齐王与田忌赛马,双方约定:比赛三局,每局各出一匹,每匹马赛一次,赢得两局者为胜,则田忌获胜概率为( ).A .112B .16C .14D .13 答案:B分析:设齐王的三匹马分别为a 1,a 2,a 3,田忌的三匹马分别为b 1,b 2,b 3,列举所有比赛的情况,利用古典概型的概率公式计算即可得出结果.设齐王的三匹马分别为a 1,a 2,a 3,田忌的三匹马分别为b 1,b 2,b 3,所有比赛的情况::(a 1,b 1)、(a 2,b 2)、(a 3,b 3),齐王获胜三局;(a 1,b 1)、(a 2,b 3)、(a 3,b 2),齐王获胜两局;(a 1,b 2)、(a 2,b 1)、(a 3,b 3),齐王获胜两局;(a 1,b 2)、(a 2,b 3)、(a 3,b 1),齐王获胜两局;(a 1,b 3)、(a 2,b 1)、(a 3,b 2),田忌获胜两局;(a 1,b 3)、(a 2,b 2)、(a 3,b 1),齐王获胜两局,共6种情况,则田忌胜1种情况,故概率为P =16故选:B小提示:本题考查了古典概型的概率计算问题,考查了理解辨析和数学运算能力,属于中档题目.双空题13、掷一颗骰子两次,求出现下列事件的概率:(1)事件A “至少出现一次1点”,P (A )=______;(2)事件B “都出现偶数点”,P (B )=______.答案: 1136 14##0.25分析:(1)根据对立事件的概率公式进行求解即可;(2)根据古典概型公式进行求解即可.(1)P (A )=1−56×56=1136;(2)掷一颗骰子两次,共有36种情况,其中两次都是偶数的有:(2,2),(2,4),(2,6),(4,2),(4,4),(4,6),(6,2),(6,4),(6,6),共9种情况,所以P(B)=936=14,所以答案是:1136;1414、掷一颗骰子,求出现下列事件的概率:(1)事件A “出现1点”,P (A )=______;(2)事件B “出现偶数点”,P (B )=______.答案: 16 12##0.5分析:根据给定条件,求出掷一颗骰子的试验的基本事件总数,再利用古典概率分别计算事件A ,B 的概率作答.依题意,掷一颗骰子的试验的基本事件总数为6,它们等可能,(1)事件A 含有的基本事件数为1,则P (A )=16;(2)事件B 含有的基本事件数为3,则P (A )=36=12.所以答案是:16;1215、在一只袋子中装有7个红玻璃球,3个绿玻璃球.从中无放回地任意抽取两次,每次只取一个,取得两个红玻璃球的概率为715,取得两个绿玻璃球的概率为115,则取得两个同颜色的玻璃球的概率为________;至少取得一个红玻璃球的概率为________.答案: 815 1415 解析:“取得两个同颜色的球”是由“取得两个红球”与“取得两个绿球”的和事件,利用互斥事件的概率公式求出概率; “至少取得一个红球”与“取得两个绿球”为对立事件,利用对立事件的概率公式求出概率.取得两个同颜色的玻璃球包括两个红玻璃球或两个绿玻璃球故取得两个同颜色的玻璃球的概率P 1=715+115=815;“至少取得一个红玻璃球”的对立事件是“取得两个绿玻璃球”故至少取得一个红玻璃球的概率P 2=1−115=1415所以答案是:815;1415 小提示:本题考查互斥事件的概率公式;对立事件的概率公式,属于基础题.16、已知事件A 与B 互斥,且P(A)=0.4,P(B)=0.5,则P(A)=_______,P (A ∪B )=________.答案: 0.6##35 0.9##910分析:利用对立事件的概率之和为1进行求解P(A);互斥事件A 与B 的概率加法公式P (A ∪B )=P (A )+P (B ) 因为事件A 与A 是对立事件,且P(A)=0.4,所以P(A)=1−P(A)=0.6;因为事件A 与B 互斥,所以P (A ∪B )=P (A )+P (B )=0.9所以答案是:0.6,0.917、小李在做一份调查问卷,共有5道题,其中有两种题型,一种是选择题,共3道,另一种是填空题,共2道.若小李从中任选2道题解答,每一次选1题(不放回),则所选的题不是同一种题型的概率为_________;若小李从中任选2道题解答,每一次选1题(有放回),则所选的题不是同一种题型的概率为_________.答案: 0.6 0.48分析:将5题进行编号:①在不放回的情况下抽取2道题,根据列举法共有20种可能,其中不是同一题型的有12种,结合概率公式计算即可;②在放回的情况下抽取2道题,根据列举法共有25种可能,其中不是同一题型的有12种,结合概率公式计算即可.将3道选择题依次编号为1,2,3;2道填空题依次编号为4,5.①从5道题中任选2道题解答,每一次选1题(不放回),样本空间Ω={(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4)},共20个样本点,这20个样本点发生的可能性是相等的.设事件A为“所选的题不是同一种题型”,则事件A包含的样本点有(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,1),(4,2),(4,3),(5,1),(5,=0.6.2),(5,3),共12个,所以P(A)=1220②从5道题中任选2道题解答,每一次选1题(有放回),样本空间Ω={(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5)},共25个样本点,这25个样本点发生的可能性是相等的.设事件B为“所选的题不是同一种题型”,则事件B包含的样本点有(1,4),(1,5),(2,4),(2,5),(3,4),=0.48.(3,5),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),共12个,所以P(B)=1225所以答案是:0.6;0.48解答题,乙18、甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,已知甲每轮猜对的概率为34每轮猜对的概率为2·在每轮活动中,甲和乙猜对与否互不影响,各轮结果也互不影响,求3(1)“星队”在两轮活动中猜对2个成语的概率;(2) “星队”在两轮活动中猜对3个成语的概率;(3) “星队”在两轮活动至少中猜对1个成语的概率;答案:(1)37144;(2)512;(3)143144.分析:令{M 0,M 1,M 2}、{N 0,N 1,N 2}表示第一轮、第二轮猜对0个、1个、2个成语的事件,{D 0,D 1,D 2,D 3,D 4}表示两轮猜对0个、1个、2个、3个、4个成语的事件,应用独立事件乘法公式、互斥事件加法公式求P (M 0)=P (N 0)、P (M 1)=P (N 1)、P (M 2)=P (N 2).(1)(2)应用独立事件乘法、互斥事件加法求两轮活动中猜对2个成语的概率;(3)对立事件的概率求法求两轮活动至少中猜对1个成语的概率.设A ,B 分别表示甲乙每轮猜对成语的事件,M 0,M 1,M 2表示第一轮甲乙猜对0个、1个、2个成语的事件,N 0,N 1,N 2表示第二轮甲乙猜对0个、1个、2个成语的事件,D 0,D 1,D 2,D 3,D 4表示两轮猜对0个、1个、2个、3个、4个成语的事件.∵P(A )=34,P (A )=1-34=14,P (B )=23,P (B ̅)=1-23=13, ∴根据独立性的假定得:P (M 0)=P (N 0)=P (A B ̅)= P (A ) P (B ̅)= 14 13=112, P (M 1)=P (N 1)=P (AB ̅+A B )= P (AB ̅)+P (A B ) = 34 × 13+14×23=512, P (M 2)=P (N 2)=P (AB )=P (A )P (B )= 34× 23=612=12,(1)P (D 2)=P (M 2N 0+M 1N 1+M 0N 2)= P (M 2N 0)+P (M 1N 1)+P (M 0N 2)=12.112+512.512+112.12=37144.(2)P (D 3)=P (M 1N 2+M 2N 1)= P (M 1N 2)+P (M 2N 1)= 512.12+12.512=512.(3)P (D 1+D 2+D 3+D 4)=1-P (D 0)=1-1144=143144.19、在抗击新冠肺炎疫情期间,某校开展了“名师云课”活动,活动自开展以来获得广大家长和学生的高度关注.在“名师云课”中,数学学科共计推出72节云课,为了更好地将课程内容呈现给学生,现随机抽取某一时段数学学科的云课点击量进行统计:(1)现从数学学科72节云课中采用分层抽样的方式选出6节,求选出云课的点击量在(700,1400]内的节数;(2)为了更好地搭建云课平台,现将数学学科云课进行剪辑,若点击量在 [0,700]内,则需要花费40分钟进行剪辑,若点击量在(700,1400]内,则需要花费20分钟进行剪辑,若点击量在(1400,2100]内,则不需要剪辑.现从(1)问选出的6节课中任意选出2节课进行剪辑,求剪辑时间为60分钟的概率.答案:(1)3;(2)15.分析:(1)利用分层抽样的概念和性质进行求解;(2)把选出的6节课中任意选出2节的情况列举出来,符合要求的也列举出来,利用古典概型求概率公式进行求解.(1)设选出云课的点击量在(700,1400]内的节数为n,按分层抽样3672=n6,解得n=3.(2)按分层抽样,由点击量分别在[0,700]、(700,1400]、(1400,2100]节数比为12:36:24=1:3:2所以6节课中,选出云课点击量在[0,700]、(700,1400]、(1400,2100]节数分别为1、3、2,点击量在[0,700]的一节课设为a,点击量在(700,1400]设为b,c,d,点击量在(1400,2100]的设为e,f,又由题知选出2节课剪辑时间为60分钟的选法是选出一节点击量在[0,700]内,另一节在(700,1400]内,共3种选法,为(a,b),(a,c),(a,d),其中从6节课中任意选出2节课进行剪辑共15种选法,分别为(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)所以,剪辑时间为60分钟的概率为315=15.20、在数字通信中心信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知发送信号0时,接收为0和1的概率分别为0.9和0.1;发送信号1时,接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的.(1)分别求接收的信号为0和1的概率;(2)已知接收的信号为0,求发送的信号是1的概率.答案:(1)0.475,0.525(2)119分析:(1)由全概率公式和对立事件概率公式计算.(2)由条件概率公式计算.(1)设A=“发送的信号为0”,B=“接收到的信号为0”,则A=“发送的信号为1”,B=“接收到的信号为1”.由题意得P(A)=P(A)=0.5,P(B|A)=0.9,P(B̅|A)=0.1,P(B|A)=0.05,P(B̅|A)=0.95.P(B)=P(A)P(B|A)+P(A)P(B|A)=0.5×0.9+0.5×0.05=0.475;P(B̅)=1−P(B)=1−0.475=0.525.(2)P(A|B)=P(A)P(B|A)P(B)=0.5×0.050.475=119.。

2024年人教版七年级下册数学第十章单元复习课

2024年人教版七年级下册数学第十章单元复习课

第十章 单元复习课重点 题型核心提炼策略方法对点评价调查方式的选择适合用抽样调查的情况有:①调查具有破坏性的;②工作量巨大,短时间内,用全面调查不能完成的;其他情况适合用全面调查T1,T2 确定总体、个体、样本、样本容量根据总体、个体、样本、样本容量的相关概念来确定T3 从统计图(表)中获取信息理解各种统计图(表)的特点,从中发现其中的数量关系T4,T5,T6,T7, T8,T9,T11 用样本估计总体用样本的特征估计总体的特征T10,T11 易错易混 错误确定总体、个体、样本T3思想方法整体思想、转化思想、分类讨论思想维度1 概念、方法的应用1.(2023·嘉兴、舟山中考)在下面的调查中,最适合用全面调查的是 (B) A.了解一批节能灯管的使用寿命 B.了解某校某班学生的视力情况C.了解某省初中生每周上网时长情况D.了解京杭大运河中鱼的种类2.(2022·柳州中考)以下调查中,最适合采用抽样调查的是(A)A.了解全国中学生的视力和用眼卫生情况B.了解全班50名同学每天体育锻炼的时间C.学校招聘教师,对应聘人员进行面试D.为保证神舟十四号载人飞船成功发射,对其零部件进行检查3.(2021·张家界中考)某校有4 000名学生,随机抽取了400名学生进行体重调查,下列说法错误的是(B)A.总体是该校4 000名学生的体重B.个体是每一个学生C.样本是抽取的400名学生的体重D.样本容量是4004.(2023·扬州中考)空气的成分(除去水汽、杂质等)是:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是 (C)A.条形图B.折线图C.扇形图D.频数分布直方图5.(2022·金华中考)观察如图所示的频数分布直方图,其中组界为99.5~124.5这一组的频数为(D)A.5B.6C.7D.8维度2实际生活生产中的应用6.(2022·玉林中考)垃圾分类利国利民.某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访了50名学生并作好记录.以下是排乱的统计步骤:①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率②整理采访记录并绘制空矿泉水瓶投放频数分布表③绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比正确统计步骤的顺序应该是(A)A.②→③→①B.②→①→③C.③→①→②D.③→②→①7.(2023·赤峰中考)2023年5月30日,神舟十六号载人飞船成功发射,成为我国航天事业的里程碑.某校对全校 1 500名学生进行了“航空航天知识”了解情况的调查,调查结果分为A,B,C,D四个等级(A:非常了解;B:比较了解;C:了解;D:不了解).随机抽取了部分学生的调查结果,绘制成两幅不完整的统计图.根据统计图信息,下列结论不正确的是(C)A.样本容量是200B.样本中C等级所占百分比是10%C.D等级所在扇形的圆心角为15°D.估计全校学生A等级大约有900人8.(2021·株洲中考)某月1日-10日,甲、乙两人的手机“微信运动”的步数统计图如图所示,则下列错误的结论是(B)A.1日-10日,甲的步数逐天增加B.1日-6日,乙的步数逐天减少C.第9日,甲、乙两人的步数正好相等D.第11日,甲的步数不一定比乙的步数多9.(2023·大连中考)某小学开展课后服务,其中在体育类活动中开设了四种运动项目:乒乓球、排球、篮球、足球.为了解学生最喜欢哪种运动项目,随机选取100名学生进行问卷调查(每位学生仅选一种),并将调查结果绘制成如下的扇形统计图.下列说法错误的是(D)A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10°10.(2023·上海中考)垃圾分类(Refuse sorting),是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集了60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为 1 500吨.11.(2023·连云港中考)为了解本校八年级学生的暑期课外阅读情况,某数学兴趣小组抽取了50名学生进行问卷调查.(1)下面的抽取方法中,应该选择________.A.从八年级随机抽取一个班的50名学生B.从八年级女生中随机抽取50名学生C.从八年级所有学生中随机抽取50名学生(2)对调查数据进行整理,得到下列两幅尚不完整的统计图表:暑期课外阅读情况统计表阅读数量(本) 人数0 51 252 a3本及以上 5合计50统计表中的a=________,补全条形统计图;(3)若八年级共有800名学生,估计八年级学生暑期课外阅读数量达到2本及以上的学生人数;(4)根据上述调查情况,写一条你的看法.【解析】(1)应该选择从八年级所有学生中随机抽取50名学生;答案:C(2)由题意得,a=50-5-25-5=15,补全条形统计图如下:答案:15(3)800×15+5=320(人),50答:八年级学生暑期课外阅读数量达到2本及以上的学生人数约为320人;(4)大多数学生暑期课外阅读数量不够多,要加强宣传暑假课外阅读的重要性(答案不唯一).。

2025数学大一轮复习讲义人教版 第十章 二项式定理

2025数学大一轮复习讲义人教版   第十章 二项式定理

令x=1,可得(1-2)2 024=a0+a1+a2+…+a2 023+a2 024=1,即展开式
中所有项的系数和为1,故B正确;
令 x=0,可得 a0=1,令 x=12,可得1-2×122 024=a0+a21+a222+…+
a2 22
002233+a222
002244=0,
所以a21+a222+a233+…+2a22 002233+a222 002244=-1,故 C 正确; 将等式(1-2x)2 024=a0+a1x+a2x2+…+a2 023x2 023+a2 024x2 024两边同 时求导可得, 2 024×(-2)(1-2x)2 023=a1+2a2x1+…+2 023a2 023x2 022+2 024a2 024x2 023, 再令x=1,可得a1+2a2+3a3+…+2 023a2 023+2 024a2 024=4 048, 故D正确.
命题点2 系数与二项式系数的最值
例4
已知
2x+
1
n
x
的二项展开式中二项式系数之和为64,则下列结论
正确的是
A.二项展开式中各项系数之和为37
3
B.二项展开式中二项式系数最大的项为 90x2
C.二项展开式中无常数项
√D.二项展开式中系数最大的项为240x3
因为2x+
1
n
x
的二项展开式中二项式系数之和为
√B.展开式中所有项的系数和为1 √C.a21+a222+a233+…+a222 002233+a222 002244=-1 √D.a1+2a2+3a3+…+2 023a2 023+2 024a2 024=4 048
由二项展开式中的二项式系数性质可知二项式系数最大为 C21 002142,易知

精品试卷:人教版初中数学七年级下册第十章数据的收集、整理与描述专题练习试卷(含答案详解)

精品试卷:人教版初中数学七年级下册第十章数据的收集、整理与描述专题练习试卷(含答案详解)

初中数学七年级下册第十章数据的收集、整理与描述专题练习(2021-2022学年考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、在植树节活动中,某单位组织职工开展植树竞赛,下图反映的是植树量与人数之间的关系.根据图中信息可知,参与本次活动的人数为()A.19 B.17 C.14 D.562、下列调查中,适宜采用全面调查方式的是()A.对全市每天丢弃的废旧电池数的调查 B.对冷饮市场上冰淇淋质量情况的调查C.对全国中学生心理健康现状的调查D.对我国首架大型民用直升机各零件部件的调查3、在一次班级体测调查中,收集到40名同学的跳高数据,数据分别落在5个组内,且落入第一、二、三、五组的数据个数分别为2、7、11、12,则第四组频数为().A.9 B.8 C.7D.64、已知A,B两家酒店2020年下半年的月营业额折线统计图(如图),下列说法错误..的是()A.A酒店这半年的月营业额的中位数是2.2百万元.B.B酒店这半年的月营业额的众数是1.7百万元.C.A酒店这半年的月营业额一直保持增长状态.D.B酒店这半年的月营业额11月至12月的增长率最大.5、下列调查中,适合采用全面调查(普查)方式的是()A.了解江西省中小学生的视力情况B.在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测C.了解全国快递包裹产生包装垃圾的数量D.了解抚州市市民对社会主义核心价值观的内容的了解情况6、下面调查中,适合采用全面调查的是()A.调查全国中学生心理健康现状B.调查你所在班级同学的身高情况C.调查我市食品合格情况D.调查黄河水质情况7、在“5•18世界无烟日”来临之际,小明和他的同学为了解某街道大约有多少成年人吸烟,于是随机调查了该街道1000个成年人,结果有180个成年人吸烟.对于这个数据的收集与处理过程,下列说法正确的是()A.调查的方式是普查B.该街道约有18%的成年人吸烟C.该街道只有820个成年人不吸烟D.样本是180个吸烟的成年人8、某企业对其生产的产品进行抽检,抽检结果如表:若该企业生产该产品10000件,估计不合格产品的件数为()A.80 B.100 C.150 D.2009、某体育场大约能容纳3万名观众,在一次足球比赛中,上座率为68%.估一估,大约有多少名观众观看了比赛?()A.6800B.20000C.2600010、某次考试有3000名学生参加,为了了解3000名学生的数学成绩,从中抽取了1000名学生的数学成绩进行调查统计分析,在这个问题中,有下述4种说法:①1000名考生是总体的一个样本;②3000名考生是总体;③1000名考生数学平均成绩可估计总体数学平均成绩;④每个考生的数学成绩是个体.其中正确的说法有()A.0种B.1种C.2种D.3种二、填空题(5小题,每小题4分,共计20分)1、如图为某市未来几天的每日最高气温与最低气温的变化趋势图,根据图中信息可知,最大的温差是______.2、某兴趣班有A、B、C、D、E五个小组,如图是根据各小组人数分布绘制成的不完整统计图,则该班学生人数为___人.3、很多中学生不能注意用眼卫生,小明和几位同学一起对全校3200名学生的视力状况进行了调查,并绘制了扇形统计图,则全校视力500度以上的学生有_____人.4、超市为了制定某个时间段收银台开放方案,统计了这个时间段顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间1-2分钟表示大于或等于1分钟而小于2分钟,其它类同),这个时间段内顾客等待时间不少于5分钟的人数为________.5、德国有个叫鲁道夫的人,用毕生的精力把圆周率π算到小数点后面35位.他的计算结果是3.14159265358979423846264338327950288,在这串数字中“3”出现的频率是___.(结果保留两位小数)三、解答题(5小题,每小题10分,共计50分)1、为了解中考体育科目训练情况,某教育局从九年级学生中随机抽取了a名进行了中考体育科目测试(测试结果分四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.(1)求a的值;(2)求在a名学生中,测试结果为C级的学生人数,并补全条形统计图;(3)九年级共有9200名学生,他们全部参加了这次体育科目测试,请估计不及格的人数.2、某校组织1000名学生参加“展示我美丽祖国”庆国庆的自拍照片的评比活动.随机机取一些学生在评比中的成绩制成的统计图表如下:频数分布表根据以上图表提供的信息,解答下列问题:(1)写出表中a、b的数值:a=,b= ;(2)补全频数分布表和频数分布直方图;(3)如果评比成绩在95分以上(含95 分)的可以获得一等奖,试估计该校参加此次活动获得一等奖的人数.3、下列调查中,哪些是全面调查的方式,哪些是用抽样调查方式来收集数据的?(1)为了了解你所在的班级的每个同学的身高,向全班同学做调查.(2)为了了解你所在的班级的同学每天的学习时间,选取班级中学号为单号数的所有同学做调查.(3)为了了解某奶牛场中500头奶牛的产奶量,从中抽取出50头进行分析测量.4、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.为了了解同学们的支付习惯,某校数学兴趣小组设计了一份调查问卷,随机抽取了部分同学进行调查,其中要求每人选且只能选一种最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了_______人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为_______ ;(2)请将条形统计图补充完整;(3)如果该校共有1200名学生,请你估计喜欢支付宝支付和微信支付的学生一共有多少名?(4)根据上图,你可以获得什么信息?5、如果要了解全市范围内初中生视力状况随年级的变化趋势,你该如何进行统计活动?如果要了解全国范围内初中生视力状况随年级的变化趋势呢?---------参考答案-----------一、单选题1、C【解析】【分析】根据题意和条形统计图中的数据,可以计算出参与本次活动的人数.【详解】解:由统计图可得,参与本次活动的有:1+6+1+4+2=14(人),故选:C.【点睛】本题考查条形统计图,关键是读懂条形统计图,获取必要的数据.2、D【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多;而抽样调查得到的调查结果比较近似,一般适用于对精确度不是很高的场合.【详解】解:选项A:对全市每天丢弃的废旧电池数的调查,应该用抽样调查,故此选项不合题意;选项B:对冷饮市场上冰淇淋质量情况的调查,应该用抽样调查,故此选项不合题意;选项C:对全国中学生心理健康现状的调查,应该用抽样调查,故此选项不合题意;选项D:对我国首架大型民用直升机各零件部件的调查,应采用全面调查,故此选项符合题意;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、B【解析】【分析】根据题意可得:共40个数据,知道一、二、三、五组的数据个数,用总数减去这几组频数,即可得到答案.【详解】解:由题意得:第四组的频数=40-(2+7+11+12)=8;故选B.【点睛】本题是对频数的考查,掌握各小组频数之和等于数据总和是解题的关键.4、A【解析】【分析】结合折线统计图,利用数据逐一分析解答即可.【详解】解:从折线统计图可得:A、A酒店这半年的月营业额的中位数是2.2 2.72=2.45(百万元),故本选项错误,符合题意;B、小B酒店这半年的月营业额的众数是1.7百万元,正确,不符合题意;C、A酒店这半年的月营业额一直保持增长状态,正确,不符合题意;D、B酒店这半年的月营业额11月至12月的增长率最大,正确,不符合题意;故选:A.【点睛】本题考查折线统计图,解题的关键是理解题意,灵活运用所学知识解决问题.5、B【解析】【分析】由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行分析判断即可.【详解】解:A. 了解江西省中小学生的视力情况,适合采用抽样调查,A不合题意;B. 在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测,应该采用全面调查(普查),B符合题意;C. 了解全国快递包裹产生包装垃圾的数量,适合采用抽样调查,C不合题意;D. 了解抚州市市民对社会主义核心价值观的内容的了解情况,适合采用抽样调查,D不合题意.故选:B.【点睛】本题考查抽样调查和全面调查的区别,注意掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、B【解析】【分析】根据全面调查和抽样调查的特点解答即可.【详解】解:A.调查全国中学生心理健康现状,适合抽样调查,故本选项不合题意;B.调查你所在班级同学的身高情况,适合全面调查,故本选项符合题意;C.调查我市食品合格情况,适合抽样调查,故本选项不合题意;D.调查黄河水质情况,适合抽样调查,故本选项不合题意.故选:B.【点睛】本题主要考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7、B【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:根据题意,随机调查1000个成年人,是属于抽样调查,故A选项错误;这1000个人中180人吸烟不代表本地区只有180个成年人吸烟,故C选项错误;样本是1000个成年人是否吸烟,故D选项错误;本地区约有18%的成年人吸烟是对的,故B选项正确.故选:B.【点睛】本题主要考查了样本估计总体思想以及抽样调查的定义,正确把握相关定义是解题关键.8、D【解析】【分析】求出抽取件数不合格的概率,用样本估计总体即可得出10000件产品不合格的件数.【详解】抽查总体数为:10401002003005001150+++++=(件),不合格的件数为:012361022+++++=(件),22()0.021150P ∴=≈抽到不合格的产品, 100000.02200∴⨯=(件).故选:D【点睛】本题考查用样本估计总体,求出样本的不合格率来估计总体的不合格率是解题的关键.9、B【解析】【分析】根据体育场的容量×上座率计算即可.【详解】解:∵某体育场大约能容纳3万名观众,上座率为68%.∴观众观看这一次足球比赛人数为:30000×68%=20400人,与20000接近.故选:B .【点睛】本题考查频数频率与总数的关系,掌握频数=总数×频率是解题关键.10、C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.本题总体是3000名学生的数学成绩,个体是这次考试中每名学生的数学成绩,样本是抽取的1000名学生的数学成绩,样本容量是1000.【详解】解:①、②两个说法指的是考生而不是考生的成绩,故①、②两个说法不对,④指的是考生的成绩,故④对.③用样本的特征估计总体的特征,是抽样调查的核心,故③对.故选:C【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.在本题中解题关键是注意总体、样本都是指考生的成绩,而不是考生.二、填空题1、10【解析】【分析】求出每天的最高气温与最低气温的差,再比较大小即可.【详解】解:∵由折线统计图可知,15日温差=4−(−3)=7;16日温差=4−(−6)=10;17日温差=2−(−6)=8;18日温差=2−(−2)=4;19日温差=1−(−5)=6;20日温差=1−(−1)=2;∴最大的温差是10.故答案为:10.【点睛】本题考查了折线统计图的应用以及有理数的减法,掌握有理数减法法则是解答本题的关键.有理数减法法则:减去一个数,等于加上这个数的相反数.2、50【解析】【分析】根据A组人数和所占的百分比,可以计算出该班学生人数.【详解】解:5÷10%=50(人),即该班学生有50人,故答案为:50.【点睛】本题考查了条形统计图、扇形统计图,掌握条形统计图与扇形统计图的特点并能读懂统计图中的相关信息是解题的关键.3、224【解析】【分析】根据扇形统计图可求出全校视力500度以上的学生所占的百分比,进而可得答案.【详解】全校视力500度以上的学生所占的百分比是1﹣10%﹣18%﹣20%﹣45%=7%,∴全校视力500度以上的学生有7%×3200=224(人).故答案为:224【点睛】本题考查扇形统计图,根据扇形统计图得出全校视力500度以上的学生所占的百分比是解题关键.4、16【解析】【分析】根据题意和频数分布直方图可以得到这个时间段内顾客等待时间不少于5分钟的人数,找出等待5—6分钟,6—7分钟与7—8分钟的人数相加即可.【详解】解:由频数分布直方图可得,这个时间段内顾客等待时间不少于5分钟的人数为:9+5+2=16,故答案为:16.【点睛】本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答问题.5、0.17【解析】【分析】频数即一组数据中出现符合条件的数据的个数,频率=频数÷总数.依据频数的计算公式即可求解.【详解】解:在3.14159265358979423846264338327950288中,“3”出现的次数是6次,所以在这串数字中“3”出现的频率是6÷36≈0.17.故答案为:0.17.【点睛】本题考查了频数,频率的计算公式,理解频率的计算公式是解题的关键.三、解答题1、(1)40;(2)14名,见解析;(3)1840人【分析】(1)根据扇形统计图和条形统计图提供的B级信息,用B级的频数除以所占百分比即可求解;(2)用样本容量40乘以C级所占百分比即可求解,不去条形统计图即可;(3)根据样本中D级的频率,估计全校D级的频率,用D级的频率乘以全校总人数即可求解.【详解】(1)1230%40a=÷=(名),答:a的值为40(2)4035%14⨯=(名);补全条形统计图(3)89200184040⨯=(名),答:估计不及格的人数为1840人.【点睛】本题考查了条形统计图,扇形统计图,用样本估计总体等知识,根据条形统计图与扇形统计图知识求出样本容量是解题关键.2、(1)40,40%;(2)见解析;(3)100人.【分析】(1)首先根据9095x≤<的频数和百分比求得抽取的样本总数,然后用样本容量减去其他小组的人数即可求得a值,用80除以样本容量即可求得b值;(2)用20除以样本容量即可求得95100x≤<的百分比,依据(1)中结论即可补全统计表及统计图;(3)用总人数乘以获得一等奖的百分率即可估计获得一等奖的人数.【详解】解:(1)∵抽查的学生总数为:6030%200÷=(人),∴20080602040a=---=;80100%40%200b=⨯=,故答案为:40;40%;(2)成绩在95100x≤<的学生人数所占百分比为:20100%10% 200⨯=,故频数分布表为:频数分布直方图为:(3)该校参加此次活动获得一等奖的人数为:100010%100⨯=(人),答:估计该校参加此次活动获得一等奖的人数是100人.【点睛】本题考查了频数分布直方图、频数分布表的有关知识,理解题意,充分运用数形结合思想来解决由统计图形式给出的数学实际问题是解题关键.3、(1)全面调查;(2)抽样调查;(3)抽样调查【分析】根据抽样调查和全面调查的特点即可作出判断.适合全面调查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.【详解】解:(1)为了了解你所在的班级的每个同学的身高,向全班同学做调查.属于全面调查;(2)为了了解你所在的班级的同学每天的学习时间,选取班级中学号为单号数的所有同学做调查.属于抽样调查;(3)为了了解某奶牛场中500头奶牛的产奶量,从中抽取出50头进行分析测量.属于抽样调查.【点睛】本题考查了抽样调查和全面调查的区别,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.掌握抽样调查和全面调查的区别是解题关键.4、(1)200;81;(2)见解析;(3)630名;(4)超过半数的学生喜欢线上支付;采用现金支付的学生人数不足三分之一【分析】(1)根据支付宝、现金、其他的人数和所占的百分比可以求得本次调查的人数,并求出示“支付宝”支付的扇形圆心角的度数;(2)根据(1)中的结果可以求得使用微信和银行卡的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得购物选择用支付宝支付方式的学生约有多少人;(4)信息合理即可.【详解】(1)本次调查的人数为:(45+50+15)÷(1−15%−30%)=200,表示“支付宝”支付的扇形圆心角的度数为:360°×45200=81°,故答案为:200,81°;(2)使用微信的人数为:200×30%=60,使用银行卡的人数为:200×15%=30,补充完整的条形统计图如图所示:(3)()60451200630200+⨯=名. 答:1200名学生中估计喜欢支付宝支付和微信支付的学生一共有630名.(4)超过半数的学生喜欢线上支付; 采用现金支付的学生人数不足三分之一.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.5、抽样调查;随机抽样调查【分析】抽样调查是从总体中抽取样本进行调查,根据样本来估计总体的一种调查.【详解】用抽样调查的方法进行统计.要了解全国范围初中生视力状况随年纪变化的趋势要在全国 范围内随机抽样调查 .【点睛】本题考查随机抽样调查的实际应用,掌握其含义和使用范围是本题关键.。

数学人教版七年级下册调查与统计

数学人教版七年级下册调查与统计

第十章统计与调查复习提纲一.知识要点(一)调查方式的合理选择1.统计调查的基本步骤:(1)收集数据——___________________收集数据的方法:a、民意调查:如投票选举b、实地调查:如现场进行观察、收集、统计数据c、媒体调查:报纸、电视、电话、网络等调查都是媒体调查。

注意:选择收集数据的方法,要掌握两个要点:①是要简便易行,②要真实、全面(2)整理数据——___________________划计法:整理数据时,用“正”的每一划(笔画)代表一个数据,这种记录数据的方法叫划计法。

(3)描述数据——____________________(4)分析数据——____________________2.收集数据的方法:全面调查:为了一定的目的的而考察________________的调查叫做全面调查,也叫___________。

抽样调查:从被考察的全体对象中__________________进行考察,根据_____________的情况来估计______________的情况的调查方式叫做抽样调查。

为了获得较为准确的调查结果,抽样时要注意样本的__________和___________,即采取随机抽样的方法。

分层抽样调查:将总体按其属性分成若干类型或层,然后在______________________中随机抽样。

类型一:调查方法的考查2:下列调查中,适合用普查(全面调查)方法的是().A.电视机厂要了解一批显像管的使用寿命;B.要了解我市居民的环保意识;C.要了解我市“阳山水蜜桃”的甜度和含水量;D.要了解某校数学教师的年龄状况.思路点拨:A、B、C工作量太大,太复杂,只能作抽样调查,而D可以作普查,即全面调查.解析:D.总结升华:在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.举一反三:【变式】下列抽样调查中抽取的样本合适吗?为什么?(1)数学老师为了了解全班同学数学学习中存在的困难和问题,请数学成绩优秀的10名同学开座谈会;(2)在上海市调查我国公民的受教育程度;(3)在中学生中调查青少年对网络的态度;(4)调查每班学号为5的倍数的学生,以了解学校全体学生的身高和体重;(5)调查七年级中的两位同学,以了解全校学生的课外辅导用书的拥有量.【答案】(1)中的抽样不太合适,抽样时,应该让成绩好、中、差的同学都有代表参加;(2)中上海市的经济发达,公民受教育的程度较高,不具有代表性;(3)中青少年不仅仅是中学生,还有为数众多的非中学生,中学生对网络的态度不代表青少年对网络的态度(4)中抽样是随机的,因此可以认为抽样合适;(5)中调查的人数太少,各年级的情况可能有所不同,因此抽样不合适.3.调查方法的选择:1:为了了解2009年河南省中考数学考试情况,从所有考生中抽取600名考生的成绩进行考查,指出该考查中的总体和样本分别是什么?思路点拨:从概念上来看,总体即全部考查对象,样本是一部分考查对象,还要注意考查的对象是数量指标.解析:总体是2009年河南省参加中考考试的所有考生的数学成绩;样本是抽取的600名考生的数学成绩.总结升华:统计中的研究对象是数据,而不是具体的人或物. 在叙述总体和样本时,要注意他们的范围和数量指标.举一反三:【变式】2007年某县共有4591人参加中考,为了考查这4591名学生的外语成绩,从中抽取了80名学生成绩进行调查,以下说法不正确的是().A.4591名学生的外语成绩是总体;B.此题是抽样调查;C.样本是80名学生的外语成绩;D.样本是被调查的80名学生.【答案】D.(二)统计图的选择条形统计图:(1)条形统计图能清楚地表示出每个项目中_________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 数据的收集整理与描述◆自主探究 乐学善思 积极参与◆ 第 页第十章 数据的收集、整理与描述【一、知识结构】(一)统计调查 1、数据处理的过程(1)数据处理一般包括收集数据、整理数据、描述数据和分析数据等过程。

收集数据的方法:a 、民意调查:如投票选举 b 、实地调查:如现场进行观察、收集、统计数据 c 、媒体调查:报纸、电视、电话、网络等调查都是媒体调查。

注意:选择收集数据的方法,要掌握两个要点:①是要简便易行,②要真实、全面。

(2)数据处理可以帮助我们了解生活中的现象,对未知的事情作出合理的推断和预测。

2、统计调查的方式及其优点(1)全面调查:考察 的调查叫做全面调查。

(2)划计法:整理数据时,用 的每一划(笔画)代表一个数据,这种记录数据的方法叫划计法。

例如:统计中编号为1的数据每出现一次记一划,最后记为“正正一”,即共出现11次。

(3)百分比:每个对象出现的次数与总次数的 。

注意:①调查方式有两种:一种是全面调查,另一种是抽样调查。

②划计之和为总次数,百分比之和为1。

③划计法是记录数据常用的方法,根据个人的习惯也可改用其他方法。

全面调查的优点是可靠,、真实,抽样调查的优点是省时、省力,减少破坏性。

3、抽样调查的要求为了获得较为准确的调查结果,抽样时要注意样本的广泛性和代表性,即采取随机抽查的方法。

如:请指出下列哪些调查的样本缺乏代表性。

(1)从具有不同层次文化的市民中,调查市民的法治意识; (2)在大学生中调查我国青年的上网情况;(3)抽查电信部门的家属,了解市民对曜服务的满意程度。

小结:只有选择具有代表性的样本进行抽样调查,才能了解总体的面貌和特征。

4、总体和样本总体:要考查的 对象称为总体。

个体:组成总体的每一个考察对象称为个体。

样本:从 当中抽出的所有实际被调查的对象组成一个样本。

样本容量:样本中 叫样本容量(不带单位)。

如:要了解某校全体学生早晨用餐情况,抽出其中三个班,每个班30名学生做调查。

总体是 ;样本是 ;个体是 ,样本的容量是 。

综合练习:1、为了了解某县七年级2000名学生的身高,从中抽取500名学生进行测量,对这个问题,下面说法正确的是( )A 、2000名学生是总体B 、每个学生是个体C 、抽取500名学生是所抽的一个样本D 、每个学生的身高是个体 分析:要明白统计调查中研究的对象是什么,不要错看对象。

(二)直方图1、数据的频数分布表反映了一组数据中的每个数据出现的频数,从而反映了在数据组中各数据的分布情况。

要全面地掌握一组数据,必须分析这组数据中各个数据的分布情况。

如:1、八年级某班20名男生一次投掷标枪测试成绩如下(单位:m ):25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,22,24,25,26,28。

(1)将这20名男生的测试成绩按从小到大排列, 统计出每种成绩的数值出现的频数,并制成统计表; (2)根据统计表回答:①成绩小于25米的同学有几人?占总人数的百分之几?②成绩大于28米的同学有几人?占总人数的百分之几?③这些同学的成绩大部分集中在哪个范围内,占总人数的百分比是多少?小结:利用频数、频率分布表,可以清楚地反映出一组数据中的每个数据出现的频数和频率,从而反映这些数据的整体分布情况。

2、频数分布直方图为了直观地表示一组数据的分布情况,可以以频数分布表为基础,绘制分布直方图。

(1)频数分布直方图简称直方图,它是条形统计图的一种延伸。

(2)直方图的结构:直方图由横轴、纵轴、条形图的三部分组成。

第十章 数据的收集整理与描述◆自主探究 乐学善思 积极参与◆ 第 页(3)作直方图的步骤:①作两条互相垂直的轴:横轴和纵轴;②在横轴上划分一引起相互衔接的线段,每条线段表示一组,在线段的左端点标明这组的下限,在最后一组的线段的右端点标明其上限;③在纵轴上划分刻度,并用自然数标记;④以横轴上的每条线段为底各作一个矩形立于数轴上,使各矩形的高等于相应的频数。

小结:画频数分布直方图可按以下步骤:①计算数差;②确定组距与组数;③确定组限;④列频数分布表;⑤画频数分布直方图。

其中组距和组数的确定没有固定标准,要凭借经验和研究的具体问题决定。

一般来说,组数越多越好,但实际操作比较麻烦,当数据在100个以内时,根据数据的特征通常分成5—12组。

【二、经典例题】例1 某班有50人,其中三好学生10人,优秀学生干部5人,在扇形统计图上表示三好学生和优秀学生干部人数的圆心角分别是( )A .720,360B .1000,500C .1200,600D .800,400例2 某音乐行出售三种音乐CD ,即古典音乐、流行音乐、民族音乐,为了表示这三种音乐唱片的销售量的百分比,应该用( )A .扇形统计图B .折线统计图C .条形统计图D .以上都可以例3 在一次抽样调查中收集了一些数据,对数据进行分组,绘制了下面的频数分布表:⑴已知最后一组(89.5~99.5)出现的频率为15 %,则这一次抽样调查的容量是________ . ⑵第三小组(69.5~79.5)的频数是_______,频率是________.例4 如图,是一位护士统计一位病人的体温变化图:根据统计图回答下列问题:⑴病人的最高体温是达多少? ⑵什么时间体温升得最快?例5 在一次抽样调查中收集了一些数据,对数据进行分组,绘制了下面的频数分布表:⑴已知最后一组(89.5~99.5)出现的频率为15 %,则这一次抽样调查的容量是________ . ⑵第三小组(69.5~79.5)的频数是_______,频率是________. 【三、达标检测】一、选择题:(每小题3分,共36分)1.调查下面问题,应该进行抽样调查的是 ( ) A.调查某校七(2)班同学的体重情况 B.调查我省中小学生的视力近视情况C.调查某校七(5)班同学期中考试数学成绩情况D.调查某中学全体教师家庭的收入情况2.实验中学七年级进行了一次数学测验,参考人数共540人,为了了解这次数学测验成绩,下列所抽取的样本中较为合理的是() A.抽取前100名同学的数学成绩 B.抽取后100名同学的数学成绩 C.抽取(1)、(2)两班同学的数学成绩 D.抽取各班学号为3号的倍数的同学的数学成绩 3.在下列调查中,比较容易用普查方式的是( )A.了解大连市居民年人均收入B.了解大连市初中生体育中考的成绩C.了解大连市中小学生的近视率D.了解某一天离开大连市的人口流量4.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成( )A.10组B.9组C.8组D.7组5.在频数分布直方图中,各小长方形的高等于相应组的( ) A.组距 B.组数 C.频数 D.频率6.某单位有职工100名,按他们的年龄分成8组,在40~42(岁)组内有职工32名,那么这个小组的频率是( ) A.0.12 B.0.38 C.0.32 D.327.根据大连市第一季度用电量的扇形统计图,第十章 数据的收集整理与描述◆自主探究 乐学善思 积极参与◆ 第 页则2月份用电量占第一季度用电量的百分比为( ) A.60% B.64% C.54% D.74%8.一个扇形统计图中,扇形A 、B 、C 、D 的面积之比为2∶3∶3∶4,则最大扇形的圆心角为( )A.80° B .100° C .120° D .150° 9.如图,下列说法正确的是( ) A.步行人数最少只为90人B.步行人数为50人C.坐公共汽车的人数占总数的50%D.步行与骑自行车的人数和比坐公共汽车的人数要少 10.某公司的生产量在七个月之内的增长变化情况如图所示,从图上看,下列结论不正确的是( ) A.2~6月生产量增长率逐月减少 B.7月份生产量的增长率开始回升 C.这七个月中,每月生产量不断上涨 D.这七个月中,生产量有上涨有下跌 11.如图1,所提供的信息正确的是( ).A .七年级学生最多B .九年级的男生是女生的两倍C .九年级学生女生比男生多D .八年级比九年级的学生多6.某人设计了一个游戏,在一网吧征求了三位游戏迷的意见,就宣传“本游戏深受游戏迷欢迎”,这种说法错误的原因是( ).A.没有经过专家鉴定 B.应调查四位游戏迷 C.这三位玩家不具有代表性 D.以上都不是二、填空题(每题3分,共计18分)13.近几年,人们的环保意识逐渐增加,“白色污染”现象越来越受到人们的重视.小颖同学想了解班上同学家里在一年内丢弃废塑料袋的个数,你认为采用______调查方式合适一些. 14.某超市对今年前两个季度每月销售总量进行统计,为了更清楚地看出销售总量的总趋势是上升还是下降,应选用 统计图来描述数据.15.在一个扇形统计图中,有一个扇形占整个圆的30%,则圆心角是 . 16.将收集到的40个数据进行整理分组,已知落在某一区间内的频数 是5,则该组的频率是.17.某商场为了解本商场的服务质量,随机调查了来本商场购物的100名顾客,调查的结果如图所示,根据图中给出的信息可知,这100•名顾客中对该商场的服务质量表示不满意的有人.18.如图,整个圆表示某班参加课外活动的总人数,跳绳的人数占30%,表示踢毽的扇形圆心角是60°,踢毽和打篮球的人数比是1∶2,那么表示参加“其它”活动的人数占总人数的 %. 三、解答题(每题7分,共计28分)19.2008年5月30日,国务院关税税则委员会决定从当天起对纺织品出口关税作出进一步调整,对一些纺织品取消征收出口关税.在此背景下,某报报道了2008年1~4月份某市服装对外出口的情况,并绘制统计图如下,请你根据统计图中提供的信息,回答下列问题:(1)2008年1~4月份,该市服装企业出口额较多的是哪两个国家?(2)2008年1~4月份,该市服装企业平均每月出口总额是多少万美元?20.某市对当年初中升高中数学考试成绩进行抽样分析,试题满分100分,将所得成绩(均为整数)整理后,绘制了如图所示的统计图,根据图中所提供的信息,回答下列问题:(1)共抽取了多少名学生的数学成绩进行分析? (2)如果80分以上(包括80分)为优生,估计该年的优生率为多少?(3)该年全市共有22000人参加初中升高中数学考试,请你估计及格(60分及60分以上)人数大约为多少?踢毽篮球跳绳其它第十章 数据的收集整理与描述◆自主探究 乐学善思 积极参与◆ 第 页21.据统计,1980年世界人口的分布状况是:亚洲25.8亿人,欧洲7.5亿人,非洲4.6亿人,拉丁美洲3.5亿人,北美洲2.4亿人,大洋洲0.2亿人,全球合计44.0亿人.(1)请制作一张统计表描述以上统计数据. (2)请根据统计表格中的数据制作扇形统计图. (3)从以上统计图、表中,你能得到哪些信息.22.从某市近期卖出的不同面积的商 品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统计图,请结合图中的信息,解析下列问题:(1)卖出面积为110~130平方米的商品房 有___套,并在右图中补全统计图.(2)从图中可知,卖出最多的商品房约占全部卖出的商品房的___%.(3)假如你是房地产开发商,根据以上提供的信息,你会多建住房面积在什么范围内的住房?为什么?四、解答题(每题9分,共计18分)23.育才中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行一次抽样调查.根据采集到的数据绘制的统计图(不完整)如下:请你根据图中提供的信息,完成下列问题:(1)求图1中“电脑”部分所对应的圆心角. (2)如图2中,将“体育”部分的图形补充完整. (3)求爱好“书画”的人数占被调查人数的百分数是(4)估计育才中学现有的学生中,有多少人爱好“书画”?24. 今年,市政府的一项实事工程就是由政府投人1 000万元资金.对城区4万户家庭的老式水龙头和13升抽水马桶进行免费改造.某社区为配合政府完成该项工作,对社区内1200户家庭中的120户进行了随机抽样调查,并汇总成下表:(1)试估计该社区需要对水龙头、马桶进行改造的家庭共有_____户;(2)改造后,一只水龙头一年大约可节省5吨水,一只马桶一年大约可节省15吨水.试估计该社区一年共可节约多少吨自来水?(3)在抽样的120户家庭中,既要改造水龙头又要改造马桶的家庭共有多少户?书画 电脑 35% 音乐体育兴趣小图1 图2。

相关文档
最新文档