勒贝格积分与黎曼积分的比较
黎曼积分与勒贝格积分的联系与区别

黎曼积分与勒贝格积分的联系与区别
黎曼积分和勒贝格积分都是用来求解函数在某一区间上的定积分,但是它们的定义和性质有着很大的区别。
黎曼积分是一种传统的积分方法,它把定积分的计算问题转化
为一个求和问题,即将区间分成若干小段,然后对每一小段的函数
值乘以对应小段的长度求和来逼近定积分的值。
黎曼积分只适用于
满足黎曼可积条件的函数,也就是说,被积函数必须满足有界且在
有限区间上几乎处处连续。
勒贝格积分则是一种广义积分方法,它是将区间上的函数分解
成上下两个函数,然后利用这两个函数的极限逼近来计算定积分的值。
因为勒贝格积分的定义更加宽松,所以相比较于黎曼积分,它
能够处理诸如反常积分这样的更加复杂的积分问题。
此外,黎曼积分和勒贝格积分的性质也有所不同。
例如,黎曼
积分在加积分区间时是可交换的,而勒贝格积分则不具有这种性质。
此外,勒贝格积分对于不满足黎曼可积条件的函数,也有一定的处
理能力,而黎曼积分则无法计算这些函数的积分。
综上所述,黎曼积分和勒贝格积分都是求解定积分问题的方法,但是它们的定义和性质有很大的不同。
黎曼积分只适用于黎曼可积
的函数,而勒贝格积分则更加广泛适用于各种类型的函数。
黎曼积分与勒贝格积分

黎曼积分与勒贝格积分积分是微积分中重要的概念之一。
在实际问题中,我们常常需要求解一个区间内函数的面积或者体积。
这个过程就称为积分。
积分有很多种,今天我想和大家聊一聊黎曼积分和勒贝格积分。
一、黎曼积分黎曼积分最早是由德国的数学家黎曼提出的。
它是积分的一种基本形式,从历史上来看,黎曼积分是最早被人们所接受的一种积分形式。
黎曼积分的定义非常简单,假设有一个区间[a,b],f(x)是[a,b]上的一个函数,我们将区间[a,b]进行分割,得到n个小区间[a1,b1],[a2,b2],……,[an-1,bn-1],然后在每个小区间内分别取一点xi(ai≤xi≤bi),然后求出每个小区间上函数f(x)的取值和小区间长度之积的和,即∑f(xi)Δxi(i=1,2,……,n),当分割越来越细,n越来越大时,和式∑f(xi)Δxi的极限值就是函数f(x)在区间[a,b]上的黎曼积分。
黎曼积分的优点是在实际计算中比较简单,但它也有一些局限性,比如说不是所有的函数都可以积分,例如在非连续点处黎曼积分是没有定义的。
二、勒贝格积分勒贝格积分是20世纪初期法国的数学家勒贝格提出来的。
它是通过使用类似度量论的概念,对几乎处处连续的函数进行积分,从而将积分的适用范围扩展到了更广泛的函数上。
具体来说,假设有函数f(x),它在[a,b]上几乎处处连续,记E为f(x)在[a,b]上所有不连续点的集合。
我们可以在每个不连续点处定义一个容许误差,使得在这个误差以内f(x)可以任意变化,而在误差以外随着分割越来越细,误差的贡献趋近于0。
于是我们就得到了函数在[a,b]上的勒贝格积分。
勒贝格积分相对于黎曼积分而言,可以积分更多的函数,也避免了因非连续点而产生的积分误差。
但是它在实际计算上会稍稍麻烦一些。
三、总结黎曼积分和勒贝格积分是积分的两种基本形式。
黎曼积分在实际计算中比较简单,但不是所有函数都能够使用黎曼积分。
勒贝格积分是一种更加通用的积分形式,它可以积分更多的函数,但相对于黎曼积分而言,计算会有一些复杂。
黎曼积分和勒贝格积分的联系与区别

黎曼积分和勒贝格积分的联系与区别
黎曼积分和勒贝格积分都是函数积分的一种。
它们的定义很相似,但在某些意义上有所不同。
首先,黎曼积分是指函数在某一闭区间上的积分,其公式如下:
$$\int _a^ b f(x)dx=\lim_{n\to \infty }\sum_{i=1}^nf
\left(x_i\right)\Delta x_i$$
其中,$a、b$为积分的上下限,$x_i$为每个子区间的位置,$\Delta x_i$为每个子区间的长度。
而勒贝格积分可以看作是黎曼积分的一种特殊情况,其定义如下:
其中,$x_k=a+\frac{k(b-a)}{n}$。
从定义来看,黎曼积分是考虑分割区间的情况,其子区间不一定都相同,而勒贝格积分只考虑等分子区间的情况,所以勒贝格积分只是黎曼积分的特例。
此外,在实际应用中,由于勒贝格积分只考虑子区间的等分情况,进行计算时不需要考虑子区间的长度,即$\Delta x_k$可以直接取1,因此计算量相较于黎曼积分少。
但需要注意的是,如果子区间的宽度稍有不同,勒贝格积分可能会产生较大的误差。
勒贝格积分和黎曼积分的联系及区别

勒贝格积分和黎曼积分的联系与区别摘要本文讨论勒贝格积分是与黎曼积分的联系与区别,勒贝格积分和黎曼积分积分之间有一种相依赖、相互补充、相互帮助及在特定条件下相互转化的关系,勒贝格积分在积分与极限换序的条件要求上有比黎曼积分优越的好处。
在实变函数里引入勒贝格积分是为了弥补黎曼积分的缺乏,可以扩大可积函数类,降低逐项积分与交换积分顺序的条件。
勒贝格积分拓广了黎曼积分的定义,使得可积性的条件要求减弱了。
它断言可测集上的有界可测函数和单调函数必勒贝格可积,这比黎曼积分中要求连续函数、单调函数的条件放松多了。
它放松了黎曼积分要求函数序列的一致收敛的过强的要求。
关键词:勒贝格可黎曼可积勒贝格积分黎曼积分1、定义1.1黎曼积分定义 设)(x f 在[]b a,上有定义1)分割分划,将()b a ,添加n-1个分点T :n n x b x x x a x =<<<<=-1210 将[]b a,分成n 个小区间[][][]n n x x x x x x ,,,12110-1x ∆2x ∆ n x ∆2)取近似[]()i i i i i x f t s x x ∆∀-ξξ..,,1 3)()i i ni x f ∆∑=ξ14)取极限令{}i x T ∆=max —T 的细度,假设()i ni i T x f ∆∑=→10lim ξ存在()()∑⎰=→∆=ni iiT baxf dx x 10lim ξ1.2勒贝格积分定义设()x f 在有限可测集E 上有界1)n E E E 21为E 的n 个互相不相交的可测子集且 ni i E 1E ==称{}n E E E D 21=为E 的一个L-分划2)设{}n E E E D 21=,{}''2'1'D n E E E =均为E 的一个L-分划,假设对''D E ∈∀存在j i j E E t s DE ⊂∈'..称D 比'D 细〔D D 是'的加细〕3)设{}n E E E D 21=为E 的一个L-分划,()()x f B x f b iiE x i E x i sup inf ,∈∈==称()i ni i mE b f D s ∑==1',在划分D 下()x f 的小和()∑==ni i i mE B f 1D,S 在划分D 下()x f 的大和2黎曼积分和勒贝格积分的联系对于定义在[]b a ,上的函数f ,如果它是黎曼可积的,那么它勒贝格可积的,而且有一样的积分值,故我们平时解题算勒贝格积分时,一般先考虑该函数是否黎曼可积,如果可以,那么就先化为黎曼积分求解,因为我们在学数分时,已经熟悉了黎曼积分。
黎曼积分与勒贝格积分的区别

黎曼积分与勒贝格积分的区别积分是微积分中的重要概念,用于求解曲线下面的面积、计算函数的平均值等。
在实际应用中,常常会遇到需要对不同类型的函数进行积分的情况。
而黎曼积分和勒贝格积分是两种常见的积分方法,它们在定义和适用范围上存在一些区别。
本文将详细介绍黎曼积分和勒贝格积分的区别。
一、黎曼积分黎曼积分是由德国数学家黎曼在19世纪提出的,是最早被广泛应用的积分方法之一。
黎曼积分的定义是通过将区间[a, b]分成若干小区间,然后在每个小区间上取一个样本点,计算函数在这些样本点处的取值与小区间长度的乘积,再将这些乘积相加得到的极限值。
黎曼积分的计算公式如下:∫[a, b] f(x) dx = lim(n→∞) Σ f(xi)Δxi其中,f(x)是被积函数,[a, b]是积分区间,n是将区间[a, b]分成的小区间的个数,xi是每个小区间上的样本点,Δxi是每个小区间的长度。
黎曼积分的优点是定义简单,易于理解和计算。
但是,黎曼积分的适用范围有限,只能对一些特定类型的函数进行积分。
对于某些函数,黎曼积分可能不存在或者无法计算。
二、勒贝格积分勒贝格积分是由法国数学家勒贝格在20世纪初提出的,是对黎曼积分的一种推广。
勒贝格积分的定义是通过将函数的定义域分成若干个可测集,然后在每个可测集上计算函数的上积分和下积分,如果上积分和下积分相等,则称该函数是勒贝格可积的,其积分值即为上下积分的公共值。
勒贝格积分的计算公式如下:∫f(x) dμ = ∫[a, b] f(x) dμ = ∫[a, b] f(x) dμ+ -∫[a, b] f(x) dμ-其中,f(x)是被积函数,[a, b]是积分区间,dμ是勒贝格测度,∫[a, b] f(x) dμ+和∫[a, b] f(x) dμ-分别是函数f(x)在积分区间上的上积分和下积分。
勒贝格积分的优点是适用范围广泛,可以对几乎所有的函数进行积分。
勒贝格积分的定义更加一般化,可以处理更复杂的函数和测度空间。
勒贝格积分和黎曼积分的关系和区别

勒贝格积分的若干简介我们先学习了Riemann 积分(简称R 积分),从而慢慢引入到了勒贝格积分,因此我将在下文中分几部分来讲勒贝格积分。
首先介绍一下在有界函数范围内,R 积分还是存在这很大的缺陷,主要表现在以下两个方面[1]:⑴R 积分与极限可交换的条件太严。
⑵积分运算不完全是微分运算的逆运算。
⑶不适宜于无界区间:黎曼积分只能用来在有界区间内对函数进行积分。
⑷缺乏单调收敛。
鉴于R 积分的上述缺陷,人们致力于对此进行改进。
1902年,法国数学家勒贝格基于可列可加的测度,成功引进了一种新的积分,即Lebesgue 积分(简称L 积分)。
那么,建立L 积分的基本思路和步骤是怎么样的呢?L 积分的思路也基本与R 积分一样先分割,作积分和,取取极限。
在重新审视R 积分和曲边梯形面积的关系时,另一个建立L 积分的思路浮现出来。
首先,为了避免可测函数不是有界函数,最后的积分值可能会出现∞-∞的不定情形的出现,在定义L 积分时第一步仅限于非负函数。
其次,注意到非负函数围成的曲边梯形的面积,对于L 积分,可以将“可测集分割”加以取代,形成所谓“简单函数”,从而过度到L 积分“横着数”的思想。
下文将详细的介绍L 积分和R 积分的区别和联系。
关于Lebesgue 积分与Riemann 积分的定义比较1.1勒贝格积分的定义[3]:定义1:设)(x f 是n R E ⊂()∞<mE 上的非负可测函数.我们定义)(x f 是E 上的Lebesgue 积分()()()sup ():()x Eh x f x E E f x dx h x dx h x ∈≤⎧⎫=⎨⎬⎩⎭⎰⎰是n R 上的非负可测简单函数},这里的积分可以是+∞;若∞<⎰Edx x f )(,则称)(x f 在E 上Lebesgue 可积的。
设)(x f 是n R E ⊂上的可测函数,若积分⎰+E dx x f )(,⎰-Edx x f )(中至少有一个是有限值,则称⎰⎰⎰-+-=EE E dx x f dx x f dx x f )()()(为)(x f 是E 上的Lebesgue 积分;当上式右端两个积分值皆为有限时,则称)(x f 是E 上是Lebesgue 可积的。
黎曼积分与勒贝格积分的区别

黎曼积分与勒贝格积分的区别积分是微积分中的一个重要概念,用于描述曲线下面积的大小。
在实际应用中,人们常常会遇到黎曼积分和勒贝格积分这两种不同的积分方式。
本文将从定义、性质和应用等方面对黎曼积分与勒贝格积分进行比较,以便更好地理解它们之间的区别。
1. 定义黎曼积分是通过将区间分割成若干小区间,然后在每个小区间上取样点,计算每个小区间上函数值与区间长度的乘积之和,然后取极限得到的积分。
黎曼积分的定义比较直观,适用于绝大多数函数。
而勒贝格积分则是通过将函数的定义域分解成可测集,然后在每个可测集上定义一个测度,最后将函数值与测度的乘积进行积分。
勒贝格积分的定义更加抽象,适用范围更广,可以处理更多类型的函数。
2. 性质黎曼积分的性质相对简单,满足线性性、可加性、保号性等基本性质。
但是对于某些特殊函数,比如间断函数或者无界函数,黎曼积分可能无法定义。
勒贝格积分的性质更加丰富,不仅满足线性性、可加性等基本性质,还具有单调收敛性、控制收敛性等重要性质。
勒贝格积分可以对几乎所有的可测函数进行积分,包括无界函数和几乎处处不连续的函数。
3. 应用在实际应用中,黎曼积分主要用于初等函数的积分计算,以及一些具有良好性质的函数的积分。
在物理、工程等领域,黎曼积分也有着广泛的应用。
而勒贝格积分则更多地应用于测度论、概率论、泛函分析等数学领域,对于研究函数空间的性质、广义函数的积分等问题有着重要作用。
勒贝格积分的广泛应用使得它成为现代数学中不可或缺的工具之一。
综上所述,黎曼积分与勒贝格积分在定义、性质和应用等方面存在着明显的区别。
黎曼积分更加直观简单,适用于绝大多数函数的积分计算;而勒贝格积分更加抽象丰富,适用范围更广,可以处理更多类型的函数。
在实际应用中,根据具体情况选择合适的积分方式,将有助于更好地解决问题并推动数学理论的发展。
Riemann积分 Lebesgue积分

从Riemann 积分到Lebesgue 积摘 要 积分是整个分析数学中最基本的概念,黎曼积分与勒贝格积分是两种非常重要的积分,它们之间既有区别又有联系。
本文主要通过对黎曼积分和勒贝格积分定义的分析与比较,归纳总结出二者的区别与联系. 关键词 黎曼积分;勒贝格积分;区别;联系一、Lebesgue 积分的引入1、R 积分的定义 设()f x 是定义在[],a b 上的有界函数,任取区间的一个划分T012n a x x x x b =<<<<=将区间[],a b 分成n 部分,在每个小区间1,i i x x -⎡⎤⎣⎦上任取一点ζi ,i =1,2,3,….作和11(ζ)()ni i i i S f x x -==-∑令11max()i i i nr x x -≤≤=-,如果对任意的分发与ζi 的任意取法,当0r →时,S 趋于有限的极限,则称它为()f x 在[],a b 上的黎曼积分,记为()baI R f x dx=⎰如果设=sup{f(x):};=inf{f(x):}则有f (x )在[a,b]上Riemann 可积1()lim n bi i ar i f x dx M x →=⇔=∆∑⎰=01lim ()nbi i ar i m x f x dx →=∆=∑⎰⇔对任意的ε,η>0,总存在一个划分T ,使得对任意的划分,只要比T 更精细,则有所有振幅≥ε的小区间的长度之和小于ε。
注:振幅为区间内任意两点距离的上确界。
2、Riemann 积分的局限性a 、从Riemann 可积的充分必要条件可看出, 可积性涉及到分割小区间(1,i i x x -⎡⎤⎣⎦)的长度以及函数在其上的振幅()。
若要函数可积, 则在r 趋于0的过程中()不能缩小的那些对应项子区间的长度必须是无穷小。
也就是说, Riemann 函数的不连续点可用长度为任意小的区间簇覆盖, 粗略地说, Riemann 可积函数必须是“ 基本上是连续的”b 、积分运算不完全是微分运算的逆运算(微积分基本定理的条件太严) 微积分基本定理在微积分理论中起的重要作用是不言而喻的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Lebesgue积分与Riemann积分的比较欧阳学文1000449 陈佳龙 1003908 王珏 1000194 杜腾飞整个空间。
这种优越性是基于测度论与可测函数相关理论而在其定义上便已显现出来了。
为更好地说明L积分与R积分的异同,我们有必要将R积分的定义在此描述。
R积分是这样定义的:.如果当时,和数不管分割如何取法,也不管如何取法,都有共同的极限,即则称此极限为函数从到的黎曼积分,记作,关于勒贝格积分有多种等价表述形式,为了更好的的说明问题,我们选取了两种定义模式,当然还有其它的定义方式,如张喜堂老师编的《实变函数论的典型问题与法方》中,对L积分的定义是先从有界函数的L积分着手,即定义有限可测集E的一个分划D,进而定义于D相关的小和数与大和数。
最后定义有界函数的上下勒贝格积分。
若上下积分相等,则称函数勒贝格可积。
就本文所列举的的两种定义而言,其中第一种定义模式仿照了黎曼积分的定义,而第二种以测度为基础,先定义简单函数的积分,进而定义一般函数的积分,此种方式也适用于一般测度空间上的积分。
在后面的相关论述中我们将主要选取第二种方式。
定义1:设勒贝格可测集E的勒贝格测度有限().设是E上有界可测函数()。
任取分点令任取若当时,和存在极限A,则称A 是在E上的勒贝格积分,简称L积分,记为由此可以看出与黎曼积分不同勒贝格积分是划分值域而不是划分定义域来求和的。
显然与黎曼函数不同,由于黎曼积分要求小区间的长度而勒贝格积分要求定义域的测度,故对定义在定义在多维有界可测集上的广义实函数这样定义其积分就显得自然流畅,而黎曼积分只能对“ 标准”的实函数定义积分。
第二种定义方式是基于勒贝格测度论与勒贝格函数论,先定义有界可测集上简单函数的勒贝格积分,进而定义一般可测函数的L积分,最后定义无限可测集上的可测函数的勒贝格积分。
此种定义,借助测度的性质及勒贝格可测函数的性质,对勒贝格积分性质的讨论自然流畅。
定义2.1 有界可测集E上简单函数L积分定义为,设E 上简单函数有表示其中等为互不相交的可测集,称和为简单函数在E上的积分,并记为有时可以简写成。
对于以上定义,我们可以把记号中的换成是允许的,从以上简单函数L积分的定义可以看出当为一个常数c时,其积分值为c倍的可测集E的测度。
而当c为1时,该积分值为可测集E的测度。
另外还应注意,简单函数积分同函数表示式无关,即在叙述一般函数L积分定义之前,有必要先对简单函数L积分的一些性质进行描述。
(i )如果简单函数的正部与负部分别为与,则有简单函数的L积分具有线性可加性(ii )设,是E 上简单函数,,是常数,则有(iii )设是E 上简单函数,,,为互不相交的可测集,则对于以上简单函数L积分的性质我们可以类比定义在闭区间上的连续函数的黎曼积分的线性性质。
我们知道,勒贝格可测集E上的可测函数均可由E上的简单函数列逼近,那么,自然会问,E上的可测函数的勒贝格积分与简单函数的勒贝格积分是何种关系。
事实上,我们可以通过简单函数的L积分来定义有界可测集合E上的可测函数的勒贝格积分定义2.2:设是有界可测集E上的可测函数,对于的情形,取简单函数满足,令变动,定义在E上的L积分为此式右边非负数或.如果此量为有限,则称在E上L 可积。
否则只说在E 上的积分为(即此时称函数在可测集E上不可积).对于更一般的可测函数,当与不同时为时,定义在E上的积分为.当此右式两项均有限时,也只有在此时积分是有限的,我们称在E 上可积,记作或简记为.当右边两项均不可积时,原积分无意义.即,积分不存在.当右边两项有一项不可积分时,我们称函数不可积.以上便是可测函数在有界可测集E上的勒贝格积分的定义的第二种处理方式。
我们有必要强调,我们只考虑对定义在可测集E上的勒贝格可测函数定义勒贝格积分。
事实上,在上面的所有论述中,我们都是假定可测集E是有界的。
事实上,对于无界可测集上的可测函数亦是可以定义其勒贝格积分的.其处理方式是将定义在有界可测集上的简单函数推广到无界。
对比黎曼积分,我们可以将有界区间推广为无界,即无穷积分。
最后关于L积分的定义,我们可以借助可测集E的示性函数将L积分的定义推广到整个空间。
我们还应指出,对于非负函数的L积分表现为n+1维测度。
这与非负函数的黎曼积分表下表为面积是相近的。
其实上,对于一维非负函数的L积分也表现为“面积”对比定义在闭区间上函数黎曼积分的定义,其方式上是不同.当然,最根本的不同是其处理的问题不同且L积分的定义更加广泛。
我们知道,可测集E上的连续函数都是可测的,且黎曼积分处理的均为一维区间上的函数,即定义在Borel集的一个子集类上的函数,由于Borel集是可测的,所以对于黎曼积分的问题我们都可以试图用勒贝格积分去考虑。
二,勒贝格可积函数类与黎曼可积函数类对于黎曼可积函数的判定,我们有上和,下和,的概念。
并且有振幅的概念,即函数黎曼可积的充要条件是.我们知道闭区间上的连续函数是黎曼可积的.这样就确定了一大类黎曼可积函数。
并且我们还有闭区间上的单调有界函数是黎曼可积的,闭区间上间断点不多的函数是黎曼可积的。
以及黎曼可积函数的必要条件即函数必须是有界的,这样又排除了一类黎曼不可积函数。
我们知道,可测集上的连续函数是可测的,并且几乎处处有限的可测函数基本上是连续函数。
那么我们自然会问,定义在可测集上的连续函数是否是L可积的?是不是R可积了就一定L可积,如果不是,那么L可基函数与R可积函数类之间有何关系呢?是否某一类函数一定是L可积的,或者那一类函数一定是L不可积的呢?最后既然勒贝格可测函数可用连续函数逼近,那么勒贝格可积函数是不是能用连续函数逼近呢?对与上述问题的回答,将在该部分该部分做出论述。
1)有界可测函数必勒贝格可积.2)勒贝格可积函数必几乎处处有限.注释:上述可测函数定义在有界可测集E上。
3)定理1 设是上的勒贝格可积函数,则对任何正数,有上的连续函数,使4)定理2 定义在有限区间上的函数若为R可积,则必L可积分,且积分相等.注释:上述四条回答了最初的提问,即勒贝格可积函数与黎曼可积函数之间的关系,其中就“4)”,可以做补充,即“函数在上R可积的充要条件是函数在上地不连续点所成之集测度为0”.可以看出,若不考虑反常积分,则黎曼可积的函数是勒贝格可积的。
并且可以看出,定义在区间上的勒贝格可积函数是可以用连续函数来平均逼近的。
对比几乎处处有限的函数可用连续函数逼近,此处的条件明显加强了。
事实上勒贝格可积函数必是几乎处处有限的,则在区间上的L可积函数必是几乎处处有限的,那么此处将可测函数限制在了闭区间上,而不是多维闭区间或者是有界可测集E 上,虽不太完美,但也很漂亮。
5)若,则E 上的任何函数都是L可积的,并且积分等于0注释:我们知道,定义在零侧集上的函数均可测,而上述定理告诉我们零侧集上勒贝格积分的性质,两者统一来看,是非常漂亮的结论,此结论也告诉我们一个重要事实:在一个测度为零的集合上改变函数的值,既不影响函数的可积性,也不敢变其积分值.三:勒贝格积分与黎曼积分性质的比较。
比较完勒贝格积分与黎曼积分的定义与函数类之后,最后我们对勒贝格积分与黎曼积分的性质进行比较.该部分的论述将分两部分进行,其中第一部分就函数而言,第二部分就函数列而言.其中对可测函数列的勒贝格积分的讨论中,我们会与一致收敛的函数项级数的相关性质进行比较.事实上对积分性质的比较,应该就特殊函数与特殊可测集进行更加细致的讨论,如有关可测集示性函数的L积分的相关性质及Cantor集上可测函数勒贝格积分的性质进行论述。
然而由于时间原因,此部分内容无法进行细致学习与论述,实感遗憾。
❶about function1.勒贝格积分的线性性质:定理3 设在E上勒贝格可积,则对任何实数c,c 也可积,且.定理4 设,在E上均L 可积,则也可积,且注释:上述定理中可测集E并不限定在有限,也可无限.对比黎曼积分,也有与之等价的性质.2.与几乎处处有关的性质:定理5 设,在有界可测集E上均勒贝格可积,且,则定理6 若于有界可测集E ,在E 上可积,则也在E上可积.且,.注释:上述定理中E可以为无限可测集.对于黎曼积分,也有与之等价的性质.事实上,上述定理中的条件均可以减弱.即“若于E,则”“若于E 上,在E 上可积,则也在E上可积.且,”.关于定理5,有一推论推论1 设是有界可测集E 上的可测函数,,则注释:由于有界可测函数是勒贝格可积的,再对比定理5,该推论显然是成立的。
事实上,当时,.当=0时,.(错误推断)设,都是E上的可测函数,(E 也可取无界),可积,且于E,一定可积.注释:对于上述错误推断,加强条件,则可得到如下性质.定理8 若在E 上可测,在E上勒贝格可积分,且,,则在E 上可积.3.有些性质是勒贝格积分特有的,有些黎曼积分的性质,勒贝格积分却不一定有.定理9 (勒贝格积分的绝对可积性)在有界可测集E 上勒贝格可积的充要条件是在E 上可积注释:事实上,E可以是无界的,并且我们还有以下性质对比黎曼积分,此性质是不成立的.我们可以说,黎曼可积则黎曼可积,但是黎曼可积推不出黎曼可积.如此函数显然黎曼不可积,而,显然是黎曼可积的.定理10 为E 上的勒贝格可积函数,则在E上不一定L可积分.注释:对比黎曼积分,黎曼可积,则可推出是黎曼可积的.我们构造下列函数该函数是L 可积的,然而L不可积.4 勒贝格积分的其他性质定理11(唯一性定理)设在有限可测集E 上勒贝格可积,则的充要条件是在E 上几乎处处为零.注释:该定理中E可以为无限,该定理有下列推论推论2 若,则于E.定理12(有限可加性)设是有界可测集E 上的勒贝格可积函数,等均可测且两两互不相交,则有注释:此定理可以中E可以为无限.此性质可以对比黎曼积分的如下性质,即“在区间上黎曼可积的函数,有其中任意c,d,...n 属于.事实上对于一维无界区间而言黎曼积分的该性质亦是成立的.定理13,(/完全可加性)设是有界可测集E 上的勒贝格可积函数,等均可测且两两互不相交,则有注释:该定理中E可为无界可测集,定理14(绝对连续性)设在有界可测集E上L 可积,则对任意,有,使当时就有注释:此定理中E可以是无界.此定理若将积分看成更高阶维空间的测度,则即n维空间任意小的空间都对应与n+1维任意小的空间.若将积分看成原函数,则原函数是绝对连续的,对应黎曼积分有性质“设在上黎曼可积,则对任意,是的连续函数”.❷ about function column定理 15 设是有界可测集E上的非负的勒贝格可积函数,是满足条件;的简单函数列,则注释:此定理中E 可以是无界,且若勒贝格积分存在,此定理也是成立的,收敛与L可积函数的简单渐升函数列积分符与极限符号是可交换的.即对比黎曼积分的性质,函数项级数一致收敛,则部分和函数的极限号与积分号方可交换,可见,勒贝格积分要方便很多.定理 16 (勒维定理)设可测集E 上可测函数列满足下面条件:;则的积分序列收敛于的积分:注释:显然该定理更具朴实意义,即收敛的可测函数列的积分符与极限符号可交换.该定理是勒贝格积分的重要极限定理之一,也是勒贝格积分论的核心定理之一,其应用非常广泛.与函数项级数的相关定理对比,可看出勒贝格积分在对收敛的要求上明显宽松很多,这也便是勒贝格积分教黎曼积分更加优越的原因之一了.定理(法杜定理)设是可测集E上的非负可测函数列,则注释:该定理便是勒贝格积分的又一重要极限定理,也称法图定理,较勒维定理,该定理有明显放松了,即不要求函数列收敛,只要求其可测.参考文献:《实变函数与泛函分析概要》第四版郑维行王声望高等教育出版社《实变函数论》第二版周民强北京大学出版社《实变函数论的典型问题与方法》张喜堂华中师范大学出版社《数学分析》北大数学系编高等教育出版社《数学分析》复旦数学系编高等教育出版社《中华百科全书,数学》。