八年级数学 勾股定理及其常考题型

合集下载

勾股定理中的常考问题(6种类型48道)—2024学年八年级数学上册(解析版)

勾股定理中的常考问题(6种类型48道)—2024学年八年级数学上册(解析版)

勾股定理中的常考问题6种类型48道【类型一用勾股定理解决折叠问题】1.如图,将长方形ABCD沿着AE折叠,点D落在BC边上的点F处,已知AB=8,BC=10,则EC的长为()A.4B.3C.5D.2【答案】B【分析】长方形ABCD沿着AE折叠,得AD=AF=BC=10,EF=ED,根据勾股定理得BF=6,则CF=4,设EC=x,ED=8−x,根据勾股定理得EF2=EC2+CF2,即可解得EC的长.【详解】解:∵四边形ABCD是长方形,∴AD=BC=10,DC=AB=8,∵长方形ABCD沿着AE折叠,∴AD=AF=BC=10,EF=ED,∴BF=√AF2−AB2=√100−64=6,CF=BC−BF=4,设EC=x,ED=8−x,∴EF2=EC2+CF2,即(8−x)2=x2+42,解得x=3,所以EC=3,故选:B.【点睛】本题主要考查了图形折叠以及勾股定理等知识内容,掌握图形折叠的性质是解题的关键.2.如图,有一块直角三角形纸片,∠C=90°,AC=4,BC=3,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为()【答案】C【分析】利用勾股定理求得AB=5,由折叠的性质可得AB=AE=5,DB=DE,求得CE=1,设DB=DE=x,则CD=3−x,根据勾股定理可得12+(3−x)2=x2,进而求解即可.【详解】解:∵∠C=90°,AC=4,BC=3,∴AB=√32+42=5,由折叠的性质得,AB=AE=5,DB=DE,∴CE=1,设DB=DE=x,则CD=3−x,在Rt△CED中,12+(3−x)2=x2,,解得x=53故选:C.【点睛】本题考查勾股定理、折叠的性质,熟练掌握勾股定理是解题的关键.【答案】B【分析】根据图形翻折变换的性质可知,AE=BE,设AE=x,则BE=x,CE=8−x,再Rt△BCE中利用勾股定理即可求出CE的长度.【详解】解:∵△ADE翻折后与△BDE完全重合,∴AE=BE,设AE=x,则BE=x,CE=8−x,∵在Rt△BCE中,CE2=BE2−BC2,即(8−x)2=x2−62,解得,x=7,4.∴CE=74故选:B【点睛】本题考查了图形的翻折变换,解题中应注意折叠是一种对称变换,属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.4.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,AD为∠BAC的平分线,将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,则DE的长为()【答案】B【分析】根据勾股定理求得BC,进而根据折叠的性质可得AE=AC,可得BE=2,设DE=x,表示出BD,DE,进而在Rt△BDE【详解】解:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC=√AC2−AB2=√52−32=4,∵将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,∴AE=AC,设DE=x,则DC=DE=x,BD=BC−CD=4−x,BE=AE−AB=5−3=2,在Rt△BDE中,BD2+BE2=DE2,即(4−x)2+22=x2,解得:x=52,即DE的长为52故选:B.【点睛】本题考查了勾股定理与折叠问题,熟练掌握勾股定理是解题的关键.5.如图,矩形纸片ABCD的边AB长为4,将这张纸片沿EF折叠,使点C与点A重合,已知折痕EF长为2√5,则BC长为()A.4.8B.6.4C.8D.10【答案】C【分析】过点F作FG⊥BC于点G,则四边形ABGF是矩形,从而FG=AB=4,在Rt△EFG中,利用勾股定理求得EG=√EF2−FG2=√(2√5)2−42=2.设BE=x,则BG=BE+EG=x+2.由∠AFE=∠CEF=∠AEF 得到AE=AF=BG=x+2,从而在Rt△ABE中,有AB2+BE2=AE2,代入即可解得x的值,从而得到BE,CE的长,即可得到BC.【详解】过点F作FG⊥BC于点G∵在矩形ABCD中,∠DAB=∠B=90°∴四边形ABGF是矩形∴FG=AB=4∴在Rt△EFG中,EG=√EF2−FG2=√(2√5)2−42=2设BE=x,则BG=BE+EG=x+2∵在矩形ABCD中,BC∥AD∴∠AFE=∠CEF由折叠得∠CEF=∠AEF∴AE=AF∵在矩形ABGF中,AF=BG=x+2∴AE=AF=x+2∵在Rt△ABE中,AB2+BE2=AE2∴42+x2=(x+2)2解得x=3即BE=3,AE=5∴由折叠可得CE=AE=5∴BC=BE+EC=3+5=8故选:C【点睛】本题考查矩形的性质,勾股定理的应用,利用勾股定理构造方程是解决折叠问题的常用方法.A.7B.136【答案】B【分析】根据题意可得AD=AB=2,∠B=∠ADB,CE=DE,∠C=∠CDE,可得∠ADE=90°,继而设AE=x,则CE=DE=3−x,根据勾股定理即可求解.【详解】解:∵沿过点A的直线将纸片折叠,使点B落在边BC上的点D处,∴AD=AB=2,∠B=∠ADB,∵折叠纸片,使点C与点D重合,∴CE=DE,∠C=∠CDE,∵∠BAC=90°,∴∠B+∠C=90°,∴∠ADB+∠CDE=90°,∴AD2+DE2=AE2,设AE=x,则CE=DE=3−x,∴22+(3−x)2=x2,,解得x=136即AE=13,6故选:B【点睛】本题考查了折叠的性质,勾股定理,掌握折叠的性质以及勾股定理是解题的关键.7.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边BC沿CE翻折,点B落在点F处,连接CF交AB于点D,则FD的最大值为()【答案】D【分析】根据将边BC沿CE翻折,点B落在点F处,可得FD=CF−CD=4−CD,即知当CD最小时,FD最大,此时CD⊥AB,用面积法求出CD,即可得到答案.【详解】解:如图:∵将边BC沿CE翻折,点B落在点F处,∴CF=BC=4,∴FD=CF−CD=4−CD,当CD最小时,FD最大,此时CD⊥AB,∵∠ACB=90°,AC=3,BC=4,∴AB=√AC2+BC2=√32+42=5,∵2S△ABC=AC⋅BC=AB⋅CD,∴CD=AC⋅BCAB =3×45=125,∴FD=CF−CD=4−125=85,故选:D.【点睛】本题考查直角三角形中的翻折问题,涉及勾股定理及应用,解题的关键是掌握翻折的性质.A.73B.154【答案】B【分析】先求出BD=2,由折叠的性质可得DN=CN,则BN=8−DN,利用勾股定理建立方程DN2= (8−DN)2+4,解方程即可得到答案.【详解】解:∵D是AB中点,AB=4,∴AD=BD=2,∵将Rt△ABC折叠,使点C与AB的中点D重合,∴DN=CN,∴BN=BC−CN=8−DN,在Rt△DBN中,由勾股定理得DN2=BN2+DB2,∴DN2=(8−DN)2+4,∴DN=17,4,∴BN=BC−CN=154故选:B.【点睛】本题主要考查了勾股定理与折叠问题,正确理解题意利用方程的思想求解是解题的关键.【类型二杯中吸管问题】9.如图,有一个透明的直圆柱状的玻璃杯,现测得内径为5cm,高为12cm,今有一支15cm的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度最少为()A.1cm B.2cm C.3cm D.不能确定【答案】B【分析】吸管露出杯口外的长度最少,即在杯内最长,可用勾股定理解答.【详解】解∶∵CD=5cm,AD=12cm,∴AC=√CD2+AD2=√52+122,露出杯口外的长度为=15−13=2(cm).故答案为:B.【点睛】本题考查勾股定理的应用,所述问题是一个生活中常见的问题,与勾股定理巧妙结合,可培养同学们解决实际问题的能力.10.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.3cm D.2cm【分析】根据勾股定理求得AC的长,进而即可求解.【详解】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm).则这只铅笔在笔筒外面部分长度为3cm.故选:C.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.11.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.4cm D.3cm【答案】D【分析】首先根据题意画出图形,利用勾股定理计算出AC的长度.然后求其差.【详解】解:根据题意可得:AB BC=9cm,在Rt△ABC中∶AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm),则这只铅笔在笔筒外面部分长度为3cm.故选:D.【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.12.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm<ℎ≤16cm【分析】根据勾股定理及直径为最大直角边时即可得到最小值,当筷子垂直于底面时即可得到最大值即可得到答案;【详解】解:由题意可得,当筷子垂直于底面时ℎ的值最大,ℎmax=24−8=16cm,当直径为直角边时ℎ的值最小,根据勾股定理可得,ℎmin=24−√82+152=7cm,∴7cm<ℎ≤16cm,故选D.【点睛】本题考查勾股定理的运用,解题的关键是找到最大与最小距离的情况.13.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm≤ℎ≤16cm【答案】D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出的取值范围.【详解】解:如图1所示,当筷子的底端在D点时,筷子露在杯子外面的长度最长,=24−8=16cm,∴ℎ最大如图2所示,当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15cm,BD=8cm,∴AB=√AD2+BD2=17cm,=24−17=7cm,∴此时ℎ最小∴的取值范围是7cm≤h≤16cm.故选:D.【点睛】本题主要考查了勾股定理的应用,明确题意,准确构造直角三角形是解题的关键.A.5B.7C.12D.13【答案】A【分析】根据勾股定理求出h的最短距离,进而可得出结论.【详解】解:如图,当吸管、底面直径、杯子的高恰好构成直角三角形时,h最短,此时AB=√92+122=15(cm),故ℎ=20−15=5(cm);最短故选:A.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.15.如图,某同学在做物理实验时,将一支细玻璃棒斜放入了一只盛满水的烧杯中,已知烧杯高8cm,玻璃棒被水淹没部分长10cm,这只烧杯的直径约是()A.9cm B.8cm C.7cm D.6cm【答案】D可.【详解】解:由题意,可得这只烧杯的直径是:√102−82=6(cm).故选:D.【点睛】本题考查了勾股定理的应用,能够将实际问题转化为数学问题是解题的关键.16.如图,一根长18cm的牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中,牙刷露在杯子外面的长度为h cm,则h的取值范围是()A.4<h<5B.5<h<6C.5≤h≤6D.4≤h≤5【答案】C【分析】根据题意,求出牙刷在杯子外面长度最小与最大情况即可得出取值范围.【详解】解:根据题意,当牙刷与杯底垂直时,ℎ最大,如图所示:故ℎ最大=18−12=6cm;∵当牙刷与杯底圆直径、杯高构成直角三角形时,ℎ最小,如图所示:在RtΔABC中,∠ACB=90°,AC=5cm,BC=12cm,则AB=√BC2+AC2=√52+122=13cm,∵牙刷长为18cm,即AD=18cm,∴ℎ最小=AD−AB=18−13=5cm,∴h的取值范围是5≤h≤6,故选:C.【点睛】本题考查勾股定理解实际应用题,读懂题意,根据牙刷的放置方式明确牙刷在杯子外面长度最小与最大情况是解决问题的关键.【类型三楼梯铺地毯问题】17.如图在一个高为3米,长为5米的楼梯表面铺地毯,则地毯至少需要().A.3米B.4米C.5米D.7米【答案】D【分析】当地毯铺满楼梯时的长度是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,即可求得地毯的长度.【详解】解:由勾股定理得:楼梯的水平宽度=√52−32=4(米),∵地毯铺满楼梯的长度应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(米).故选:D.【点睛】此题考查了生活中的平移现象以及勾股定理,属于基础题,利用勾股定理求出水平边的长度是解答本题的关键.18.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【详解】解:由勾股定理得:楼梯的水平宽度=√132−52=12m,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是12+5=17(m).故选B.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解答本题的关键.19.如图是楼梯的示意图,楼梯的宽为5米,AC=5米,AB=13米,若在楼梯上铺设防滑材料,则所需防滑材料的面积至少为()A.65m2B.85m2C.90m2D.150m2【答案】B【分析】勾股定理求出BC,平移的性质推出防滑毯的长为AC+BC,利用面积公式进行求解即可.【详解】解:由图可知:∠C=90°,∵AC=5米,AB=13米,∴BC=√AB2−AC2=12米,由平移的性质可得:水平的防滑毯的长度=BC=12(米),铅直的防滑毯的长度=AC=5(米),∴至少需防滑毯的长为:AC+BC=17(米),∵防滑毯宽为5米∴至少需防滑毯的面积为:17×5=85(平方米).故选:B.【点睛】本题考查勾股定理.解题的关键是利用平移,将防滑毯的长转化为两条直角边的边长之和.A.13cm B.14cm C.15cm D.16cm【答案】A【分析】根据勾股定理即可得出结论.【详解】如图,由题意得AC=1×5=5(cm),BC=2×6=12(cm),故AB=√122+52=13(cm).故选:A.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.21.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m【答案】C【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=6m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【详解】∵△ABC是直角三角形,BC=6m,AC=10m∴AB=√AC2−BC2=√102−62=8(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=8+6=14(米).故选C【点睛】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系.22.某酒店打算在一段楼梯面上铺上宽为2米的地毯,台阶的侧面如图所示,如果这种地毯每平方米售价为80元,则购买这种地毯至少需要()A.2560元B.2620元C.2720元D.2840元【答案】C【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【详解】利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为√132−52=12米、5米,∴地毯的长度为12+5=17米,地毯的面积为17×2=34平方米,∴购买这种地毯至少需要80×34=2720元.故选C.【点睛】本题考查的知识点是勾股定理的应用,生活中的平移现象,解题关键是要注意利用平移的知识,把要求的所有线段平移到一条直线上进行计算.23.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m【答案】C【详解】楼梯竖面高度之和等于AB的长.由于AB=√AC2−BC2=√52−32=4,所以至少需要地毯长4+3=7(m).故选C24.如图,是一段楼梯,高BC是1.5m,斜边AC是2.5m,如果在楼梯上铺地毯,那么至少需要地毯()A.2.5m B.3m C.3.5m D.4m【答案】C【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得AB,然后求得地毯的长度即可.【详解】解:由勾股定理得:AB=√2.52−1.52=2因为地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和所以地毯的长度至少是1.5+2=3.5(m)故选C.【点睛】本题考查了图形平移性质和勾股定理,解决本题的关键是要熟练掌握勾股定理.【类型四最短路径问题】25.如图,透明圆柱的底面半径为6厘米,高为12厘米,蚂蚁在圆柱侧面爬行.从圆柱的内侧点A爬到圆柱的外侧点B处吃食物,那么它爬行最短路程是厘米.(π≈3)【答案】30【分析】把圆柱的侧面展开,根据勾股定理即可得到结论.【详解】解:∵透明圆柱的底面半径为6厘米,∴透明圆柱的底面周长为2×6π=厘米≈36厘米,作点A关于直线EF的对称点A′,连接A′B,则A′B的长度即为它爬行最短路程,×36=18厘米,∴A′A=2AE=24厘米,AB=12∴A′B=√AB2+A′A2=√182+242=30(cm),故答案为:30.【点睛】本题考查平面展开-最短路径问题,解题的关键是计算出圆柱展开后所得长方形的长和宽的值,然后用勾股定理进行计算.【答案】10【分析】将圆柱侧面展开,由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,再由勾股定理求出.【详解】解:根据圆柱侧面展开图,cm,高为8cm,∵圆柱的底面半径为6π∴底面圆的周长为2×6×π=12cm,π×12=6cm,∴BC=8cm,AC=12由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,AB=√AC2+BC2=10cm,故答案为:10.【点睛】本题考查了平面展开最短路线问题,勾股定理,将立体图形转化成平面图形求解是解题的关键.27.如图有一个棱长为9cm的正方体,一只蜜蜂要沿正方体的表面从顶点A爬到C点(C点在一条棱上,距离顶点B 3cm处),需爬行的最短路程是cm.【答案】15【分析】首先把正方体展开,然后连接AC,利用勾股定理计算求解即可.【详解】解:如图,连接AC,由勾股定理得,AC=√92+(9+3)2=15,故答案为:15.【点睛】本题考查了正方体的展开图、勾股定理的应用,解题的关键在于明确爬行的最短路线.28.如图,桌上有一个圆柱形玻璃杯(无盖),高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的内壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是厘米.【答案】10【分析】将杯子侧面展开,作A关于杯口的对称点A′,根据两点之间线段最短可知A′P的长度即为所求,再结合勾股定理求解即可.【详解】解:如图所示:将杯子侧面展开,作A关于杯口的对称点A′,连接PA′,最短距离为PA′的长度,)2+(6−1.5+1.5)2=10(厘米),PA′=√PE2+EA′2=√(162最短路程为PA ′=10厘米.故答案为:10.【点睛】本题考查了平面展开−最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.【答案】20【分析】先把圆柱的侧面展开,连接AS ,利用勾股定理即可求得AS 的长.【详解】解:如图,∵在圆柱的截面ABCD 中,AB =24π,BC =32,∴AB =12×24π×π=12,BS =12BC =16, ∴AS =√AB 2+BS 2=20,故答案为:20.【点睛】本题考查平面展开图−最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解题的关键.30.如图,圆柱形玻璃杯的杯高为9cm ,底面周长为16cm ,在杯内壁离杯底4cm 的点A 处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm ,且与蜂蜜相对的点B 处,则蚂蚁从外壁B 处到内壁A 处所走的最短路程为 cm .(杯壁厚度不计)【答案】10【分析】如图(见解析),将玻璃杯侧面展开,作B关于EF的对称点B′,根据两点之间线段最短可知AB′的长度即为所求,利用勾股定理求解即可得.【详解】解:如图,将玻璃杯侧面展开,作B关于EF的对称点B′,作B′D⊥AE,交AE延长线于点D,连接AB′,BB′=1cm,AE=9−4=5(cm),由题意得:DE=12∴AD=AE+DE=6cm,∵底面周长为16cm,×16=8(cm),∴B′D=12∴AB′=√AD2+B′D2=10cm,由两点之间线段最短可知,蚂蚁从外壁B处到内壁A处所走的最短路程为AB′=10cm,故答案为:10.【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.31.如图所示,ABCD是长方形地面,长AB=20m,宽AD=10m.中间竖有一堵砖墙高MN=2m.一只蚂蚱从A点爬到C点,它必须翻过中间那堵墙,则它要走的路程s取值范围是.【答案】s≥26m【分析】连接AC,利用勾股定理求出AC的长,再把中间的墙平面展开,使原来的长方形长度增加而宽度不变,求出新长方形的对角线长即可得到范围.【详解】解:如图所示,将图展开,图形长度增加4m,原图长度增加4m,则AB=20+4=24m,连接AC,∵四边形ABCD是长方形,AB=24m,宽AD=10m,∴AC=√AB2+BC2=√242+102=26m,∴蚂蚱从A点爬到C点,它要走的路程s≥26m.故答案为:s≥26m.【点睛】本题考查的是平面展开最短路线问题及勾股定理,根据题意画出图形是解答此题的关键.【答案】5【分析】要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】解:将圆柱表面切开展开呈长方形,则彩灯带长为2个长方形的对角线长,∵圆柱高3米,底面周长2米,∴AC2=22+1.52=6.25,∴AC=2.5,∴每根柱子所用彩灯带的最短长度为5m.故答案为5.【点睛】本题考查了平面展开−最短路线问题,勾股定理的应用.圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.【类型五旗杆高度问题】【答案】6m【分析】设AD=x,在△ABC中,利用勾股定理列出方程,解之即可.【详解】解:∵BF=2m,∴CE=2m,∵DE=1m,∴CD=CE−DE=1m,设AD=x,则AB=x,AC=AD−CD=x−1,由题意可得:BC⊥AE,在△ABC中,AC2+BC2=AB2,即(x−1)2+32=x2,解得:x=5,即AD=5,∴旗杆AE的高度为:AD+DE=5+1=6m.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理的相关知识并在直角三角形中正确运用是解题的关键.34.荡秋千是深受人们喜爱的娱乐项目,如图,小丽发现,秋千静止时踏板离地面的垂直高度DE=0.5m,将它往前推送至点B,测得秋千的踏板离地面的垂直高度BF=1.1m,此时水平距离BC=EF=1.8m,秋千的绳索始终拉的很直,求绳索AD的长度.【答案】3m【分析】设绳索AD的长度为xm=(x−0.6)m,在Rt△ABC中,由勾股定理得出方程,解方程即可.【详解】解:设秋千的绳索AD长为xm,则AB为xm,∵四边形BCEF是矩形,∴BF=CE=1.1m,∵DE=0.5m,∴CD=0.6m则AC为(x−0.6)m在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,即:(x−0.6)2+1.82=x2解得:x=3∴绳索AD的长度为3m.【点睛】本题考查了勾股定理的应用,由勾股定理得出方程是解题的关键.35.如图,数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),聪明的小红发现:先测出垂到地面的绳子长,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离n,利用所学知识就能求出旗杆的长,若m=1米,n=5米,求旗杆AB的长.【答案】12米【分析】设旗杆的高为x米,在Rt△ABC中,推出x2+52=(x+1)2,可得x=12,由此解决问题.【详解】解:设AB=x米,因为∠ABC=90°,所以在Rt△ABC中,根据勾股定理,得:x2+52=(x+1)2,解之,得:x=12,所以,AB的长为12米,答:旗杆AB的长为12米.【点睛】本题考查直角三角形、勾股定理等知识,解题的关键是理解题意,学会构建方程.【答案】风筝的高度CE为61.68米.【分析】利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度.【详解】解:在Rt△CDB中,由勾股定理,得CD=√CB2−BD2=√652−252=60(米).∴CE=CD+DE=60+1.68=61.68(米).答:风筝的高度CE为61.68米.【点睛】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.37.看着冉冉升起的五星红旗,你们是否想过旗杆到底有多高呢?某数学兴趣小组为了测量旗杆高度,进行以下操作:如图1,先将升旗的绳子拉到旗杆底端,发现绳子末端刚好接触到地面;如图2,再将绳子末端拉到距离旗杆8m处,发现绳子末端距离地面2m.请根据以上测量情况,计算旗杆的高度.【答案】17米【分析】根据题意画出示意图,设旗杆高度为xm,可得AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【详解】解:如图所示设旗杆高度为x m,则AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2(x−2)2+82=x2解得:x=17,答:旗杆的高度为17m.【点睛】本题考查了勾股定理的应用,解题的关键是构造直角三角形.38.同学们想利用升旗的绳子、卷尺,测算学校旗杆的高度.爱动脑的小华设计了这样一个方案:如图,将升旗的绳子拉直刚好触底,此时测得绳子末端C到旗杆AB的底端B的距离为1米,然后将绳子末端拉直到距离旗杆5米的点E处,此时测得绳子末端E距离地面的高度DE为1米.请你根据小华的测量方案和测量数据,求出学校旗杆的高度.【答案】12.5米【分析】过点E作EF⊥AB,垂足为F,在Rt△ABC和Rt△AEF中,根据勾股定理得出AC2=AB2+BC2,AE2= AF2+EF2,根据AC=AE,得出AB2+12=(AB−1)2+52,求出AB的长即可.【详解】解:过点E作EF⊥AB,垂足为F,如图所示:由题意可知:四边形BDEF是长方形,△ABC和△AEF是直角三角形,∴DE=BF=1,BD=EF=5,BC=1,在Rt△ABC和Rt△AEF中,根据勾股定理可得:AC2=AB2+BC2,AE2=AF2+EF2,即AC2=AB2+12,AE2=(AB−1)2+52,又∵AC=AE,∴AB2+12=(AB−1)2+52,解得:AB=12.5.答:学校旗杆的高度为12.5米.【点睛】本题主要考查了勾股定理的应用,解题的关键是根据勾股定理列出关于AB方程AB2+12= (AB−1)2+52.39.学过《勾股定理》后,某班兴趣小组来到操场上测量旗杆AB的高度,得到如下信息:①测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1米(如图1);②当将绳子拉直时,测得此时拉绳子的手到地面的距离CD为1米,到旗杆的距离CE为6米(如图2).根据以上信息,求旗杆AB的高度.【答案】9米【分析】设AB=x,则AC=x+1,AE=x−1,再根据勾股定理可列出关于x的等式,解出x即得出答案.【详解】解:设AB=x依题意可知:在Rt△ACE中,∠AEC=90°,AC=x+1,AE=x−1,CE=6,根据勾股定理得:AC2=AE2+CE2,即:(x+1)2=(x−1)2+62,解得:x=9答:旗杆AB的高度是9米.【点睛】本题考查勾股定理的实际应用.结合题意,利用勾股定理列出含未知数的等式是解题关键.40.如图,学校要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离为5米,求旗杆的高度.【答案】12米【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+1)米,根据勾股定理即可求得旗杆的高度.【详解】解:设旗杆的高度AB为x米,则绳子AC的长度为(x+1)米,在Rt△ABC中,根据勾股定理可得:x2+52=(x+1)2,解得,x=12,答:旗杆的高度为12米.【点睛】本题考查了勾股定理的应用,熟知勾股定理是解题关键.【类型六航海问题】【答案】30海里/小时【分析】先根据题意结合方位角的描述求出∠ABC=90°以及AB、BC的长,再利用勾股定理求出AC的长即可得到答案.【详解】解:如图所示,由题意得,∠HAB=90°−60°=30°,∠MBC=90°−∠EBC=60°,∵AH∥BM,∴∠ABM=∠BAH=30°,∴∠ABC=∠ABM+∠MBC=90°,∵巡逻艇沿直线追赶,半小时后在点C处追上走私船,∴BC=18×0.5=9海里,在Rt△ABC中,∠ABC=90°,AB=12海里,BC=9海里,∴AC=√AB2+BC2=15海里,∴我军巡逻艇的航行速度是15=30海里/小时,0.5答:我军巡逻艇的航行速度是30海里/小时.【点睛】本题主要考查了勾股定理的实际应用,正确理解题意在Rt△ABC中利用勾股定理求出AC的长是解题的关键.(1)求点A与点B之间的距离;(2)若在点C处有一灯塔,灯塔的信号有效覆盖半径为处有一艘轮船准备沿直线向点多能收到多少次信号?(信号传播的时间忽略不计)【答案】(1)AB=1000海里(2)最多能收到14次信号【分析】(1)由题意易得∠ACB是直角,由勾股定理即可求得点A与点B之间的距离;(2)过点C作CH⊥AB交AB于点H,在AB上取点M,N,使得CN=CM=500海里,分别求得NH、MH的长,可求得此时轮船过MN时的时间,从而可求得最多能收到的信号次数;【详解】(1)由题意,得:∠NCA=54°,∠SCB=36°;。

八年级数学下册 第18章勾股定理知识点与常见题型总结复习 人教新课标版

八年级数学下册 第18章勾股定理知识点与常见题型总结复习 人教新课标版

第18章 勾股定理复习一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. c ba HG FEDCB A方法二:b ac b a cca b c a b四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a b ccb a E DCB A3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b,a②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:A B C 30°D CB A AD B CCB D A题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c +=解:⑴10AB =⑵8BC题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解解:⑴4AC , 2.4AC BC CD AB⋅== DB A C⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm 例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21DCBA分析:此题将勾股定理与全等三角形的知识结合起来解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒∴ 1.5DE CD ==在BDE ∆中90,2BED BE ∠=︒Rt ACD Rt AED ∆≅∆AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mAB CD E分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,则6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD答案:10m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = 解:①22221.52 6.25a b +=+=,222.5 6.25c ==∴ABC ∆是直角三角形且90C ∠=︒ ②22139b c +=,22516a =,222bc a +≠ABC ∴∆不是直角三角形 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 解:此三角形是直角三角形 理由:222()264a b a b ab +=+-=,且264c =222a b c ∴+= 所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用例8.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:D CB AAD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=, 90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=。

专题04 勾股定理常考压轴题汇总(解析版)

专题04 勾股定理常考压轴题汇总(解析版)

专题04勾股定理常考压轴题汇总一.选择题(共23小题)1.我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成一个大正方形.如图,直角三角形的直角边长为a、b,斜边长为c.若b﹣a=2,c=10,则a+b的值为()A.12B.14C.16D.18【答案】B【解答】解:由图可得,a2+b2=c2,∴且a、b均大于0,解得,∴a+b=6+8=14,故选:B.2.如图,长方体的长为3,宽为2,高为4,一只蚂蚁从点A出发,沿长方体表面到点B处吃食物,那么它爬行最短路程是()A.B.C.D.【答案】B【解答】解:第一种情况:把我们所看到的前面和上面组成一个平面,则这个长方形的长和宽分别是6和3,则所走的最短线段是=3;第二种情况:把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是5和4,所以走的最短线段是=;第三种情况:把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是7和2,所以走的最短线段是=;三种情况比较而言,第二种情况最短.所以它需要爬行的最短路线的长是,故选:B.3.如图,以Rt△ABC的三条边作三个正三角形,则S1、S2、S3、S4的关系为()A.S1+S2+S3=S4B.S1+S2=S3+S4C.S1+S3=S2+S4D.不能确定【答案】C【解答】解:如图,设Rt△ABC的三条边AB=c,AC=b,BC=a,∵△ACG,△BCH,△ABF是等边三角形,∴S1=S△ACG﹣S5=b2﹣S5,S3=S△BCH﹣S6=a2﹣S6,∴S1+S3=(a2+b2)﹣S5﹣S6,∵S2+S4=S△ABF﹣S5﹣S6=c2﹣S5﹣S6,∵c2=a2+b2,∴S1+S3=S2+S4,故选:C.4.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI 上,若AC+BC=6,空白部分面积为10.5,则AB的长为()A.3B.C.2D.【答案】B【解答】解:∵四边形ABGF是正方形,∴∠FAB=∠AFG=∠ACB=90°,∴∠FAC+∠BAC=∠FAC+∠ABC=90°,∴∠FAC=∠ABC,在△FAM与△ABN中,,∴△FAM≌△ABN(ASA),=S△ABN,∴S△F AM=S四边形FNCM,∴S△ABC∵在△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵AC+BC=6,∴(AC+BC)2=AC2+BC2+2AC•BC=36,∴AB2+2AC•BC=36,=10.5,∵AB2﹣2S△ABC∴AB2﹣AC•BC=10.5,∴3AB2=57,解得AB=或﹣(负值舍去).故选:B.5.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm2【答案】C【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选:C.6.如图,阴影部分表示以Rt△ABC的各边为直径向上作三个半圆所组成的两个新月形,面积分别记作S1和S2.若S1+S2=7,AC=3,则BC长是()A.3.5B.C.4D.5【答案】B【解答】解:以AC为直径的半圆的面积=×π×=π,同理:以BC为直径的半圆的面积=π,以AB为直径的半圆的面积=π,∴S1+S2=π+π+△ABC的面积﹣π,∵∠ACB=90°,∴AC2+BC2=AB2,∴S1+S2=△ABC的面积=AC•BC=7,∵AC=3,∴BC=.故选:B.7.如图,在长方体ABCD﹣EFGH盒子中,已知AB=4cm,BC=3cm,CG=5cm,长为10cm 的细直木棒IJ恰好从小孔G处插入,木棒的一端I与底面ABCD接触,当木棒的端点Ⅰ在长方形ABCD内及边界运动时,GJ长度的最小值为()A.(10﹣5)cm B.3cm C.(10﹣4)cm D.5cm【答案】A【解答】解:当GI最大时,GJ最小,当I运动到点A时,GI最大,此时GI=cm,而AC2=AB2+BC2=42+32=25,∴GI===5(cm),∴GJ长度的最小值为(10﹣5)cm.故选:A.8.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=6,BC=10,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A.420B.440C.430D.410【答案】B【解答】解:如图,延长AB交KL于P,延长AC交LM于Q,由题意得,∠BAC=∠BPF=∠FBC=90°,BC=BF,∴∠ABC+∠ACB=90°=∠PBF+∠ABC,∴∠ACB=∠PBF,∴△ABC≌△PFB(AAS),同理可证△ABC≌△QCG(AAS),∴PB=AC=8,CQ=AB=6,∵图2是由图1放入长方形内得到,∴IP=8+6+8=22,DQ=6+8+6=20,∴长方形KLMJ的面积=22×20=440.故选:B.9.国庆假期间,妍妍与同学去玩寻宝游戏,按照藏宝图,她从门口A处出发先往东走9km,又往北走3km,遇到障碍后又往西走7km,再向北走2km,再往东走了4km,发现走错了之后又往北走1km,最后再往西走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.3km B.10km C.6km D.km【答案】D【解答】解:过点B作BC⊥AC,垂足为C.观察图形可知AC=9﹣7+4﹣1=5(km),BC=3+2+1=6(km),在Rt△ACB中,AB=(km).答:门口A到藏宝点B的直线距离是km,故选:D.10.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,AB=9,BC=6,则BD的长为()A.3B.4C.5D.6【答案】B【解答】解:∵∠ACB=90°,AB=9,BC=6,∴,∵,∴AC•BC=AB•CD,,,∵CD⊥AB,∴∠CDB=90°,∴,故选:B.11.如图,某小区有一块长方形花圃,为了方便居民不用再走拐角,打算用瓷砖铺上一条新路,居民走新路比走拐角近()A.2m B.3m C.3.5m D.4m【答案】D【解答】解:根据勾股定理求得,AB==10(m),∴AC+BC﹣AB=6+8﹣10=4(m),故选:D.12.如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是()A.148B.100C.196D.144【答案】A【解答】解:设将CA延长到点D,连接BD,根据题意,得CD=12×2=24,BC=7,∵∠BCD=90°,∴BC2+CD2=BD2,即72+242=BD2,∴BD=25,∴AD+BD=12+25=37,∴这个风车的外围周长是37×4=148.故选:A.13.如图,四边形ABCD中,AD⊥CD于点D,BC=2,AD=8,CD=6,点E是AB的中点,连接DE,则DE的最大值是()A.5B.C.6D.【答案】C【解答】解:如图,连接AC,取AC的中点为M,连接DM、EM,∵AD⊥CD,∴∠ADC=90°,∵AD=8,CD=6,∴AC=,∵M是AC的中点,∴DM=AC=5,∵M是AC的中点,E是AB的中点,∴EM是△ABC的中位线,∵BC=2,∴EM=BC=1,∵DE≤DM+EM(当且仅当点M在线段DE上时,等号成立),∴DE≤6,∴DE的最大值为6.故选:C.14.如图,长为8cm的橡皮筋放置在数轴上,固定两端A和B,然后把中点C垂直向上拉升3cm到D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.1cm【答案】A【解答】解:∵点C为线段AB的中点,∴AC=AB=4cm,在Rt△ACD中,CD=3cm;根据勾股定理,得:AD==5(cm);∵CD⊥AB,∴∠DCA=∠DCB=90°,在△ADC和△BDC中,,∴△ADC≌△BDC(SAS),∴AD=BD=5cm,∴AD+BD﹣AB=2AD﹣AB=10﹣8=2(cm);∴橡皮筋被拉长了2cm.故选:A.15.如图的数轴上,点A,C对应的实数分别为1,3,线段AB⊥AC于点A,且AB长为1个单位长度,若以点C为圆心,BC长为半径的弧交数轴于0和1之间的点P,则点P表示的实数为()A.B.C.D.【答案】A【解答】解:由题意可得∠BAC=90°,AB=1,AC=3﹣1=2,则CB==,那么点P表示的实数为3﹣,故选:A.16.“四千年来,数学的道理还是相通的”.运用祖冲之的出入相补原理也可证明勾股定理.若图中空白部分的面积是11,整个图形(连同空白部分)的面积是25,则大正方形的边长是()A.B.C.D.【答案】D【解答】解:如下图,设图中直角三角形的两条直角边长分别为a、b,斜边为c,∵图中空白部分的面积是11,整个图形(连同空白部分)的面积是25,∴可有,解得c2=18,解得或(不合题意,舍去),∴大正方形的边长是.故选:D.17.如图所示的一段楼梯,高BC是3米,斜边AB长是5米,现打算在楼梯上铺地毯,至少需要地毯的长度为()A.5米B.6米C.7米D.8米【答案】C【解答】解:∵△ABC是直角三角形,BC=3m,AB=5m∴AC==4(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AC+BC=7米,故选:C.18.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要细带.数学家欧几里得利用如图验证了勾股定理.以直角三角形ABC的三条边为边长向外作正方形ACKJ,正方形ABFE,正方形BCIH,连接AH.CF,具中正方形BCIH面积为1,正方形ABFE面积为5,则以CF为边长的正方形面积为()A.4B.5C.6D.10【答案】D【解答】解:过点C作CM⊥EF于点M,交AB于点N,∵正方形ABFE面积为5,正方形BCIH面积为1,∴CN⊥AB,BC=1,AB=MN=,BN=FN,∵△ABC是直角三角形,∠ACB=90°,∴AC===2,∴,即=CN,∴CN=,∴BN=FM===,∴CM=CN+MN==,∴CF=10,∴以CF为边长的正方形面积为10.故选:D.19.如图,Rt△ABC中,∠C=90°.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN.四块阴影部分的面积如图所示分别记为S、S1、S2、S3,若S=10,则S1+S2+S3等于()A.10B.15C.20D.30【答案】C【解答】解:如图,过E作BC的垂线交ED于D,连接EM.在△ACB和△BDE中,∠ACB=∠BDE=90°,∠CAB=∠EBD,AB=BD,∴△ACB≌△BND(AAS),同理,Rt△GDE≌Rt△HCB,∴GE=HB,∠EGD=∠BHC,∴FG=EH,∴DE=BC=CM,∵DE∥CM,∴四边形DCME是平行四边形,∵∠DCM=90°,∴四边形DCME是矩形,∴∠EMC=90°,∴E、M、N三点共线,∵∠P=∠EMH=90°,∠PGF=∠DGE=∠BHC=∠EHM,∴△PGF≌△MHE(AAS),∵图中S1=S Rt△EMH,S△BHC=S△EGD,∴S1+S3=S Rt△ABC.S2=S△ABC,∴S1+S2+S3=Rt△ABC的面积×2=20.故选:C.20.如图,在Rt△ABC中,∠C=90°,分别以AB、AC、BC为直径向外作半圆,它们的面积分别记作S1、S2、S3,若S1=25,S3=16,则S2为()A.9B.11C.32D.41【答案】A【解答】解:在Rt△ABC中,∠C=90°,∴AB2=AC2+BC2.∵S1=(AB)2π=AB2=25,∴AB2=25×.同理BC2=16×.∴AC2=AB2﹣BC2=25×﹣16×=9×.∴S1=(AC)2π=AC2=×9×=9.故选:A.21.如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BDMC,记四块阴影部分的面积分别为S1、S2、S3、S4.若已知S△ABC=S,则下列结论:①S4=S;②S2=S;③S1+S3=S2;④S1+S2+S3+S4=2.5S.其中正确的结论是()A.①②③B.①②④C.①③④D.②③④【答案】A【解答】解:由题意有Rt△EBD≌Rt△ABC,∴S4=S;故①正确;过F作AM的垂线交AM于N,由题意,得Rt△ANF≌Rt△ABC,Rt△NFK≌Rt△CAT,所以S2=S,故②正确;连接FP,FQ,由题意,可得△AQF≌△ACB,则F,P,Q三点共线,由Rt△NFK≌Rt△CAT可得Rt△FPT≌Rt△EMK,∴S3=S△FPT,可得Rt△AQF≌Rt△ACB,∴S1+S3=S Rt△AQF=S,故③正确;S1+S2+S3+S4=(S1+S3)+S2+S4+S Rt△ABC+S Rt△ABC=S Rt△ABC×3=S Rt△ABC=3S,故④不正确.故选:A.22.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10B.12C.13D.14【答案】C【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:芦苇长13尺.故选:C.23.将四个全等的直角三角形作为叶片按图1摆放成一个风车形状,形成正方形ABCD和正方形EFGH.现将四个直角三角形的较长直角边分别向外延长,且A′E=ME.B′F =NF,C′G=PG,D′H=HQ,得到图2所示的“新型数学风车”的四个叶片,即△A′EF,△B′FG,△C′CH.△D′HE.若FM平分∠BFE,正方形ABCD和正方形EFGH 的边长比为1:5.若”新型数学风车”的四个叶片面积和是m,则正方形EFCH的面积是()A.B.C.3m D.【答案】B【解答】解:∵将四个全等的直角三角形作为叶片按图1摆放成一个风车形状,形成正方形ABCD和正方形EFCH.正方形ABCD和正方形EFGH的边长比为1:5.∴设正方形ABCD的边长为a,则正方形EFGH的边长为5a,设AE=BF=CG=DH=x,在△BEF中,BE2+BF2=EF2,即(x+a)2+x2=(5a)2,x2+ax﹣12a2=0,(x+4a)(x﹣3a)=0,x=﹣4a(舍去)或x=3a,∴BE=4a,BF=3a,EF=5a,∵FM平分∠BFE,∴△EMF边EF上的高为BM,+S△MBF=S△BEF,则S△BMF即,∴,∴BM=,∵A'E=ME=BE﹣BM=4a﹣a,若”新型数学风车”的四个叶片面积和是m,=S△EF A'=m,∴S△EMF∴,∴a m,∴a=∴EF=5a=,=EF=,∴S正方形EFCH故选:B.二.填空题(共14小题)24.如图①,四个全等的直角三角形与一个小正方形,恰好拼成一个大正方形,这个图形是由我国汉代数学家赵爽在为《周髀算经》作注时给出的,人们称它为“赵爽弦图”.如果图①中的直角三角形的长直角边为7cm,短直角边为3cm,连结图②中四条线段得到如图③的新图案,则图③中阴影部分的周长为32cm.【答案】32.【解答】解:由题意得:BD=7cm,AB=CD=3cm,∴BC=7﹣3=4(cm),由勾股定理得:AC==5(cm),∴阴影的周长=4(AB+AC)=4×(3+5)=32(cm).故答案为:32.25.如图,在△ABC中,已知:∠ACB=90°,AB=10cm,AC=6cm,动点P从点B出发,沿射线BC以1cm/s的速度运动,设运动的时间为t秒,连接PA,当△ABP为等腰三角形时,t的值为16或10或.【答案】16或10或.【解答】解:在△ABC中,∠ACB=90°,由勾股定理得:BC=cm,∵△ABP为等腰三角形,当AB=AP时,则BP=2BC=16cm,即t=16;当BA=BP=10cm时,则t=10;当PA=PB时,如图:设BP=PA=x cm,则PC=(8﹣x)cm,在Rt△ACP中,由勾股定理得:PC2+AC2=AP2,∴(8﹣x)2+62=x2,解得x=,∴t=.综上所述:t的值为16或10或.故答案为:16或10或.26.如图,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的“勾股分割点”.已知点M,N是线段AB的“勾股分割点”,若AM=4,MN=5,则斜边BN的长为.【答案】.【解答】解:当BN为最大线段时,∵点M,N是线段AB的勾股分割点,∴BN===,故答案为:.27.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示“垂美”四边形ABCD,对角线AC,BD交于点O,若AB=6,CD=10,则AD2+BC2=136.【答案】136.【解答】解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,∴BO2+CO2=CB2,OB2+OA2=AB2=36,OA2+OD2=AD2,OC2+OD2=CD2=100,∴BO2+CO2+OA2+OB2=36+100,∴AD2+CB2=BO2+CO2+OA2+OB2=136;故答案为:136.28.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(30,0)(0,12),点D是OA的中点,点P在BC上运动,当△ODP是腰长为15的等腰三角形时,点P 的坐标为(9,12)或(3,12)或(24,12).【答案】(9,12)或(6,12)或(24,12).【解答】解:由题意,当△ODP是腰长为15的等腰三角形时,有三种情况:(1)如答图①所示,PD=OD=15,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=12.在Rt△PDE中,由勾股定理得:DE===9,∴OE=OD﹣DE=15﹣9=6,∴此时点P坐标为(6,12);(2)如答图②所示,OP=OD=15.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:OE===9,∴此时点P坐标为(9,12);(3)如答图③所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===9,∴OE=OD+DE=15+9=24,∴此时点P坐标为(24,12).综上所述,点P的坐标为:(9,12)或(6,12)或(24,12);故答案为:(9,12)或(6,12)或(24,12).29.《勾股》中记载了这样一个问题:“今有开门去阃(kǔn)一尺不合2寸,问门广几何?”意思是:如图推开两扇门(AD和BC),门边沿D,C两点到门槛AB的距离是1尺(1尺=10寸),两扇门的间隙CD为2寸,则门槛AB长为101寸.【答案】101.【解答】解:设OA=OB=AD=BC=r寸,如图,过D作DE⊥AB于点E,则DE=10寸,OE=CD=1(寸),AE=(r﹣1)寸,在Rt△ADE中,由勾股定理得:AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101,即门槛AB长为101寸,故答案为:101.30.如图,在某次军事演习中,舰艇1号在指挥中心(O处)北偏西30°的A处,舰艇2号在指挥中心南偏东60°的B处,并且OA=OB.接到行动指令后,舰艇1号向正东方向以60海里/小时的速度前进,舰艇2号沿北偏东60°的方向以m海里/小时的速度前进.1.5小时后,指挥中心观测到两舰艇分别到达点E,F处,若∠EOF=75°,EF=210海里,则m的值为80.【答案】80.【解答】解:延长AE、BF相交于点C,∵∠AOB=30°+90°+30°=150°,∠EOF=75°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(60°+60°)=180°,延长FB至D,使BD=AE,连接OD,∵∠OBD=∠OBC,∴.∠OBD=∠A,∴△OBD≌△OAE(SAS),∴OD=OE,∠BOD=∠AOE,∵∠EOF=∠AOB=∠EOD,∴.∠EOF=∠DOF,又∵OF=OF,∴△EOF≌△DOF(SAS),∴EF=AE+BF,即EF=1.5×(60+m)=210.解得m=80.故答案为:80.31.如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD.连结EG并延长交BC于点M.若AB=5,EF=1,则GM的长为.【解答】解:由图可知∠AED=90°,AB=5,EF=1,∵大正方形ABCD是由四个全等的直角三角形和一个小正方形EFGH组成,故AE=BF=GC=DH,设DE=x,则在Rt△AED中,AD=AB=5,AE=1+x,根据勾股定理,得AD2=DE2+AE2,即52=x2+(1+x)2,解得:x1=3,x2=﹣4(舍去).过点M作MN⊥FB于点N,如图所示.∵四边形EFGH为正方形,EG为对角线,∴△EFG为等腰直角三角形,∴∠EGF=∠NGM=45°,故△GNM为等腰直角三角形.设GN=NM=a,则NB=GB﹣GN=3﹣a,∵MN∥AF,∴△BMN∽△BAF,∴=,将MN=a,AF=3,BN=3﹣a,BF=4代入,得=,解得a=,∴MN=GN=,在Rt△MGN中,由勾股定理,得GM===.32.如图,铁路上A、D两点相距25千米,B,C为两村庄,AB⊥AD于A,CD⊥AD于D,已知AB=15km,CD=10km,现在要在铁路AD上建一个土特产品收购站P,使得B、C 两村到P站的距离相等,则P站应建在距点A10千米.【答案】10.【解答】解:设AP=x千米,则DP=(25﹣x)千米,∵B、C两村到P站的距离相等,∴BP=PC.在Rt△APB中,由勾股定理得BP2=AB2+AP2,在Rt△DPC中,由勾股定理得PC2=CD2+PD2,∴AB2+AP2=CD2+PD2,又∵AB=15km,CD=10km,∴152+x2=102+(25﹣x)2,∴x=10.故答案为:10.33.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm(杯壁厚度不计).【答案】见试题解答内容【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.34.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD⊥BC.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.【答案】.【解答】解:如图,连接BP,在△ABC中,AB=AC=10,BC=12,AD=8,∴BD=DC,∴BP=PC,∴PC+PQ=BP+PQ=BQ,∴当B,P,Q共线时,PC+PQ的值最小,∴当BQ⊥AC时,BQ的值最小,令AQ'=a,则CQ'=10﹣a,∵BQ'⊥AC,∴AB2﹣AQ'2=BC2﹣CQ'2,即102﹣a2=122﹣(10﹣a)2,解得a=,∴BQ'==,∴PC+PQ的最小值为,故答案为:.35.如图,在△ABC中,∠ABC=45°,AB=,AC=6,BC>4,点E,F分别在BC,AC边上,且AF=CE,则AE+BF的最小值为2.【答案】2.【解答】解:过A点作AG∥BC,截取AG=AC,连接FG,BG,过B作BR⊥AG,交AG的反向延长线于R,则∠RBC=∠BRA=90°,∴∠GAF=∠ACE,在△AFG和△CEA中,,∴△AFG≌△CEA(SAS),∴GF=AE,∴AE+BF的最小值,即为BG的长,∵∠ABC=45°,∴∠RAB=∠EBA=45°,∵AB=4,∴BR=AR=4,∵AC=6,∴AG=AC=6,∴RG=AR+AG=4+6=10,∴BG===2,即AE+BF的最小值为2.故答案为:2.36.如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是cm.【答案】.【解答】解:∵在△ABC中,AB=9cm,AC=12cm,BC=15cm,∴BC2=AB2+AC2,∴∠A=90°,∵MD⊥AB,ME⊥AC,∴∠A=∠ADM=∠AEM=90°,∴四边形ADME是矩形,∴DE=AM,当AM⊥BC时,AM的长最短,根据三角形的面积公式得:AB•AC=BC•AM,∴9×12=15AM,AM=,即DE的最小值是cm.故答案为:.37.如图,Rt△ABC中,.点P为△ABC内一点,PA2+PC2=AC2.当PB的长度最小时,△ACP的面积是.【答案】.【解答】解:如图所示,取AC中点O,连接PO,BO,∵PA2+PC2=AC2,∴∠APC=90°,∴,∵BP+OP≥OB,∴当B、P、O三点共线时BP+OP有最小值,即此时BP有最小值,∵∠ACB=90°,∴,∴BP=BO﹣OP=2,∴BP=PO,又∠ACB=90°,∴PC=BO=2,∴PC=PO=CO,∴△OPC是等边三角形,∴∠PCO=60°,∠PAC=30°∴AP==2,∴,故答案为:.三.解答题(共4小题)38.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A 出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?【答案】见试题解答内容【解答】解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=CA.设AC为x,则OC=9﹣x,由勾股定理得:OB2+OC2=BC2,又∵OA=9,OB=3,∴32+(9﹣x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.39.如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,动点P从B出发沿射线BC以1cm/s的速度运动,设运动时间为t(s).(1)求BC边的长.(2)当△ABP为等腰三角形时,求t的值.【答案】或10或16.【解答】解:在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,∴BC=,当AP=BP时,如图1,则AP=t,PC=BC﹣BP=8﹣t,在Rt△ACP中,AC2+CP2=AP2,∴62+(8﹣t)2=t2,解得t=;当AB=BP时,如图2,则BP=t=10;当AB=AP时,如图3,则BP=2BC;∴t=2×8=16,综上,t的值为或10或16.40.今年第6号台风“烟花”登陆我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB =500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?【答案】(1)海港C受台风影响,理由见解答过程;(2)台风影响该海港持续的时间为小时.【解答】解:(1)海港C受台风影响,理由:∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;过点C作CD⊥AB于D,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围260km以内为受影响区域,∴海港C受台风影响;(2)当EC=260km,FC=260km时,正好影响C港口,∵ED=(km),∴EF=2ED=200km,∵台风的速度为28千米/小时,∴200÷28=(小时).答:台风影响该海港持续的时间为小时.41.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.【答案】见试题解答内容【解答】解:(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC﹣∠BAE=90°﹣(∠DAE﹣∠DAB)=45°+∠DAB,∴∠FAE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°﹣∠ABC=135°∴∠DFE=∠AFD﹣∠AFE=135°﹣45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;解法二:将△EAC绕点A顺时针旋转90°得到△TAB.连接DT.∴∠ABT=∠C=45°,AT=AE,∠TAE=90°,∵∠ABC=45°,∴∠TBC=∠TBD=90°,∵∠DAE=45°,∴∠DAT=∠DAE,∵AD=AD,∴△DAT≌△DAE(SAS),∴DT=DE,∵DT2=DB2+EC2,∴DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.。

(完整版)八年级勾股定理题型总结

(完整版)八年级勾股定理题型总结

《勾股定理》典型例题解析一、知识重点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。

也就是说:假如直角三角形的两直角边为 a、 b,斜边为 c ,那么 a 2 + b 2= c 2。

公式的变形: a2 = c 2- b 2, b 2= c 2-a 2。

2、勾股定理的逆定理假如三角形 ABC的三边长分别是a, b, c,且知足 a2 + b2= c2,那么三角形 ABC 是直角三角形。

这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意办理好以下几个重点:①已知的条件:某三角形的三条边的长度.②知足的条件:最大边的平方=最小边的平方 +中间边的平方 .③获得的结论:这个三角形是直角三角形,而且最大边的对角是直角.④假如不知足条件,就说明这个三角形不是直角三角形。

3、勾股数知足 a2 + b2= c2的三个正整数,称为勾股数。

注意:①勾股数一定是正整数,不可以是分数或小数。

②一组勾股数扩大同样的正整数倍后,还是勾股数。

常有勾股数有:(3,4,5 ) (5 ,12, 13 ) ( 6, 8, 10 )( 7,24, 25 ) ( 8,15, 17 )(9 , 12,15 )4、最短距离问题:主要运用的依照是两点之间线段最短。

二、考点解析考点一:利用勾股定理求面积1、求暗影部分面积:(1)暗影部分是正方形;( 2)暗影部分是长方形;( 3)暗影部分是半圆.2.如图,以 Rt△ABC的三边为直径分别向外作三个半圆,尝试究三个半圆的面积之间的关系.3、以下图,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、 S3,则它们之间的关系是()A. S1- S2= S3B. S1+ S2= S3C. S2+S3< S1D. S2- S3=S1S 3S 1S 24、四边形 ABCD中,∠ B=90°, AB=3,BC=4,CD=12, AD=13,求四边形 ABCD的面积。

勾股定理(10个考点梳理+题型解读+提升训练)(原卷版)24-25学年八年级数学上学期期中考点

勾股定理(10个考点梳理+题型解读+提升训练)(原卷版)24-25学年八年级数学上学期期中考点

勾股定理(10个考点梳理+题型解读+提升训练)【清单01】勾股定理直角三角形两直角边的平方和等于斜边的平方如图:直角三角形ABC 的两直角边长分别为,斜边长为,那么.注意:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:a b ,c 222a b c +=,, .运用:1.已知直角三角形的任意两条边长,求第三边;2.用于解决带有平方关系的证明问题;3.利用勾股定理,作出长为的线段【清单02】勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形. 图(1)中,所以. 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形. 图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.【清单03】勾股定理逆定理 222a c b =-222b c a =-()222c a b ab =+-1.定义:如果三角形的三条边长,满足,那么这个三角形是直角三角形.注意:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.2.如何判定一个三角形是否是直角三角形(1)首先确定最大边(如).(2)验证与是否具有相等关系.若,则△ABC 是∠C =90°的直角三角形;若,则△ABC 不是直角三角形.注意:当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.【清单04】勾股数像 15,8,17 这样,能够成为直角三角形三条边长的三个正整数,称为勾股数 。

勾股数满足两个条件:①满足勾股定理 ②三个正整数【清单05】勾股定理应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 本专题分类进行巩固解决以下生活实际问题【考点题型一】一直直角三角形的两边,求第三边长【典例1】已知一直角三角形两直角边的长分别为9,12,则它的斜边长为( )A .15B .16C .17D .25【变式1-1】如图,在△ABC 中,∠C =90°,AC =8,AB =10,则BC 的长为( )a b c ,,222a b c +=c 2c 22a b +222c a b =+222c a b ¹+222a b c +<222a b c +>cA.6B C.24D.2【变式1-2】如图,一个零件的形状如图所示,已知∠CAB=∠CBD=90°,AC=3cm,AB=4cm,BD=12cm,则CD长为()cm.D.15A.5B.13C.1445【变式1-3】如图,∠C=∠ABD=90∘,AC=4,BC=3,BD=12,则AD的长等于.【考点题型二】等面积法斜边上的高【典例2】如图,在Rt△ABC中,∠ACB=90°,若AC=6,CB=8.(1)求AB的长;(2)求AB边上的高CD是多少?【变式2-1】已知直角三角形的两直角边长分别为5和12,则此直角三角形斜边上的高长为()A.52B.6C.132D.6013【变式2-2】如图,在△ABC中,∠ACB=90°,CD是高,AB=4,AC=2,则CD的长为.【变式2-3】在△ABC中,∠ACB=90°,AC=12,BC=5,则高CD=.【考点题型三】作无理数的线段【典例3】如图,在数轴上点A表示的数为a,则a的值为()A B.―1C.―1+D.―1―【变式3-1】如图,点B,D在数轴上,OB=3,OD=BC=1,∠OBC=90°,DC长为半径作弧,与数轴正半轴交于点A,则点A表示的是()A B+1C1D【变式3-2】如图,OC=2,BC=1,BC⊥OC于点C,连接OB,以点O为圆心,OB长为半径画弧与数轴交于点A,若点A表示的数为x,则x的值为()A B.C―2D.2―【变式3-3】如图的数轴上,点A,C对应的实数分别为1,3,线段AB⊥AC于点A,且AB长为1个单位长度,若以点C为圆心,BC长为半径的弧交数轴于0和1之间的点P,则点P表示的实数为()A3B.3―C3D.3―【考点题型四】勾股定理的证明【典例4】用图1所示的四个全等的直角三角形可以拼成图2的大正方形.请根据信息解答下列问题:(1)请用含a,b,c的代数式表示大正方形的面积.方法1:______.方法2:______.(2)根据图2,求出a,b,c之间的数量关系.(3)如果大正方形的边长为10,且a+b=14,求小正方形的边长.【变式4-1】下面四幅图中,能证明勾股定理的有()A.一幅B.两幅C.三幅D.四幅【变式4-2】勾股定理在数学和许多其他领域中都有广泛的应用,勾股定理是一个非常重要的数学定理,它在几何学、三角学、物理学、工程学等多个领域都有重要的应用.关于勾股定理的证明方法到现在为止有500多种,勾股定理常见的一些证明方法是:几何证明、代数证明、向量证明、复数证明、面积证明等.当两个全等的直角三角形按图1或图2摆放时,都可以用“面积法”来证明,以下是利用图1证明勾股定理的完整过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连接BD ,过点D 作DF ⊥BC 交BC 延长线于点F ,则DF =EC =b ―a∵S 四边形ADCB =S △ACD +S △ABC =12b 2+12ab 又∵S 四边形ADCB =S △ADB +S △DCB =12c 2+12a (b ―a )∴∴12b 2+12ab =12c 2+12a (b ―a )∴a 2+b 2=c 2请参照上述证明方法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB =90°,求证:a 2+b 2=c 2.【变式4-3】我国是最早了解勾股定理的国家之一,汉代数学家赵爽为了证明勾股定理,创制了一幅如图1所示“赵爽弦图”(边长为c 的大正方形中放四个全等的直角三角形,两直角边长分别为a ,b ,斜边长为c ).(1)如图1,请用两种不同方法表示图中空白部分面积.方法1:S 阴影=______;方法2:S 阴影=______;根据以上信息,可以得到等式:______;(2)小亮将“弦图”中的4个三角形进行了运动变换,得到图2,请利用图2证明勾股定理;(3)如图3,将图2的2个三角形进行了运动变换,若a=6,b=3,求阴影部分的面积.【考点题型五】直角三角形的判定【典例5】下列长度的三条线段,能构成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.8,12,13【变式5-1】以下列各组数据为三角形三边,能构成直角三角形的是()A.4,8,7B.5,12,14C.2,2,4D.7,24,25【变式5-2】下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A B.1,C.6,7,8D.2,3,4【变式5-3】下列几组数中,不能构成直角三角形的是()A.9,12,15B.15,36,39C.10,24,26D.12,35,36【考点题型六】勾股定理的逆定理的运用【典例6】如图,一块四边形的空地,∠B=90°,AB的长为9m,BC的长为12m,CD的长为8m,AD的长为17m.为了绿化环境,计划在此空地上铺植草坪,若每铺植1m2草坪需要花费50元,则此块空地全部铺植草坪共需花费多少元?【变式6-1】绿都农场有一块菜地如图所示,现测得AB=12m,BC=13m,CD=4m,AD=3m,∠D=90°,求这块菜地的面积.【变式6-2】定义:顶点都在网格点上的多边形叫格点多边形.如图,在正方形网格中,每个小正方形的边长为1,四边形ABCD的每一个顶点都在格点上,(1)求∠ABC的度数;(2)求格点四边形ABCD的面积.【变式6-3】如图,已知一块四边形的草地ABCD,其中∠B=90°,AB=20m,BC=15m,CD=7m,DA=24m,求这块草地的面积.【考点题型七】勾股数的应用【典例7】勾股数,又名毕氏三元数,则下列各组数构成勾股数的是( )A .13,14,512B .1.5,2,2.5C .5,15,20D .9,40,41【变式7-1】下列各组数中,是勾股数的是( )A .13,14,15B .3,4,7C .6,8,10D .12【变式7-2】下列数组是勾股数的是( )A .2,3,4B .0.3,0.4,0.5C .5,12,13D .8,12,15【变式7-3】下列各组数中是勾股数的是( )A .4,5, 6B .1.5,2, 2.5C .11,60, 61D .12【考点题型八】构造直角三角形解决实际问题【典例8-1】如图,一架2.5m 长的梯子斜靠在墙上,此时梯足B 距底端O 为0.7m .(1)求OA 的长度.(2)如果梯子下滑0.4m ,则梯子滑出的距离是否等于0.4m ?请通过计算来说明理由.【典例8-2】小强和小伟都喜欢放风筝.一天放学后他们互相配合又放起了风筝(如图所示),小伟想测量风筝的铅直高度CE ,于是他进行了如下测量:①测得小强牵线的手到风筝的水平距离BD 为15m ;②根据小强手中剩余线的长度计算出风筝线BC (假设BC 是直的线)的长为39m ;③小强牵线的手离地面的距离DE 为1.5m .(1)求此时风筝的铅直高度CE.(2)若小强想使风筝沿CD方向下降16m(不考虑其他因素),则他应该收线多少米?【典例8-3】台风“烟花”登录我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB=500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)求∠ACB的度数;(2)海港C受台风影响吗?为什么?(3)若台风中心的移动速度为25千米/时,则台风影响该海港持续的时间有多长?【变式8-1】一支铅笔斜放在圆柱体的笔筒中,如图所示,笔筒的内部底面直径是6cm,内壁高8cm.若这支铅笔在笔筒外面部分长度是5cm,则这支铅笔的长度是()cm.A.10B.15C.20D.25【变式8-2】如图是台阶的示意图,若每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB的长度是()A.185cm B.195cm C.205cm D.215cm【变式8-3】如图,庭院中有两棵树,小鸟要从一棵高10m的树顶飞到一棵高4m的树顶上,两棵树相距8m,则小鸟至少要飞米.【变式8-4】如图,大风把一棵树刮断,量得AC=4m,BC=3m,则树刮断前的高度为m.【变式8-5】我图古代数学著作《九章算术》中有这样一个问题:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?(注:丈、尺是长度单位,1丈=10尺)意思为:如图,有一个边长为1丈的正方形水池,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的岸边,它的顶端恰好碰到池边的水面.则这根芦苇的长度是尺【变式8-6】如图,开州大道上A,B两点相距14km,C,D为两商场,DA⊥AB于A,CB⊥AB于B.已知DA=8km,CB=6km.现在要在公路AB上建一个土特产产品收购站E,使得C,D两商场到E站的距离相等,(1)求E站应建在离A点多少km处?(2)若某人从商场D以5km/h的速度匀速步行到收购站E,需要多少小时?【变式8-7】某市夏季经常受台风天气影响,台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,当AC⊥BC时,A点到B,C两点的距离分别为500km和300km,以台风中心为圆心周围250km以内为受影响区域.(1)求BC;(2)海港C受台风影响吗?为什么?【典例9】如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD 折叠,使点C落在边AB的C′点.(1)求DC′的长度;(2)求△ABD的面积.【变式9-1】如图,长方形ABCD中,AB=9,BC=6,将长方形折叠,使A点与BC的中点F重合,折痕为EH ,则线段BE 的长为( )A .53B .4C .52D .5【变式9-2】如图,折叠长方形的一边AD ,点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,则EC 的长为( )A .3cmB .4cmC .3.5cmD .5cm【变式9-3】如图,将长方形纸片ABCD 沿AE 折叠,使点D 恰好落在BC 边上点F 处,若AB =3,AD =5,求EC 的长.【考点题型十】面展开图-最短路径问题【典例10-1】如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是 .【典例10-2】如图,圆柱形杯子容器高为18cm,底面周长为24cm,在杯子内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯子外壁,离杯子上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.【变式10-1】临汾是帝尧之都,有着尧都之称.尧都华表柱身祥云腾龙,顶蹲冲天吼,底座浮雕长城和黄河壶口瀑布,是中华民族历史悠久、文化灿烂的标志.如图,在底面周长约为6米且带有层层回环不断的云朵石柱上,有一条雕龙从柱底沿立柱表面均匀地盘绕2圈到达柱顶正上方(从点A到点C,B为AC 的中点),每根华表刻有雕龙的部分的柱身高约16米,则雕刻在石柱上的巨龙至少为()A.20米B.25米C.30米D.15米【变式10-24cm,A是正方体的一个顶点,B是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A爬到点B的最短路径是()A.9B.+6C.D.12【变式10-3】如图是放在地面上的一个长方体盒子,其中AB=9cm,BC=6cm,BF=5cm,点M在棱AB上,且AM=3cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为cm.【变式10-4】如图,圆柱的底面周长是10cm,圆柱高为12cm,一只蚂蚁如果要沿着圆柱的表面从下底面点A爬到与之相对的上底面点B,那么它爬行的最短路程为.【变式10-5】如图,是一个三级台阶,它的每一级的长、宽,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,则蚂蚁沿着台阶面爬到B点的最短路程是.【变式10-6】如图,学校有一块长方形花圃,有少数人为了走“捷径”,在花圃内走出一条不文明的“路”,其实他们仅仅少走了m,却踩伤了花草.【变式10-7】如图,在一个边长为6cm的正方形纸片ABCD上,放着一根长方体木块,已知该木块的较长边与AD平行,横截面是边长为的正方形,一只蚂蚁从点A爬过木块到达蜂蜜C处需爬行的最短路程是cm.。

八年级数学-勾股定理及其常考题型

八年级数学-勾股定理及其常考题型

八年级数学 勾股定理及其常考题型勾股定理也称毕达哥拉斯定理,文字表述:直角三角形两直角边的平方和等于斜边的平方。

结合直角三角形图形,用字母可表示为:222a b c +=,如下图,a 、b 为直角边,c 为斜边。

勾股定理揭示了直角三角形三边之间的数量关系,完美地体现了“数形统一”的数学思想,将初中几何与代数很好的联系起来。

因此,学好勾股定理这一知识点对于我们解决数学问题有很大的帮助,下面我们具体来看看初中数学有关勾股定理的一些常见题型及其解答方法。

一、边的计算1、在Rt△ABC 中,△C =90°,若a =6,b =8,则c = . 解:因为222a b c +=,所以c=10。

评论:直接由勾股定理所以得2、在Rt△ABC 中,△C =90°,AC =3,BC =4,则斜边上的高CD 的长为( ) A .125B .552C .52D .57解:由勾股定理知:AB=5,又因为S △ABC =21A C ×BC=21A B ×CD 即:21×3×4=21×5×CD ,所以CD=125评论:通过勾股定理求出斜边,再利用面桥关系求出斜边上的高。

3、若一直角三角形两边的长为12和5,则第三边的长为( ) A .13 B .13或119 C .13或15 D .15解:当12对应的边为斜边时,此时由勾股定理得第三边为119当12对应的边是直角边时,则第三边为斜边,由222a b c +=得第三边的长为13 评论:勾股定理结合分类讨论思想,学生要注意这类试题的多解性.4.Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( ) A 、121B 、120C 、132D 、不能确定解:设该Rt △的三边分别为a 、b 、c,a 、b 为直角边,c 为斜边 由勾股定理知:222a b c +=,即:112+b 2 = c 2所以(b+c)(c -b)=121因为b 、c 都为自然数,所以b+c ,c -b,都为正自然数。

人教版八年级下册数学 专题:第18章勾股定理知识点与常见题型总结

人教版八年级下册数学 专题:第18章勾股定理知识点与常见题型总结

八年级下册第18章.勾股定理知识点与常见题型总结1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+=⑵228BC AB AC =-=题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴224AC AB BC =-=, 2.4AC BCCD AB⋅==DBAC⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒ ∴ 1.5DE CD == 在BDE ∆中2290,2BED BE BD DE ∠=︒=-=Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4. ( 2014•安徽省,第8题4分)如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .B .C .4 D . 5考点: 翻折变换(折叠问题).分析: 设BN =x ,则由折叠的性质可得DN =AN =9﹣x ,根据中点的定义可得BD =3,在Rt △ABC 中,根据勾股定理可得关于x 的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.例5.已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.解析:解题之前先弄清楚折叠中的不变量。

勾股定理初二练习题二十道

勾股定理初二练习题二十道

勾股定理初二练习题二十道1. 在直角三角形ABC中,角C=90°,AB=12cm,AC=5cm,求BC 的长度。

2. 在直角三角形DEF中,角D=90°,DE=8cm,DF=15cm,求EF 的长度。

3. 在直角三角形GHI中,角I=90°,GH=17cm,HI=8cm,求GI的长度。

4. 在直角三角形JKL中,角J=90°,KL=10cm,JL=6cm,求JK的长度。

5. 在直角三角形MNO中,角O=90°,MN=6cm,NO=10cm,求MO的长度。

6. 在直角三角形PQR中,角P=90°,PR=13cm,PQ=12cm,求QR 的长度。

7. 在直角三角形STU中,角T=90°,ST=21cm,TU=20cm,求SU 的长度。

8. 在直角三角形VWX中,角V=90°,VX=24cm,WX=7cm,求WV的长度。

9. 在直角三角形YZA中,角Z=90°,ZY=15cm,ZA=9cm,求YA 的长度。

BC的长度。

11. 在直角三角形EFG中,角E=90°,EG=7cm,FG=25cm,求EF 的长度。

12. 在直角三角形HIJ中,角H=90°,IJ=20cm,HJ=9cm,求HI的长度。

13. 在直角三角形KLM中,角K=90°,KL=16cm,LM=12cm,求KM的长度。

14. 在直角三角形NOP中,角N=90°,NO=5cm,OP=13cm,求NP 的长度。

15. 在直角三角形QRS中,角Q=90°,QR=30cm,RS=16cm,求QS的长度。

16. 在直角三角形TUV中,角T=90°,TV=25cm,UV=7cm,求TU 的长度。

17. 在直角三角形WXY中,角W=90°,WX=14cm,XY=9cm,求WY的长度。

18. 在直角三角形ZAB中,角Z=90°,ZA=11cm,AB=15cm,求ZB的长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学 勾股定理及其常考题型
勾股定理也称毕达哥拉斯定理,文字表述:直角三角形两直角边的平方和等于斜边的平方.结合直角三角形图形,用字母可表示为:222
a b c +=,如下图,a 、b 为直角边,c 为斜边。

勾股定理揭示了直角三角形三边之间的数量关系,完美地体现了“数形统一”的数学思想,将初中几何与代数很好的联系起来。

因此,学好勾股定理这一知识点对于我们解决数学问题有很大的帮助,下面我们具体来看看初中数学有关勾股定理的一些常见题型及其解答方法。

一、边的计算
1、在Rt△ABC 中,∠C =90°,若a =6,b =8,则c = . 解:因为2
2
2
a b c +=,所以c=10。

评论:直接由勾股定理所以得
2、在Rt△ABC 中,∠C =90°,AC =3,BC =4,则斜边上的高CD 的长为( ) A .
125
B .
5
52
C .
52
D .57
解:由勾股定理知:AB=5,又因为S △ABC =
21AC ×BC=2
1
AB ×CD 即:
21×3×4=21
×5×CD,所以CD=125
评论:通过勾股定理求出斜边,再利用面桥关系求出斜边上的高。

3、若一直角三角形两边的长为12和5,则第三边的长为( ) A .13 B .13或119 C .13或15 D .15
解:当12对应的边为斜边时,此时由勾股定理得第三边为119
当12对应的边是直角边时,则第三边为斜边,由2
2
2
a b c +=得第三边的长为13 评论:勾股定理结合分类讨论思想,学生要注意这类试题的多解性。

4.Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( ) A 、121
B 、120
C 、132
D 、不能确定
解:设该Rt △的三边分别为a 、b 、c ,a 、b 为直角边,c 为斜边 由勾股定理知:222a b c +=,即:112
+b 2
= c
2
所以(b+c )(c -b )=121
因为b 、c 都为自然数,所以b+c ,c -b ,都为正自然数。

又因为121只有1、11、121这三个正整数因式,所以b+c=121,c -b=1。

所以b=60,c=61
评论,本题以直角三角形为载体,同过勾股定理将初中几何知识和代数知识很好地串联起来考察学生的能力。

二、直角三角形的判定
5、 在△ABC 中中,a 、b 、c 为∠A 、∠B 、∠C 的对边,给出如下的命题:
①若∠A :∠B :∠C =1:2:3,则△ABC 为直角三角形;②若∠A =∠C 一∠B ,则△ABC 为直角三角形;③若4
5
c a =
,35
b a =,则△ABC 为直角三角形;④若a :b :
c =5:3:4,则△ABC 为直角三角形;⑤若(a +c )
(a -c )=b 2
,则△ABC 为直角三角形;⑥若(a +c)2=2ac +b 2
,则△ABC 为直角三角形;⑦若AB=12,AC=9,B C=15, 则△ABC 为直
角三角形。

上面的命题中正确的有( ) A .6 B .7 C .8 D .9
解:对①,因为三角形内角和为180度,所以∠A+∠B+∠C =180°,因为∠A :∠B :∠C =1:2:3,所以∠C=180°×
2
1
所以∠C=90°则△ABC 为直角三角形,①正确。

对②,因为∠A+∠B+∠C =180°,而∠A =∠C 一∠B ,所以∠C 一∠B+∠B+∠C =180°所以∠C=90°,即△ABC 为直角三角形,②正确。

对③,设a=5k ,因为45c a =
,3
5
b a =,则c=4k , C 2
+b 2
= a 2
所以为△ABC 直角三角形. ③正确,同理易知④正确,对⑤,因为(a +c )(a -c )=b 2
所以a 2
–c 2
= b 2

所以△ABC 为直角三角形.⑤正确,对⑥,因为(a +c)2
=2ac +b 2
,所以a 2 +c 2
+2ac=2ac +b
2
所以a 2 +c 2
=b 2
正确,对
⑦,因为AB=12,AC=9,AC=15,所以AB 2 +AC 2
=BC 2
所以正确。

答案选B
评论:直角三角形的评定可以从角和边两方面来进行,从角来判定需结合三角形内角和定理,从边来判定需结合勾股定理。

一般是验证最大边的平方是否等于两小边的平方和。

A
C
'D
图18-1

A
B
C
D

BˊCˊ
6、矩形纸片ABCD中,AD=4c m,AB=10c m,按如图18-1方式折叠,使点B与点D重合,折痕为EF,则DE=_______c m.
解:设DE为x,因为DE是由BE翻折过来的,
所以DE=BE=x,则AE=10-x,在Rt△ABD中:
AD2 +AE2=DE2
所以:42 +(10-x) 2= x 2
解得x=5.8 c m
评论:翻折和旋转是初中数学常见的题型,解答这类题的关键在于把握翻折和旋转前后的联系,主要是看清哪些量没变,抓住这些不变的量,以此为突破口便可以顺利解决。

本题的不变量是DE和BE的长度,抓住这个关系,再通过勾股定理建立等式,在直角三角形中便可解出边长的长度。

四、爬行
7.如图,有一个圆柱,它的高等于16cm,底面半径等于4cm,在
圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B
点处的食物,需要爬行的最短路程是 cm.(π取3)
解:蚂蚁要沿圆柱体侧面爬,将圆柱体的侧面沿蚂蚁所在的垂直于底面的直线切开,展开后是一个长为8π,宽为16的长方形,蚂蚁所在的是一个顶点,而相对的点则是对面那条长为8π的边的中点。

所以根据勾股定理,两点之间的距离
为d,d2=(8π)2 +(16)2从而解出d。

评论:爬行问题是勾股定理的一大重要应用,关键在于将立体图形转化为平面图形,从而简单便捷地找出最短距离,然后再利用勾股定理求出边长。

8.已知长方体的长为2cm、宽为1cm、高为4cm,一只蚂蚁如果沿长方体的表面从A B,最短的路程是多少?
解:将长方体的侧面B BˊCˊC展开到与长方体的正面AC CˊAˊ在同一平面内,
得到长方形AB BˊAˊ,长AB=3 cm,宽A Aˊ=4,
蚂蚁沿长方体的表面从A点爬到B点最短距离即为长方形AB BˊAˊ的对角线
A B长。

由勾股定理易知A B=5.
五、图形变换
9.如图2(1),是小红用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c,如图2(2)是以c为直角边的等腰直角三角形,她想将它们拼成一个能证明勾股定理的图形,可以吗?
(1)如果能,请你画出拼成的这个图形的示意图,写出它是什么图形?
(2)用这个图形证明勾股定理.
(3)假设图2(1)中的图有若干个,你能运用(1)中所示的直角三角形拼出另一个能证明勾股定理的图形吗?请画出拼后的示意图.(无需证明)
23,(1)如图是直角梯形.
(2)因为S梯形=
1
2
(a+b)(a+b)=
1
2
(a+b)2,S=2×
1
2
ab+
1
2
c2=ab+
1
2
c2,所以
1
2
(a+b)2=ab+
1
2
c2,即a2+b2=c2.(3)如图所示.
评论:这是一道图形换的题,具体涉及到图形的拼凑,解决勾股定理这方面的试题关键是要对课本勾股定理证明涉及到的几种常见的图形以及证明过程和原理要熟练掌握,再利用适当的迁移便可以解答了。

六、实际应用
10,某校把一块形状为直角三角形的废地开辟为生物园,如图5所示,∠ACB=90°,AC=80米,BC=60米,若线段CD 是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是
c
c
b
a
b
a
多少?
解:当CD 为斜边上的高时,CD 最短,从而水渠造价最低.因为CD ·AB =AC ·BC ,所以CD =AC BC
AB
=48米,所以AD =
22228048AC CD -=-=64米.所以,D 点在距A 点64米的地方,水渠的造价最低,其最低造价为480元.
11.有一只小鸟在一棵高4m 的小树梢上捉虫子,它的伙伴在离该树12m ,高20m 的一棵大树的树梢上发出友好的叫声,它立刻以4m/s 的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起?
解:如图所示,根据题意,得AC=20-4=16,BC=12.
根据勾股定理,得AB=20.则小鸟所用的时间是20÷4=5(s ).
评论:解答勾股定理的实际应用题,首先要审清题意,然后找出试题情景中涉及到的直角三角形,再结合勾股定理便可以求出了。

在该题中,我们关键是要根据题意画出勾股定理涉及到的直角三角形图形,只需求得AB 的长.根据已知条件,得BC=12,AC=20-4=16,再根据勾股定理就可求解.

5
补充:
(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待
你的好评与关注)。

相关文档
最新文档