基于单片机控制的多波形信号发生器设计与实现论文

合集下载

基于单片机的波形发生器设计及实现

基于单片机的波形发生器设计及实现

基于单片机的波形发生器设计及实现引言:波形发生器是电子设备中常用的测试设备,它可以产生各种波形信号,如正弦波、方波、三角波等,对于电子工程师来说是非常重要的仪器。

本文将介绍一种基于单片机的波形发生器的设计及实现方法。

设计目标:1.可以产生正弦波、方波和三角波等多种波形信号。

2.波形发生器的频率范围可以调节,并且稳定可靠。

3.实现简单、成本低廉、易于维护。

硬件设计和实现:波形发生器的核心部件是单片机,通过单片机的高精度计数器和时钟模块可以实现频率的调节和控制。

其基本原理是通过单片机的IO口输出不同的电平来产生不同的波形。

1.信号发生部分:通过单片机的IO口输出电平控制信号发生电路。

正弦波的发生电路可以采用RC振荡器电路,方波和三角波的发生电路可以采用计数器和比较器。

2.频率调节和控制部分:使用单片机内部的定时器和计数器来控制波形的频率和周期。

通过改变定时器的工作模式和计数器的计数值,可以实现不同频率的波形信号输出。

3.显示和控制部分:通过LCD显示屏显示波形参数和频率,并且可以使用按键控制频率的调节和选择不同的波形。

软件设计和实现:1.初始化设置:包括单片机的IO口设置、定时器和计数器的初始化、LCD显示屏的初始化等。

2.频率调节和控制:通过按键扫描和中断处理函数来实现频率的调节和控制。

按键的按下和释放可以触发相关的中断服务程序,从而实现频率的增加和减少。

3.波形产生:通过定时器中断来控制波形的产生。

当定时器溢出时,会触发中断服务程序,从而改变IO口的电平状态,实现不同波形信号的输出。

测试与结果:进行相应的软硬件调试后,我们可以成功实现基于单片机的波形发生器。

通过按键可以选择不同的波形类型,并且可以根据需要调节波形的频率。

总结:本文介绍了一种基于单片机的波形发生器的设计与实现方法。

通过使用单片机的IO口、定时器和计数器,可以实现不同波形信号的输出和频率的调节。

这种波形发生器具有成本低廉、稳定可靠、易于维护等优点,可以满足电子工程师对波形发生器的基本需求。

基于单片机的信号发生器设计与实现

基于单片机的信号发生器设计与实现

基于单片机的信号发生器设计与实现摘要信号发生器是许多测试和实验中不可缺少的工具,在信息与通信、雷达信号处理、测量及控制、教学等领域应用十分广泛。

随着电子科学与技术的发展,对信号的频谱纯度、频率分辨率、频率的输出范围等提出的要求越来越高,然而用传统的频率合成方法研制的信号发生器在精度、功能等方面均存在较多的缺陷和不足,很大程度上不能够满足要求。

本文正是针对这一问题,设计并开发基于直接数字合成(Direct Digital Synthesis,DDS)技术的高性能、高精度的信号发生器。

用单片机控制DDS芯片完成信号的产生及控制,所产生的信号具有频率的分辨率较高、切换频率时的相位连续、频率的切换速度较快、输出相位的噪声很低等诸多优点。

本设计主要有以下几大模块构成:单片机及其接口模块、DDS模块、按键模块、液晶显示模块、幅度调节模块,能够实现通过键盘输入选择正弦波、方波、三角波三种波形,并通过液晶屏显示其频率值和示意波形等功能。

最后,应用单片机和DDS技术研制了一个现实可用的信号发生器,并给出了基于单片机和DDS技术的信号发生器的电路原理框图,PROTEL下的电路图,设计过程和软件流程图。

测试结果表明:本信号发生器达到了预期的设计要求,其性能和各种指标明显好于传统的信号发生器。

关键词:单片机DDS信号发生器Based on SCM Signal Generator Designand ImplementationAbstractSignal generator is an indispensable tool in many tests and experiments, and it has very extensive application in information and communication, radar signal processing, measurement and control, teaching, and other areas. As the electronic science and technology development, the spectrum of the signal frequency resolution, purity, the output of the frequency range of the demands of more and more high, but to use the traditional frequency synthesis method developed in precision, function signal generator which have many defects and the insufficiency, largely can't meet the requirements. This paper is to solve such a problem, design and develop high performance, high precision of the signal generator based on direct digital synthesis technologyWith single-chip microcomputer control chips signal is produced and control, the resulting signal has a higher frequency resolution, switching frequency of the phase of the continuous, frequency switching speed and output of the noise is low phase many advantages.This design basically has the following a few big blocks: SCM and its interface module, modules, key module, liquid crystal display module, amplitude adjustment module, can realize through the keyboard input choose sine wave, square wave, triangle wave three waveform, and through the LCD shows its frequency value and signal waveform etc. Function.Finally, the application of the single chip microcomputer and technology developed a reality of the available signal generator, and give the technology based on single chip microcomputer and the signal generator circuit principle diagram, the circuit diagram, design process under and software flow chart. Test results show that: the signal generator is expected to reach the design requirements of the performance and various indexes, significantly better with the traditional signal generator.Key words: Single-chip microcomputer;DDS;signal generator目录1引言 (4)2 系统简介 (5)2.1 方案论证与选择 (5)2.1.1信号发生模块的方案选择 (5)2.1.2单片机模块的方案选择 (5)2.1.3显示模块的方案选择 (5)2.1.4键盘模块的方案选择 (6)2.2 单片机介绍 (6)2.3 单片机的主要应用领域 (6)2.4 AT89S52单片机 (7)2.4.1 AT89S52单片机性能与特点 (7)2.4.2 AT89S52单片机引脚说明 (7)3 DDS技术介绍 (11)3.1直接数字式频率合成技术的原理 (11)3.2 DDS输出信号的的频谱特性 (12)3.2.1理想情况下DDS输出的频谱特性 (12)3.2.2非理想情况下DDS输出的频谱特性 (15)3.3 AD9833芯片简介 (16)3.3.1 AD9833的功能及特点 (16)3.3.2 AD9833的引脚及功能 (18)3.3.3 AD9833的内部寄存器功能 (18)4硬件电路的设计 (20)4.1 总体方案的设计 (20)4.2 电源电路的设计 (20)4.2.1 变压器的选择 (21)4.2.2 整流电路 (21)4.2.3 滤波电容的选择 (22)4.2.4 稳压电路 (23)4.3单片机电路的设计 (25)4.3.1振荡电路的设计 (25)4.3.2 复位电路的设计 (25)4.4 DDS电路的设计 (26)4.5按键电路的设计 (26)4.6幅度调节电路的设计 (27)4.6显示电路的设计 (28)5软件设计 (31)5.1 主程序 (31)5.2 DDS AD9833子程序 (31)5.3按键程序 (32)6电路的焊接和调试 (33)6.1电路的焊接 (33)6.2 DDS的调试 (36)6.3 放大器AD603的调试 (37)7 结论 (38)谢辞.............................................................................................. 错误!未定义书签。

《2024年单片机控制多功能信号发生器》范文

《2024年单片机控制多功能信号发生器》范文

《单片机控制多功能信号发生器》篇一一、引言随着科技的不断发展,单片机技术以其高集成度、高可靠性、低功耗等优点在各个领域得到了广泛应用。

多功能信号发生器作为一种重要的电子测试设备,其性能和功能对电子产品的研发和测试具有重要意义。

本文将介绍一种基于单片机的多功能信号发生器,通过单片机控制实现多种信号的生成和输出,以满足不同应用场景的需求。

二、系统概述本系统采用单片机作为核心控制器,通过与信号发生器模块、电源模块、显示模块等连接,实现多功能信号的生成和输出。

其中,单片机通过程序控制信号发生器模块,实现正弦波、方波、三角波等不同类型信号的生成。

同时,系统还具备多种信号参数的调整功能,如频率、幅度、相位等,以满足不同应用场景的需求。

此外,系统还具有实时显示和电源管理等功能。

三、硬件设计本系统的硬件设计主要包括单片机模块、信号发生器模块、电源模块和显示模块等部分。

其中,单片机模块是整个系统的核心,负责控制信号的生成和输出。

信号发生器模块负责根据单片机的指令生成不同类型的信号。

电源模块为整个系统提供稳定的电源供应。

显示模块用于实时显示信号的参数和状态。

在硬件设计过程中,需要注意以下几点:1. 选择合适的单片机型号,以满足系统的性能和功能需求。

2. 设计合理的电路布局和元件选型,以保证系统的稳定性和可靠性。

3. 确保电源模块的稳定性和安全性,以避免因电源问题导致的系统故障或损坏。

4. 在设计中充分考虑系统的可维护性和扩展性,以便于后续的维护和升级。

四、软件设计本系统的软件设计主要包括单片机的程序设计。

程序采用模块化设计,包括主程序、信号生成程序、参数调整程序、显示程序等部分。

主程序负责整个系统的控制和协调,根据用户需求调用相应的程序模块。

信号生成程序根据单片机的指令生成不同类型的信号。

参数调整程序用于调整信号的频率、幅度、相位等参数。

显示程序用于实时显示信号的参数和状态。

在软件设计过程中,需要注意以下几点:1. 编写清晰、规范的代码,以提高程序的可读性和可维护性。

《2024年单片机控制多功能信号发生器》范文

《2024年单片机控制多功能信号发生器》范文

《单片机控制多功能信号发生器》篇一一、引言随着科技的不断发展,单片机技术在电子设备中的应用越来越广泛。

单片机控制的多功能信号发生器作为一种重要的电子设备,被广泛应用于通信、雷达、测控等领域。

本文将介绍一种基于单片机的多功能信号发生器的设计与实现,包括其基本原理、硬件设计、软件设计、实验结果及结论等方面。

二、基本原理多功能信号发生器是一种可以生成多种不同类型信号的电子设备。

其主要由信号源、处理器、控制器等部分组成。

单片机作为控制器的核心部分,通过对信号源的调制和解调,实现不同类型信号的生成与输出。

此外,通过控制软件对多功能信号发生器进行参数设置,可实现对不同频率、幅值等参数的精确控制。

三、硬件设计(一)整体设计硬件设计是多功能信号发生器的关键部分。

主要包括单片机系统、信号源模块、输出模块等部分。

其中,单片机系统是整个硬件设计的核心,负责实现对信号源的控制与输出。

(二)单片机系统单片机系统是多功能信号发生器的核心控制部分,采用先进的C8051F系列单片机。

该单片机具有高速、低功耗等特点,可实现对信号源的精确控制与处理。

此外,该单片机还具有丰富的I/O接口,可方便地与其他模块进行连接与通信。

(三)信号源模块信号源模块是多功能信号发生器的关键部分之一,主要实现不同类型信号的生成与输出。

根据实际需求,可设计多种不同类型的信号源模块,如正弦波、方波等。

(四)输出模块输出模块负责将生成的信号进行输出。

根据实际需求,可设计多种不同类型的输出模块,如模拟输出、数字输出等。

此外,还需考虑输出模块的抗干扰能力及稳定性等因素。

四、软件设计(一)总体设计软件设计是实现多功能信号发生器功能的关键部分。

主要采用C语言进行编程,实现对单片机的控制与处理。

软件设计主要包括主程序、中断程序等部分。

(二)主程序设计主程序是软件设计的核心部分,负责实现对单片机的初始化设置及对各模块的控制与处理。

在主程序中,需根据实际需求设置不同的参数及模式,以实现对不同类型信号的生成与输出。

基于单片机的多波形信号发生器设计

基于单片机的多波形信号发生器设计

基于单片机的多波形信号发生器设计
单片机多波形信号发生器是一种可以在微控制器芯片上合成不同波形的电路。

该电路可以生成正弦波、方波、三角波等多种波形,也可以通过设置不同的频率、幅值和相位来调节波形。

单片机多波形信号发生器被广泛应用于各种实验中,如音频信号处理、电子测量和信号仿真等领域。

以下是单片机多波形信号发生器设计的步骤:
1. 确定系统主要功能要求。

2. 选择合适的单片机芯片和外围电路。

3. 根据所选芯片的不同特点编写程序,并在仿真软件中进行测试。

4. 设计输出电路,包括输出放大电路和输出滤波电路。

5. 根据实际需要设计显示电路,用于控制波形参数和频率。

6. 进行系统调试和测试,对系统进行优化和改进。

7. 构建原型并进行实验验证,进一步检验系统性能是否能够满足所需的功能要求。

总结而言,单片机多波形信号发生器设计的关键是合理选择芯片和外围电路,并编写合适的程序用于控制波形参数。

同时,开发人员需要进行充分的调试,以确保系统运行稳定、波形输出准确、频率稳定。

《2024年单片机控制多功能信号发生器》范文

《2024年单片机控制多功能信号发生器》范文

《单片机控制多功能信号发生器》篇一一、引言随着科技的进步和电子技术的快速发展,单片机技术被广泛应用于各种电子设备中。

其中,单片机控制的多功能信号发生器以其灵活性、可编程性和高可靠性等优点,在通信、雷达、测试测量等领域发挥着重要作用。

本文将详细介绍单片机控制多功能信号发生器的设计原理、主要功能、实现方法及优缺点分析。

二、设计原理单片机控制多功能信号发生器以单片机为核心,通过编程控制实现各种信号的输出。

其主要设计原理包括信号源设计、单片机控制系统设计和输出电路设计三个部分。

1. 信号源设计:信号源是信号发生器的核心部分,通常采用直接数字合成(DDS)技术或波形存储器技术实现。

DDS技术具有频率、相位和幅度可调的特点,而波形存储器技术则可以实现多种标准波形的存储和输出。

2. 单片机控制系统设计:单片机控制系统负责接收用户指令,对信号源进行控制,并实现信号的输出。

系统采用C语言或汇编语言进行编程,具有高效率、高可靠性和易于修改的特点。

3. 输出电路设计:输出电路负责将单片机控制系统的指令转化为实际的信号输出。

通常采用运算放大器、滤波器等电路实现信号的放大、滤波和整形等功能。

三、主要功能单片机控制多功能信号发生器具有以下主要功能:1. 多种波形输出:可输出正弦波、方波、三角波等标准波形,以及用户自定义的任意波形。

2. 频率、相位和幅度可调:通过单片机控制系统,可实时调整信号的频率、相位和幅度。

3. 多种触发方式:支持外部触发和内部触发两种方式,可满足不同应用场景的需求。

4. 实时监控与控制:可通过计算机或手机等设备,实时监控信号发生器的状态,并进行远程控制。

5. 高精度和高稳定性:采用先进的DDS技术和高精度AD/DA转换器,保证信号的高精度和高稳定性。

四、实现方法单片机控制多功能信号发生器的实现方法主要包括硬件设计和软件设计两个部分。

1. 硬件设计:硬件设计包括单片机最小系统设计、信号源电路设计、输出电路设计和电源电路设计等。

基于单片机的波形发生器设计

基于单片机的波形发生器设计

基于单片机的波形发生器设计摘要:本文用单片机作为核心芯片,设计出一款高精度频率信号发生器,具有体积小功率低等优点。

为了实现幅度可控的功能,选用了2个数模转换器片完成此功能,其中一个用来产生波形,另外一个设计成程控放大器进行改变幅度,它的放大倍数通过转换器的数字端口来实现,根据设定的输出幅值,单片机只需要通过公式换算出给予的对应电平。

所有要输出的参数都能通过液晶屏显示。

关键词:信号发生器;单片机;数模转换器1、引言在波形发生器的发展中,高频率的波形发生器技术大部分都掌握在外国手中,我国的波形发生器也有很大突破,在中低端频率的波形发生器中,我国的成本低,波形发生器效果好,远比国外,但是在高端波形发生器中,还是落后于国外。

波形发生器在现代测算领域和教学领域有着很大的应用,产生的频率大小,幅度大小,相位调节,能产生大量的波形,对于各种调试,调控,实验,工业使用,自动控制都有着重大的意义。

2、方案设计本此设计是用单片机为控制主体,对系统进行初始化主要完成对键盘的控制、液晶显示的控制。

使用51系列的单片机,它有着32个接口,且STC系列的单片机可以在工作的过程中进行编程、调试,能很方便的实现程序在下载过程中进行整机的调试。

3、硬件设计(1)液晶显示模块用STC12C5A60S2的P0口作为数据线,用P1.2、P1.1、P1.0分别作为LCD 的EN、R/W、RS。

其中EN是下降沿触发的片选信号,R/W是读写信号,RS是寄存器选择信号。

(2)键盘模块本按键模块使用的是多位独立按键,按键一端接IO口,一端接地,由于单片机的IO口都有内部上拉,因此当按键没有按下的时候,IO检测到的时候高电平,当按键按下的时候,相当于IO短接地,因此这时候单片机检测到的电平为低电平,通过检测不同时刻的IO口状态就可以判断按下的是那个按键。

4个按键分别代表以下功能,第一为功能按键,可以切换不同参数设置界面,第二个为切换按键,可以切换波形、频率和幅值等参数进行设置,第三个为增加按键,第四个为减少按键。

基于单片机的波形发生器_毕业设计论文

基于单片机的波形发生器_毕业设计论文

基于单片机的波形发生器_毕业设计论文摘要:本文详细介绍了一种基于单片机的波形发生器的设计与实现。

波形发生器是一种广泛应用于电子测量、科研和教学等领域的仪器设备。

本设计采用了单片机作为控制芯片,利用其强大的计算和控制能力实现了多种波形的生成。

通过研究和分析不同波形的特点,采用相应的算法和模拟电路设计,实现了正弦波、方波和三角波的发生功能。

本文还介绍了硬件电路的设计和软件的编写,并对波形发生器的性能进行了测试和分析。

1.引言波形发生器是一种可以产生各种形状的周期信号的仪器设备,广泛应用于电子测量、科研和教学等领域。

随着数字技术和单片机技术的发展,基于单片机的波形发生器具有体积小、成本低、灵活性强等优点,逐渐代替了传统的模拟波形发生器。

2.系统设计2.1系统框架本系统采用了单片机作为控制芯片,配合DAC芯片和锁相环电路,构建了一个完整的波形发生器系统。

单片机负责控制波形的生成参数,通过DAC芯片将数字信号转化为模拟电压输出,锁相环电路则负责对时钟信号进行处理和同步。

2.2波形生成算法根据不同波形的特点,本设计实现了正弦波、方波和三角波的发生功能。

正弦波的生成采用了Taylor级数展开方法,方波的生成利用了比较器的电平调制,而三角波的生成则通过DAC芯片将数字递增或递减的信号转化为模拟电压输出。

3.硬件设计3.1单片机选型与外围电路设计本设计选用了XX单片机作为控制芯片,并根据其技术手册设计了相应的外围电路。

外围电路包括时钟电路、复位电路和供电电路等,保证了单片机的正常运行。

3.2DAC芯片选型与接口设计为了将数字信号转化为模拟电压输出,本设计选用了XXDAC芯片,并设计了合适的接口电路。

通过控制单片机的输出端口和DAC芯片的输入端口连接,实现了数字到模拟的转换。

3.3锁相环电路设计为了保证波形的准确性和稳定性,本设计添加了锁相环电路。

该电路利用比较器和VCO实现了对时钟信号的同步与输出。

4.软件设计4.1系统初始化系统初始化包括单片机寄存器的初始化和外围设备的初始化,为后续的波形生成做好准备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

报告题目:多波形信号发生器设计与实现摘要本系统是基于AT89C52单片机的数字式低频信号发生器。

采用AT89C52 单片机作为控制核心,外围采用数字/模拟转换电路(DAC0832)、稳压电路(MC1403)、运放电路(LM324)、按键和八位数码管等。

通过按键控制可产生方波、三角波、正弦波等,同时用数码管指示其对应的频率。

其设计简单、性能优良,可用于多种需要低频信号源的场所,具有一定的实用性。

关键词:单片机;信号发生器;D/A转换AbstractThe system is a digital signal generator based on single chip computer. At89c52 is used as a control microcontroller core. The system is composed by digital/analog conversion(DAC0832), regulator circuit(MC1403), imply circuit (LM324) ,button and nixie tube .It can generate the square, triangle and sine wave, with nixie tube . The system can be used for a signal source in the low-frequency signal source. It is very practical.Keyword:The single chip computer; The signal generator;D/ A conversion目录1.绪论 (5)1.1信号发生器现状 (5)1.2单片机在低频信号发生器中的应用 (5)2.系统设计 (7)2.1系统方案的比较 (7)2.2控制芯片的选择 (8)3.硬件电路的设计 (8)3.1基本原理: (8)3.2单片机的介绍及资源分配: (10)3.3各部分电路原理 (14)4.软件设计 (20)4.1主程序流程图 (20)4.2子程序流程图 (21)5.测试结论 (25)5.1软件仿真结果 (25)5.2硬件测试结果 (27)致谢..................................................... - 28 - 参考文献...................................... 错误!未定义书签。

附录1 电路原理图.. (30)附录2 程序清单 (31)附录3 PROTEUS仿真系统简介 (35)多波形信号发生器设计与实现1.绪论1.1信号发生器现状波形发生器亦称函数发生器,作为实验用信号源,是现今各种电子电路实验设计应用中必不可少的仪器设备之一。

目前,市场上常见的波形发生器多为纯硬件的搭接而成,且波形种类有限,多为锯齿、正弦、方波、三角等波形。

信号发生器作为一种常见的应用电子仪器设备,传统的可以完全由硬件电路搭接而成,如采用555振荡电路发生正弦波、三角波和方波的电路便是可取的路径之一,不用依靠单片机。

但是这种电路存在波形质量差,控制难,可调范围小,电路复杂和体积大等缺点。

在科学研究和生产实践中,如工业过程控制,生物医学,地震模拟机械振动等领域常常要用到低频信号源。

而由硬件电路构成的低频信号其性能难以令人满意,而且由于低频信号源所需的RC很大;大电阻,大电容在制作上有困难,参数的精度亦难以保证;体积大,漏电,损耗显著更是其致命的弱点。

一旦工作需求功能有增加,则电路复杂程度会大大增加。

1.2单片机在低频信号发生器中的应用当今是科学技术及仪器设备高度智能化飞速发展的信息社会,电子技术的进步,给人们带来了根本性的转变。

现代电子领域中,单片机的应用正在不断的走向深入,这必将导致传统控制与检测技术的日益革新。

单片机构成的仪器具有高可靠性、高性能价格比,在智能仪表系统和办公自动化等诸多领域得以极为广泛的应用,并走入家庭,从洗衣机、微波炉到音响汽车,处处可见其应用。

因此,单片机技术开发和应用水平已逐步成为一个国家工业发展水平的标志之一。

一块单片机芯片就是一台计算机。

由于单片机的这种特殊的结构形式,在某些应用领域中,它承担了大中型计算机和通用微型计算机无法完成的一些工作。

使其具有很多显著的优点和特点,因此在各个领域中都得到了迅猛的发展。

单片机的特点归纳起来有以下几个方面。

(1)具有优异的性能价格比单片机尽可能地把应用所需的存储器,各种功能的I/O 接口集成在一块芯片内,因而其性能很高,而价格却相对较低廉,即性能价格比很高。

(2)集成度高、体积小、可靠性高单片机把各种功能部件集成在一块芯片上,因而集成度高,均为大规模或超大规模集成电路。

又内部采用总线结构,减少了芯片之间的连线,这大大提高了单片机的可靠性与抗干扰能力。

同时,其体积小,对于强磁场环境易于采取屏蔽措施,适合于在恶劣环境下工作。

(3)控制功能强单片机体积虽小,但“五脏俱全”,它非常适用于专门的控制用途。

为了满足工业控制要求,一般单片机的指令系统中有极丰富的转移指令,I/O口的逻辑操作指令以及位操作指令。

其逻辑控制功能及运行速度均高于同一档次的微机。

(4)低电压、低功耗单片机大量用于携带式产品和家用消费类产品,低电压和低功耗尤为重要。

目前,许多单片机已可在2.2V电压下运行,有的已能在1.2V或0.9V下工作,功耗降至μA级,一粒钮扣电池就可长期使用。

利用单片机采用程序设计方法来产生低频信号,其下限频率很低。

具有线路相对简单,结构紧凑,价格低廉,频率稳定度高,抗干扰能力强,用途广泛等优点,并且能够对波形进行细微调整,改良波形,使其满足系统的要求。

只要对电路稍加修改,调整程序,即可完成功能升级。

这里介绍一种采用AT89C52单片机和一片DAC0832数模转换器做成的数字式低频信号发生器,它的特点是价格低、性能高,在低频范围稳定性好、操作方便、体积小、耗电少等。

信号发生器与其它相比还具有如下优点:①较分立元件信号发生器而言,具有频率高,工作稳定,容易调试等特性;②较专用DDS芯片的信号发生器而言,具有结构简单,成本低等特性。

2.系统设计2.1系统方案的比较图2-1方案一方框图方案二:采用分立元件实现非稳态的多谐振振荡器,然后根据需要加入积分电路等构成正弦、矩形、三角等波形发生器。

这种信号发生器输出频率范围窄,而且电路参数设定较繁琐,其频率大小的测量往往需要通过硬件电路的切换来实现,操作不方便。

方案三:采用单片机和DAC0832数模转换器生成波形,由于是软件滤波,所以不会有寄生的高次谐波分量,生成的波形比较纯净。

它的特点是价格低、性能高,在低频范围内稳定性好、操作方便、体积小、耗电少。

经比较,方案三既可满足毕业设计的基本要求又能充分发挥其优势,电路简单,易控制,性价比较高,所以采用该方案。

2.2控制芯片的选择方案一:AT89C52单片机是一种高性能8位单片微型计算机。

它把构成计算机的中央处理器CPU、存储器、寄存器、I/O接口制作在一块集成电路芯片中,从而构成较为完整的计算机。

方案二:C8051F005单片机是完全集成的混合信号系统级芯片,具有与AT80C52兼容的微控制器的内核,与MCS-51指令集完全兼容。

除了具有标准AT80C52的数字外设部件之外,片内还集成了数据采集和控制系统中常用的模拟部件和其他数字外设及功能部件。

方案选择:方案二中C8051F005芯片系统内部结构复杂,不易控制,芯片成本高,对于本系统而言利用率低,AT89C52芯片比较常用,简单易控制,成本低,性能稳定故采用方案一。

3.硬件电路的设计3.1基本原理系统框图如图3-1所示。

图3-1 低频信号发生器系统框图低频信号发生器系统主要由CPU、D/A转换电路、基准电压电路、电流/电压转换电路、按键和波形指示电路、电源等电路组成。

其工作原理为当分别按下四个按键中的任一个按键就会分别出现方波、锯齿波、三角波、正弦波,并且有四个发光二极管分别作为不同的波形指示灯。

3.2单片机的介绍及资源分配3.2.1 单片机的介绍(1)最小单片机系统①AT89C52的引脚图如图3-2所示图3-2 AT89C52引脚图②管脚说明低频信号发生器采用AT89C52单片机作为控制核心,其内部组成包括:一个8位的微处理器CPU及片内振荡器和时钟产生电路,但石英晶体和微调电容需要外接;片内数据存储器RAM低128字节,存放读/写数据;高128字节被特殊功能寄存器占用;片内程序存储器4KB ROM;四个8位并行I/O(输入/输出)接口P3 -P0,每个口可以用作输入,也可以用作输出;两个定时/计数器,每个定时/计数器都可以设置成计数方式,用以对外部事件进行计数,也可以设置成定时方式,并可以根据计数或定时的结果实现计算机控制;五个中断源的中断控制系统;一个全双工UART(通用异步接收发送器)的串行I/O口。

VCC:供电电压。

GND:接地。

RST:复位输入。

当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。

在FLASH编程期间,此引脚用于输入编程脉冲。

在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。

因此它可用作对外部输出的脉冲或用于定时目的。

然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。

如想禁止ALE的输出可在SFR8EH地址上置0。

此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。

另外,该引脚被略微拉高。

如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN:外部程序存储器的选通信号。

在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。

但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。

注意加密方式1时,/EA 将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。

在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:来自反向振荡器的输出。

89S52 单片机外部有32个端口可供用户使用,其功能如下:表3-1 89C52并行I/O接口P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。

当P1口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。

相关文档
最新文档