基于单片机的波形发生器

合集下载

基于单片机的波形发生器设计及实现

基于单片机的波形发生器设计及实现

基于单片机的波形发生器设计及实现引言:波形发生器是电子设备中常用的测试设备,它可以产生各种波形信号,如正弦波、方波、三角波等,对于电子工程师来说是非常重要的仪器。

本文将介绍一种基于单片机的波形发生器的设计及实现方法。

设计目标:1.可以产生正弦波、方波和三角波等多种波形信号。

2.波形发生器的频率范围可以调节,并且稳定可靠。

3.实现简单、成本低廉、易于维护。

硬件设计和实现:波形发生器的核心部件是单片机,通过单片机的高精度计数器和时钟模块可以实现频率的调节和控制。

其基本原理是通过单片机的IO口输出不同的电平来产生不同的波形。

1.信号发生部分:通过单片机的IO口输出电平控制信号发生电路。

正弦波的发生电路可以采用RC振荡器电路,方波和三角波的发生电路可以采用计数器和比较器。

2.频率调节和控制部分:使用单片机内部的定时器和计数器来控制波形的频率和周期。

通过改变定时器的工作模式和计数器的计数值,可以实现不同频率的波形信号输出。

3.显示和控制部分:通过LCD显示屏显示波形参数和频率,并且可以使用按键控制频率的调节和选择不同的波形。

软件设计和实现:1.初始化设置:包括单片机的IO口设置、定时器和计数器的初始化、LCD显示屏的初始化等。

2.频率调节和控制:通过按键扫描和中断处理函数来实现频率的调节和控制。

按键的按下和释放可以触发相关的中断服务程序,从而实现频率的增加和减少。

3.波形产生:通过定时器中断来控制波形的产生。

当定时器溢出时,会触发中断服务程序,从而改变IO口的电平状态,实现不同波形信号的输出。

测试与结果:进行相应的软硬件调试后,我们可以成功实现基于单片机的波形发生器。

通过按键可以选择不同的波形类型,并且可以根据需要调节波形的频率。

总结:本文介绍了一种基于单片机的波形发生器的设计与实现方法。

通过使用单片机的IO口、定时器和计数器,可以实现不同波形信号的输出和频率的调节。

这种波形发生器具有成本低廉、稳定可靠、易于维护等优点,可以满足电子工程师对波形发生器的基本需求。

基于单片机的波形发生器设计与实现

基于单片机的波形发生器设计与实现

硬件设计
1.3 DAC转换器选择
本设计采用DAC7695型DAC转换器,该芯片是一款16位高 精度数模转换器,具有低噪声、低失真、高速等优点。 DAC7695芯片通过接收单片机发送的数字信号,将其转 换为模拟信号输出,实现波形发生器的数模转换功能
硬件设计
1.4 运放电路与滤波电 路设计
运放电路采用OP07型运算放大器 ,该芯片具有低噪声、低失真、 高带宽等优点。运放电路将DAC 输出的模拟信号进行放大和滤波 处理,提高输出波形的质量。滤 波电路采用RC滤波器,滤除杂波 干扰,提高输出波形的纯度
硬件设计
1.2 单片机选择
本设计采用STM32单片机作为核心控制器。STM32系列单片机是意法半导体(ST)公司推 出的一款基于ARM Cortex-M内核的32位Flash微控制器,具有高性能、低功耗、易于 开发等优点。STM32单片机通过编程可以产生不同频率和幅值的数字信号,并通过DAC 转换器进行数模转换,实现波形发生器的功能
硬件设计
1.1 总体设计
基于单片机的波形发生器的硬件 结构主要包括单片机、DAC转换 器、运放电路和滤波电路等部分 。其中,单片机是整个系统的核 心,负责产生数字信号并控制 DAC转换器进行数模转换;DAC转 换器将数字信号转换为模拟信号 ;运放电路对DAC输出的模拟信 号进行放大和滤波处理;滤波电 路用于滤除杂波,提高输出波形 的质量
基于单片机的波形 发生器设计与实现
2
-
目录
CONTENTS
1 硬件设计 2 软件设计
Байду номын сангаас
基于单片机的波形发生器设计与实现
波形发生器是一种能够产生各种预定波 形的电子设备,广泛应用于信号处理、 通信、测量等领域。基于单片机的波形 发生器,由于其结构简单、成本低廉、 易于编程控制等优点,在实际应用中具

基于51单片机的波形发生器的设计

基于51单片机的波形发生器的设计

基于51单片机的波形发生器的设计引言:波形发生器是一种可以生成特定频率、特定波形的电子设备。

它广泛应用于科研、教学和产业生产等领域,可以用于信号发生、信号测试、信号仿真等各种任务。

本文将介绍一个基于51单片机的波形发生器的设计方案。

一、系统硬件设计1.系统框架该波形发生器系统采用51单片机作为主控芯片,主要包括三个部分:信号生成模块、显示模块和控制模块。

其中,信号生成模块负责产生各种特定频率、特定波形的信号;显示模块用于展示信号参数等相关信息;控制模块负责接收用户输入并对波形发生器进行控制。

2.硬件连接信号生成模块与主控芯片之间通过I/O接口相连,用于传输数据和控制信号。

显示模块通过串口与主控芯片相连,用于显示相关信息。

控制模块通过按键、旋钮等输入设备与主控芯片相连,用于接收用户输入。

二、系统软件设计1.系统初始化在系统初始化阶段,主控芯片需要完成引脚、定时器、串口等相关资源的初始化工作。

同时,还需要设置一些全局变量和参数的初始值。

2.信号生成模块信号生成模块通过定时器产生特定频率的时钟信号,并根据用户输入的参数生成相应的信号波形。

主控芯片利用定时器中断函数进行波形生成,并将生成的信号数据存放在缓冲区中。

3.显示模块显示模块负责将信号波形显示在液晶屏上,并显示相关参数,如频率、幅度等。

主控芯片将信号数据从缓冲区中读取,并通过串口发送给显示模块进行显示。

4.控制模块控制模块负责接收用户输入的控制指令,并通过按键、旋钮等输入设备完成用户交互。

主控芯片通过中断函数实时读取用户输入并进行相应的控制操作。

三、系统功能设计1.频率设置功能用户可以通过控制模块设置波形发生器的频率,可以选择固定频率或者可调频率。

利用定时器时钟频率与定时器中断的时间间隔来控制波形的频率。

2.波形选择功能用户可以通过控制模块选择不同的波形类型,如正弦波、方波、三角波、脉冲波等。

主控芯片根据用户指令设置波形参数,并生成相应的波形信号。

基于51单片机的波形发生器设计报告

基于51单片机的波形发生器设计报告

基于51单片机的波形发生器设计报告波形发生器是一种电子设备,用于产生各种不同类型和频率的电信号波形。

基于51单片机的波形发生器设计是一种常用的工程设计。

下面是一个关于基于51单片机的波形发生器设计的报告,详细介绍了设计的原理、步骤、电路、程序和性能。

一、设计原理:二、设计步骤:1.确定波形发生器的输出频率范围和分辨率要求。

2.选择适当的定时器/计数器模块来实现频率的计时和控制。

3.设计电路,包括定时器/计数器模块、晶振、滤波电路和输出接口等。

4.编写程序,配置定时器/计数器模块的工作模式、计数值和中断服务程序。

5.调试和测试电路和程序,确保波形发生器正常工作并满足设计要求。

三、电路设计:1.定时器/计数器模块:选择一个合适的定时器/计数器模块,如51单片机的定时器/计数器T0或T1、根据设计要求,设置工作模式、计数器模式和计数值。

2.晶振:选择适当的晶振频率,一般为11.0592MHz,将晶振连接到单片机的晶振引脚。

3.滤波电路:根据需要,设计一个滤波电路来滤除不需要的高频噪声和杂散信号。

4.输出接口:设计一个输出接口电路来连接单片机和外部电路,使用电平转换电路将单片机的低电平(0V)输出转换为所需的电平电压。

四、程序设计:1.配置定时器/计数器模块的工作模式和计数值,设置中断服务程序。

2.在中断服务程序中,根据设计要求生成矩形波信号,并将信号输出到输出端口。

3.在主程序中,初始化单片机和定时器/计数器模块,使波形发生器开始工作。

4.在主循环中,可以设置按键输入来改变输出频率,通过调整计数值来实现不同的频率输出。

五、性能评估:1.输出频率范围:根据设计要求,测试波形发生器的最低和最高输出频率是否在设计范围内。

2.分辨率:对于指定频率范围,测试波形发生器的输出频率的分辨率,即最小可调节的频率。

3.稳定性:测试波形发生器的输出信号的稳定性和准确度,是否有漂移和偏差。

4.噪声:测试波形发生器的输出信号是否有杂散噪声和幅度波动。

单片机波形发生器设计

单片机波形发生器设计

单片机波形发生器设计一、引言波形发生器是一种电子测试仪器,用于产生各种形状的波形信号。

在电子设计和测试中,波形发生器是非常重要的工具,可以用于测试电子元器件的响应特性、检测电子电路的特性,以及用于故障分析和调试等。

本文将介绍一种基于单片机的波形发生器设计方案。

二、设计方案1.系统硬件设计本设计方案采用基于单片机的数字波形发生器,利用单片机的高速计数器和定时器功能,生成各种频率和形状的波形信号。

系统硬件主要包括以下几个部分:(1)单片机:选择一款具备高速计数器和定时器功能的单片机,如ATmega328P。

(2)时钟电路:提供单片机工作所需的稳定时钟信号。

(3)按键/旋钮:用于设置波形的频率和形状。

(4)显示器:用于显示当前波形的频率和形状。

(5)输出接口:提供波形信号的输出接口,以便连接到外部电路进行测试。

2.系统软件设计本设计方案采用C语言进行单片机程序的编写,使用单片机的定时器来生成各种频率的波形信号。

(1)初始化:设置单片机的引脚方向和初始化定时器。

(2)按键/旋钮检测:检测按键/旋钮的状态变化,并根据用户的操作进行相应的波形设置。

(3)波形生成:根据用户设置的频率和形状,在单片机的定时器中设置相应的计数值和自动重载值,以产生所需的波形信号。

(4)输出:将生成的波形信号通过输出接口输出到外部电路进行测试或其他应用。

三、系统性能分析1.频率范围:由于采用了单片机的高速计数器和定时器功能,所以波形发生器的频率范围可以较广,通常可以覆盖几赫兹到几千兆赫兹的范围。

2.波形形状:由于使用了单片机的计时器功能,所以可以生成多种形状的波形信号,如正弦波、方波、三角波等。

3.稳定性:由于采用了稳定的时钟电路,所以波形发生器的频率稳定性较高,误差较小。

4.精确度:由于采用了单片机的高速计数器和定时器功能,所以波形发生器的频率和相位精度较高。

四、总结本文介绍了一种基于单片机的波形发生器设计方案。

该方案通过利用单片机的计数和定时器功能,可以生成各种形状和频率的波形信号,具备较高的稳定性和精确度。

基于单片机的波形发生器_毕业设计论文

基于单片机的波形发生器_毕业设计论文

基于单片机的波形发生器_毕业设计论文摘要:本文详细介绍了一种基于单片机的波形发生器的设计与实现。

波形发生器是一种广泛应用于电子测量、科研和教学等领域的仪器设备。

本设计采用了单片机作为控制芯片,利用其强大的计算和控制能力实现了多种波形的生成。

通过研究和分析不同波形的特点,采用相应的算法和模拟电路设计,实现了正弦波、方波和三角波的发生功能。

本文还介绍了硬件电路的设计和软件的编写,并对波形发生器的性能进行了测试和分析。

1.引言波形发生器是一种可以产生各种形状的周期信号的仪器设备,广泛应用于电子测量、科研和教学等领域。

随着数字技术和单片机技术的发展,基于单片机的波形发生器具有体积小、成本低、灵活性强等优点,逐渐代替了传统的模拟波形发生器。

2.系统设计2.1系统框架本系统采用了单片机作为控制芯片,配合DAC芯片和锁相环电路,构建了一个完整的波形发生器系统。

单片机负责控制波形的生成参数,通过DAC芯片将数字信号转化为模拟电压输出,锁相环电路则负责对时钟信号进行处理和同步。

2.2波形生成算法根据不同波形的特点,本设计实现了正弦波、方波和三角波的发生功能。

正弦波的生成采用了Taylor级数展开方法,方波的生成利用了比较器的电平调制,而三角波的生成则通过DAC芯片将数字递增或递减的信号转化为模拟电压输出。

3.硬件设计3.1单片机选型与外围电路设计本设计选用了XX单片机作为控制芯片,并根据其技术手册设计了相应的外围电路。

外围电路包括时钟电路、复位电路和供电电路等,保证了单片机的正常运行。

3.2DAC芯片选型与接口设计为了将数字信号转化为模拟电压输出,本设计选用了XXDAC芯片,并设计了合适的接口电路。

通过控制单片机的输出端口和DAC芯片的输入端口连接,实现了数字到模拟的转换。

3.3锁相环电路设计为了保证波形的准确性和稳定性,本设计添加了锁相环电路。

该电路利用比较器和VCO实现了对时钟信号的同步与输出。

4.软件设计4.1系统初始化系统初始化包括单片机寄存器的初始化和外围设备的初始化,为后续的波形生成做好准备。

基于单片机的波形发生器设计及实现

基于单片机的波形发生器设计及实现

基于单片机的波形发生器设计及实现一、设计方案波形发生器是一种能够产生不同频率、幅度和波形形式的信号的电路设备。

在本设计中,我们将采用单片机作为控制核心,利用其内部计时器和输出引脚来实现波形的产生。

具体的设计方案如下:1. 选择单片机:选用一款适合波形产生器设计的单片机,如ATmega328P等。

2.编程开发:利用单片机的C语言编程开发,在程序中实现波形发生器的控制逻辑,包括波形形状、频率、幅度等参数的设定和控制。

3.输出电路设计:设计适合单片机输出信号的电路,包括放大、滤波和隔离等功能,以确保输出信号的质量和稳定性。

4.外部控制接口:设计外部控制接口,包括旋钮、按键等,方便用户对波形发生器进行参数设定和调节。

5.功率供应:提供稳定的电源供应,确保波形发生器正常工作。

二、实现过程1.单片机编程:首先编写C语言程序,实现波形发生器的控制逻辑。

通过设置定时器的计数值和输出引脚的状态来产生不同形状的波形,如正弦波、方波、三角波等。

同时,通过按键和旋钮来实现频率和幅度的调节。

2.输出电路设计:设计一个简单的输出电路,将单片机的输出信号放大和滤波,以获得较为稳定和可靠的输出信号。

同时,通过隔离电路来防止单片机受到外部干扰。

3.外部控制接口:设计旋钮和按键的连接电路,将它们与单片机的GPIO引脚相连,实现参数的设定和调节。

通过旋钮来调节频率,通过按键来切换波形形状和设定幅度。

4.功率供应:设计一个合适的功率供应电路,为单片机和输出电路提供稳定的电源,以保证波形发生器的正常工作。

5.调试测试:将所有部件组装在一起,通过示波器等仪器对输出信号进行观测和测试,调节参数使得波形发生器产生符合要求的波形,并记录各种参数值,以便后续使用和改进。

三、实现效果经过上述步骤的设计和实现,我们成功地搭建了一个基于单片机的波形发生器。

该波形发生器可以产生多种波形形状,如正弦波、方波、三角波等,同时支持频率和幅度的调节。

通过外部控制接口,用户可以方便地对波形发生器进行参数的设定和调节,使得波形发生器具有较好的灵活性和易用性。

基于51单片机的波形发生器的设计讲解

基于51单片机的波形发生器的设计讲解

基于51单片机的波形发生器的设计讲解波形发生器是电子设备中常见的一种电子设备,它可以产生各种不同形状的波形信号。

在这篇文章中,我们将会详细介绍基于51单片机的波形发生器的设计。

一、波形发生器的原理及分类波形发生器的原理是利用电子元件、电路以及控制信号源,将一定幅度的电压信号变化成为需要的各种形状的波形信号。

根据波形的形状分类,可以将波形发生器分为以下几种类型:1.正弦波发生器:产生正弦波信号的发生器,常用于音频设备中。

2.方波发生器:产生方波信号的发生器,常用于数字电路中,也可用于频率测量和脉冲调制等应用。

3.三角波发生器:产生三角波信号的发生器,常用于音频设备以及频率测试等领域。

4.锯齿波发生器:产生锯齿波信号的发生器,常用于音频设备、测试仪器以及数据采集和测量等领域。

二、基于51单片机的波形发生器设计下面我们将详细介绍基于51单片机的波形发生器的设计步骤。

1.硬件设计:在基于51单片机的波形发生器设计中,我们需要准备的硬件元件有:-51单片机控制芯片-芯片烧录器-液晶显示屏-按键开关-电源模块-杜邦线等电子连接线2.硬件连接:根据电路原理图进行将电子元件进行正确的电路连接。

其中,51单片机作为核心控制芯片,负责生成波形信号,液晶显示屏用于显示波形信号,按键开关用于控制波形发生器的启动、停止以及参数调整等操作。

3.软件设计:利用Keil C编译软件进行51单片机的软件设计,根据控制芯片的指令集编写相应的程序代码,实现以下几个功能:-波形信号的产生:根据选择的波形类型(正弦波、方波、三角波或锯齿波),利用特定的算法生成相应形状的波形信号。

-参数调节:通过按键开关控制波形的频率、幅度以及相位等参数的调节,使波形发生器能够产生不同特性的波形信号。

-波形信号显示:通过LCD显示屏将生成的波形信号进行实时显示,以方便观察和调试。

4.软硬件的调试与优化:三、波形发生器的应用1.音频设备:波形发生器可以生成不同频率的正弦波信号,用于音频信号的发生和测试等应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要本系统是基于AT89C51单片机的数字式低频信号发生器。

采用A T89C51单片机作为控制核心,外围采用数字/模拟转换电路(DAC083 2)、运放电路(LM324)、按键和8位数码管等。

通过按键控制可产生方波、三角波、正弦波等,同时用数码管指示其对应的频率。

其设计简单、性能优好,可用于多种需要低频信号的场所,具有一定的实用性。

各种各样的信号是通信领域的重要组成部分,其中正弦波、三角波和方波等是较为常见的信号。

在科学研究及教学实验中常常需要这几种信号的发生装置。

为了实验、研究方便,研制一种灵活适用、功能齐全、使用方便的信号源是十分必要的。

本文介绍的是利用AT89C51单片机和数模转换器件DAC0832产生所需不同信号的低频信号源,其信号幅度和频率都是可以按要求控制的。

文中简要介绍了DAC0832数模转换器的结构原理和使用方法,AT89C51的基础理论,以及与设计电路有关的各种芯片。

文中着重介绍了如何利用单片机控制D/A转换器产生上述信号的硬件电路和软件编程。

信号频率幅度也按要求可调。

本次关于产生不同低频信号的信号源的设计方案,不仅在理论和实践上都能满足实验的要求,而且具有很强的可行性。

该信号源的特点是:体积小、价格低廉、性能稳定、实现方便、功能齐全。

关键词:AT89C51DAC0832 LM324 8位数码管显示AbstractWaveform The system is a digital signal generator based on single chip computer.At89c51 is used as a control microcontroller core.The system is composed by digital/analog comversion(DAC0832), imply circuit,button and nixie tube.It can generate the square, triangle and sine wave,with nixie tube.The system can be used for a signal soure in the low-frequency signal soure.It is very practical.Various signals are an important part of correspondent area. In this area, sine wave, triangle wave and square wave are common signals. In science research and teaching experiment, we often need the occurrence equipment of these signals. In order to make the experiment and research easier, to develop a suitable, full functional and easily used signals source is essential.This paper introduces the low frequency sources of different signals that are produced by AT89C51 SCM and DAC0832. Its signal range and frequency can be controlled by requirement. This paper briefly introduces the structure principle and usage of DAC0832, the basic theory of AT89C51 and various chips which relevant to design circuit. this paper emphasized how to use SCM to control the hardware circuit and software program of the signals above which produced by DAC0832. The signal frequency range also can be adjusted by requirement.This signal source design plan concerns on producing different low frequency signals, not only meet the request of experiment in theory and in practice, but also have strong feasibility. The trait of this signal source is: small volume, low price, stable function, easily achievable, and full function. Keywords:AT89C51, DA0832, LM324, 8 nixie tube display目录摘要 (I)Abstract (II)目录 (III)前言 (1)1 波形发生器概述 (2)1.1波形发生器的发展状况 (2)1.2国内外波形发生器产品比较 (4)2 方案论证与比较 (5)2.1 方案一 (5)2.2 方案二 (6)2.3 方案三 (6)3 硬件原理 (8)3.1 MCS-51单片机的内部结构 (9)3.1.1 内部结构概述 (9)3.1.2 CPU结构 (9)3.1.3 存储器和特殊功能寄存器 (10)3.2 P0-P3口结构 (11)3.3 时钟电路和复位电路 (12)3.3.1时钟电路 (12)3.3.2单片机的复位状态 (13)3.4 DAC0832的引脚及功能 (13)4 软件原理 (16)4.1 主流程图 (16)4.2 锯齿波仿真图 (17)4.3 三角波仿真图 (18)4.4 方波仿真图 (20)4.5 正弦波仿真图 (21)总结 (23)致谢......................................................................... 错误!未定义书签。

参考文献................................................................. 错误!未定义书签。

前言波形发生器也称函数发生器,作为实验信号源,是现今各种电子电路实验设计应用中必不可少的仪器设备之一。

目前,市场上常见的波形发生器多为纯硬件的搭接而成,且波形种类有限,多为锯齿波,正弦波,方波,三角波等波形。

信号发生器作为一种常见的应用电子仪器设备,传统的可以完全由硬件电路搭接而成,如采用555振荡电路发生正弦波、三角波和方波的电路便是可取的路经之一,不用依靠单片机。

但是这种电路存在波形质量差,控制难,可调范围小,电路复杂和体积大等缺点。

在科学研究和生产实践中,如工业过程控制,生物医学,地震模拟机械振动等领域常常要用到低频信号源。

而由硬件电路构成的低频信号其性能难以令人满意,而且由于低频信号源所需的RC很大;大电阻,大电容在制作上有困难,参数的精度亦难以保证;体积大,漏电,损耗显著更是致命的弱点。

一旦工作需求功能有增加,则电路复杂程度会大大增加。

1 波形发生器概述在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器。

随着集成电路的迅速发展,用集成电路可很方便地构成各种信号波形发生器。

用集成电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。

1.1波形发生器的发展状况波形发生器是能够产生大量的标准信号和用户定义信号,并保证高精度、高稳定性、可重复性和易操作性的电子仪器。

函数波形发生器具有连续的相位变换、和频率稳定性等优点,不仅可以模拟各种复杂信号,还可对频率、幅值、相移、波形进行动态、及时的控制,并能够与其它仪器进行通讯,组成自动测试系统,因此被广泛用于自动控制系统、震动激励、通讯和仪器仪表领域。

在70 年代前,信号发生器主要有两类:正弦波和脉冲波,而函数发生器介于两类之间,能够提供正弦波、余弦波、方波、三角波、上弦波等几种常用标准波形,产生其它波形时,需要采用较复杂的电路和机电结合的方法。

这个时期的波形发生器多采用模拟电子技术,而且模拟器件构成的电路存在着尺寸大、价格贵、功耗大等缺点,并且要产生较为复杂的信号波形,则电路结构非常复杂。

同时,主要表现为两个突出问题,一是通过电位器的调节来实现输出频率的调节,因此很难将频率调到某一固定值;二是脉冲的占空比不可调节。

在70 年代后,微处理器的出现,可以利用处理器、A/D/和D/ A,硬件和软件使波形发生器的功能扩大,产生更加复杂的波形。

这时期的波形发生器多以软件为主,实质是采用微处理器对DAC的程序控制,就可以得到各种简单的波形。

90 年代末,出现几种真正高性能、高价格的函数发生器、但是H P公司推出了型号为HP770S的信号模拟装置系统,它由HP8770A任意波形数字化和HP1776A波形发生软件组成。

HP8770A实际上也只能产生8 中波形,而且价格昂贵。

不久以后,Analogic公司推出了型号为Data-2020的多波形合成器,Lecroy 公司生产的型号为9100 的任意波形发生器等。

到了二十一世纪,随着集成电路技术的高速发展,出现了多种工作频率可过GHz 的DDS 芯片,同时也推动了函数波形发生器的发展,2003 年,Agilent的产品33220A能够产生17 种波形,最高频率可达到20M,2005 年的产品N6030A 能够产生高达500MHz 的频率,采样的频率可达 1.25GHz。

由上面的产品可以看出,函数波形发生器发展很快近几年来,国际上波形发生器技术发展主要体现在以下几个方面:(1)过去由于频率很低应用的范围比较狭小,输出波形频率的提高,使得波形发生器能应用于越来越广的领域。

波形发生器软件的开发正使波形数据的输入变得更加方便和容易。

波形发生器通常允许用一系列的点、直线和固定的函数段把波形数据存入存储器。

同时可以利用一种强有力的数学方程输入方式,复杂的波形可以由几个比较简单的公式复合成v=f (t)形式的波形方程的数学表达式产生。

相关文档
最新文档