地埋管地源热泵地埋管换热器最佳出口温度的确定
地源热泵系统地埋管换热器设计标准

地源热泵系统地埋管换热器设计标准
地源热泵系统地埋管换热器设计需要遵循以下标准:
1. 地埋管长度:地埋管的长度应该根据项目的热负荷来确定。
通常来说,每平方米的供热面积需要1.5到2米的地埋管长度。
2. 地下管道材料:地下管道材料应该是防腐蚀、耐压、耐高温的材料。
常见的材料有PE管、PVC管、玻璃钢管等。
3. 地下管道布局:地下管道应该布置在深度大于1米的土层中,管道间距应该不小于1米。
4. 地下管道安装:地下管道的安装应该避免出现弯曲、压扁等情况,管道与管道之间应该加装防水胶带以避免漏水。
5. 管道维护:地下管道应该有定期的维护和检测。
通常来说,每一年至少要进行一次管道的清洗和排气。
6. 管道的导热性能:地下管道应该具有较好的导热性能以保证换热效果。
7. 管道的热损失:地下管道的热损失应该较小,通常应控制在3%以内。
以上是地源热泵系统地埋管换热器设计时需要遵循的标准。
地源热泵地埋管换热器形式与布置方法

地源热泵地埋管换热器形式与布置方法摘要:地热源热泵空调供热系统的能效比可达3-5,是效益最显著的节能技术之一,地源热泵空调供热技术早在上一世纪50年代开始再欧美得到应用,在上一世纪90年代开始在中国应用。
地埋管地源热泵系统是引用最广泛的地源热泵系统形式。
但是一般建筑占地面积有限,建筑用地红线范围以内,建筑地下室之外的地埋管换热井布置面积相当有限。
要充分挖掘建筑可再生能源利用资源,必须利用建筑物下空间。
文章介绍地源热泵系统地埋管换热器形式,安全设计要点,应用案例。
指出正确的地埋管换热系统设计与施工方法,与建筑结构专业的协调配合,可以在充分利用建筑地热资源同时,不影响结构与建筑物防水安全。
一、地源热泵系统地埋管管换热器地源热泵系统是指以岩土体、地下水或地表水为低温热源,由水源热泵机组、地热能交换系统、建筑物内系统组成的供热空调系统。
根据热源体的性质,地源热泵系统可以分为地埋管地源热泵系统、地下水地源热泵系统与地表水地源热泵系统。
地埋管地源热泵系统是使用性最广泛的地源热泵系统形式。
地埋管地源热泵系统根据地埋管换热器布置方式不同分为水平埋管式与垂直埋管式,当可利用地表面积较大,浅层岩土体的温度及热物性受气候、雨水、埋设深度影响较小时,宜采用水平地埋管换热器。
否则,宜采用竖直地埋管换热器。
图1为常见的水平地埋管换热器形式,图2为新近开发的水平地埋管换热器形式,图3为竖直地埋管换热器形式。
a单或双环路 b 双或四环路 c三或六环路图1 几种常见的水平地埋管换热器形式A垂直排圈式 b水平排圈式 c水平螺旋式图2 几种水平地埋管换热器形式a单U形管b双U形管c小直径螺旋盘管d大直径螺旋盘管e立柱状 f蜘蛛状 g套管式图3 竖直地埋管换热器形式在没有合适的室外用地时,竖直地埋管换热器还可以利用建筑物的混凝土基桩埋设,即将U形管捆扎在基桩的钢筋网架上,然后浇灌混凝土,使U形管固定在基桩内,多称之为“能量桩”。
地埋管换热器根据换热单元不同又可分为单U型换热器、双U型换热器、W 型换热器等。
地源热泵系统U型地埋管换热器的选型要点及施工技术

地源热泵系统U型地埋管换热器的选型要点及施工技术摘要:本文在工程施工的基础上,对该系统的选型及施工技术进行了探讨与研究,其中包括地下换热器的布置形式、环路方式及管材的选择,管径、管长及数目、钻孔间距确定,管内传热介质、钻孔深度、回填料的选择等。
此文可以应用在该系统的设计、施工中,对实际工程有较强的指导意义。
关键词:地源热泵;地下换热器;选型;施工技术1、概述地源热泵是指将传统空调器的冷凝器与蒸发器延伸至地下,使其与浅层地能(浅层土壤、地下水和地表水)进行热交换来提供冷热源,或是通过中间介质(如水或以水为主要成份的防冻液)在封闭的环路里在土壤中循环流动,实现利用浅层地能为建筑物内供暖或制冷的一种节能、环保型的新能源技术。
地表浅层地热资源的温度一年四季相对稳定,是热泵很好的供热热源和供冷能源。
地源热泵系统可分为地下换热器的设计施工和地上设备管道的设计施工两部分,地上设备管道的安装施工与设计和传统暖通空调设备的设计与安装并无太大差别,而地下换热器的设计与施工比较有特点,作者结合无锡某项目地源热泵工程的设计与施工的特点,对地埋管换热器的的设计选型及施工问题进行研究与经验讨论。
2、U型地埋管换热器的选型埋管处地质情况和岩土传热性能是地埋管换热器设计选型与施工的重要参数。
设计地埋管换热器时,首先需要确定当地的岩土类型、导热系数、比热容等参数。
2.1 地埋管的管材、管径与传热介质2.1.1 地埋管管材地源热泵系统地埋管管材的选择非常重要。
一般来说,一旦将地埋管换热器埋入地下后,基本就不可能进行维修或更换。
地埋管应采用化学稳定性好、耐腐蚀、导热系数大、流动阻力小的塑料管材及管件,我国国家标准[1]给出了地埋管换热器地埋管管道外径尺寸标准和管道的压力级别,地埋管外径及壁厚可按规定选用。
2.1.2 管径的选择原则管径的选择应根据热泵本身的换热器的流量要求以及选用的串联或并联的形式确定。
埋管管径不能太大,要保证管中流体的流速足够大,保证管中流体处于紊流区(Re≥2100),有利于强化流体与管壁的换热效率[2];一般并联环路用小管径,集管用大管径,地下热交换器埋管常用管径有20mm、25mm、32mm、40mm、50mm,管内流速控制在1.22m/s 以下(经验数字是0.3-1.0m/s之间),对更大管径的管道,管内流速控制在2.44m/s 以下或一般把各管段压力损失控制在4mH2O/100m 当量长度以下。
《桩基埋管地源热泵系统工程技术规程》

1 总则1.1.1为规范江苏省地源热泵桩基埋管技术应用工程的工程勘察、测试、设计、施工、验收及运行维护等技术工作,使地源热泵桩基埋管工程符合安全适用、技术先进、经济合理、确保质量、节能环保与减排的要求,制定本规程。
1.1.2本规程适用于江苏省内采用桩基埋管地源热泵换热系统的建筑工程。
1.1.3采用本规程进行地源热泵桩基埋管工程勘察、测试、设计、施工、验收及运行维护除执行本规程外,尚应符合国家和江苏省现行其它标准的要求。
12 2 术语和符号2.1 术 语2.1.1 桩基埋管换热器 Pile foundation buried heat exchange pipe埋设于桩内的密闭循环管组构成的换热器,根据管路安装型式不同,常见的有垂直U 型桩基埋管换热器、W 型桩基埋管换热器和螺旋型桩基埋管换热器等。
2.1.2 埋管桩基(能源桩) Energy pile通过在建筑桩基础中埋设换热器装置(即桩基埋管),进行浅层低温地热能交换,起到基础承载和换热的双重功能的桩基础,也称为能源桩。
2.1.3 桩基埋管换热系统 Heat transfer system of buried pipe pile foundation传热介质通过桩基埋管换热器与岩土体进行热交换的地热能交换系统。
2.1.4 热响应测试 Geo-thermal response test通过测试仪器,对地埋管换热器或能源桩进行一定时间内的连续加热或取热,以获得岩土体或桩基埋管(能源桩)综合热物性参数的试验。
2.1.5 荷载-温度联合测试 Mechanical-thermo test for energy pile在埋管桩基静载试验同时进行一定时间内的连续加热或取热,以确定埋管桩基单桩热-力耦合作用承载力的试验方法。
2.1.6岩土综合导热系数 Geothermal comprehensive thermal conductivity parameter of the earth通过热响应测试得到的钻孔埋管或埋管桩基(能源桩)穿越岩土层的综合导热系数。
地埋管地源热泵地埋管换热器最佳出口温度的确定_secret

b
t(rb ,
)-t0=
ql 4
I ( rb2 4a
)
(2)
式中 I (x) 分;t0
为大地初始温度;ql
为线热源提供的恒定热流;
a 为土壤的导温系数。
孔壁 rb处的过余温度为
b
t(rb ,
)-t0=
ql 4
I ( rb2 4a
)
(3)
根据能量守恒方程,联立式(1)~(3),用 MATLAB 编程即可以求出单位管长每一天
土壤源热泵 98.16 14.72 10.8 15 138.68
注:初投资中未包括土壤源热泵地下换热器的投资。
(万元)
空气源热泵 166 24.9 0 16
206.9
地下换热器的投资费用可以按 80 元/米井深来计算,不同的地下换热器夏季出口温度
对应的土壤源热泵总投资见表 2。
5.2 运行成本的比较
0
2
4
6
8
10
地热换热器设计出口温度(℃)
图 4 冬季埋管长度百分比
夏季耗电量(kwh)
4.5
4
3.5
3
2.525
30
35
40
45
地热换热器设计出口温度(℃)
换热器设计出口温度(℃) 图 5 夏季耗电量与出口温度的关系
由于上海地区的夏季冷负荷远远大于冬季的热负荷,地下换热器的设计是根据夏季冷
负荷来选定的。当地下换热器的夏季出口温度选定的时候,压缩机的型号就能确定下来,
40
60
80
100
运行天数(天)
图 2 冬季单位管长换热量
埋管长度百分比(%)
100 90 80 70 60 50 40 26 28 30 32 34 36 38 40 42
《地源热泵系统工程技术规范》GB50366-2005解读

国家标准《地源热泵系统工程技术规范》GB50366-2005设计要点解析中国建筑科学研究院空气调节研究所邹瑜徐伟冯小梅摘要:本文针对不同地源热泵系统的特点,结合《规范》条文,对地源热泵系统设计特点、方法及要点进行了深入分析,为地源热泵系统的设计提供指导。
关键词:地源热泵系统、设计要点、系统优化1 前言实施可持续发展能源战略已成为新时期我国能源发展的基本方针,可再生能源在建筑中的应用是建筑节能工作的重要组成部分。
2006年1月1日《可再生能源法》正式实施,地源热泵系统作为可再生能源应用的主要途径之一,同时也是最利于与太阳能供热系统相结合的系统形式,近年来在国内得到了日益广泛的应用。
地源热泵系统利用浅层地热能资源进行供热与空调,具有良好的节能与环境效益,但由于缺乏相应规范的约束,地源热泵系统的推广呈现出很大盲目性,许多项目在没有对当地资源状况进行充分评估的条件下就匆匆上马,造成了地源热泵系统工作不正常,为规范地源热泵系统的设计、施工及验收,确保地源热泵系统安全可靠的运行,更好的发挥其节能效益,由中国建筑科学研究院主编,会同13个单位共同编制了《地源热泵系统工程技术规范》(以下简称规范)。
该规范现已颁布,并于2006年1月1日起实施。
由于地源热泵系统的特殊性,其设计方法是其关键与难点,也是业内人士普遍关注的问题,同时也是国外热点课题,在新颁布的《规范》中首次对其设计方法提出了具体要求。
为了加深对规范条文的理解,本文对其部分要点内容进行解析。
2 《规范》的适用范围及地源热泵系统的定义2.1 《规范》的适用范围该《规范》适用于以岩土体、地下水、地表水为低温热源,以水或添加防冻剂的水溶液为传热介质,采用蒸气压缩热泵技术进行供热、空调或加热生活热水的系统工程的设计、施工及验收。
它包括以下两方面的含义:(1)“以水或添加防冻剂的水溶液为传热介质”,意旨不适用于直接膨胀热泵系统,即直接将蒸发器或冷凝器埋入地下的一种热泵系统。
地埋管地源热泵系统的热平衡

地埋管地源热泵系统的热平衡地埋管地源热泵(ground-coupled heat pump)系统的研究和项U实施是我国地源热泵(ground source heat pump)系统三种形式中开始最晚的一种,其造价和运行费用相对也较地下水地源热泵(ground water heat pump)和地表水地源热泵(surface water heat pump)系统要稍高。
open loop systemL. ___________2 wells water body但这些并不妨碍地埋管地源热泵的迅速发展,原因在于地埋管地源热泵采用地埋管换热器(ground heat exchanger)内循环水换取上壤中贮存的温差能,没有对自然水源的开采和污染的担心,因此适用性更广,安全稳定性更高,尤其在夏热冬冷地区不失为一种新的空调冷热源。
closed loop system与欧美地埋管地源热泵主要采用水平埋管式地埋管换热器、通过小型热泵机组承担别墅等小型住宅空调的方式不同,我国的地埋管地源热泵系统主要服务对象是规模较大的多层住宅和办公建筑,地埋管换热器一般采用在一定区域内密集布置的竖直单U甚至双U形地埋管换热器群,近年来还出现了利用建筑物地基内的工程桩或灌注桩密集布置地埋管换热器群的新方式。
这些密集型竖直埋管的方式虽然能较好地适应中国地少人多的国情,但是也带来了技术上的隐患,那就是地埋管换热器布置范围内的土壤热失衡问题,它已经引起了各方面对此技术长期运行效果越来越多的担心。
1、土壤热平衡问题的由来地埋管换热器夏季累讣向土壤的放热量与冬季从土壤的取热量一般并不一致,这样长期取放热量不平衡的堆积会超过土壤自身对热量的扩散能力,造成其温度不断偏离初始温度’并导致冷却水温度随之变化和系统运行效率逐年下降,这即通常所说的地埋管地源热泵热失衡问题。
在我国东北以供暖为主的地区,理论上也可能出现地埋管地源热泵连年运行后土壤温度下降,但以供暖为主的系统采用辅助热源的比例较高,实际出现土壤失衡的可能性较小。
地埋管地源热泵的设计

浅谈地埋管地源热泵的设计摘要:本文将论述地埋管地源热泵系统的设计体要点。
关键词:“卡诺循环”“制热系数”“单口井换热量”“换热热阻”中图分类号: th3 文献标识码: a 文章编号:1.引言近年来,地埋管地源热泵系统在建筑工程中得到广泛应用。
一提到地埋管地源热泵系统,人们立刻想到“节能”、“环保”、“绿色”、“减排”,但是根据工程回访(京津地区),很多业主反应地埋管地源热泵系统没有想象中的那么节能。
本文将追根溯源,讨论地埋管地源热泵系统为什么节能,怎样才能节能,提出建筑物地埋管地源热泵系统比传统空调系统经济节能是靠精细、合理、优化的设计来保证的。
2.地埋管地源热泵系统的概念地埋管地源热泵系统是一种以大地作为冷、热源,以水溶液作为媒介,通过垂直或水平封闭管路与大地交换热量,并把交换的热量提供给地源热泵机组,维持地源热泵机组正常工作,向建筑物供冷或供热的集中空调系统。
在冬季,地埋热泵系统通过埋在地下的封闭管道(亦称地下换热系统)从大地收集自然界热量,而后由环路中的循环水溶液把热量带到室内,再由室内的地源热泵系统提升热的品位,把热量释放到室内。
在夏季,为达到给室内降温目的,地源热泵系统将从室内吸收的多余热量排入水溶液环路中,再经过地下换热系统,讲多余热量释放给大地。
在一年里,对大地而言,冬季大地在放热,夏季大地在蓄热,这种独特的工况使地埋管地源热泵系统成为跨季节的蓄能空调系统。
3.热泵原理和根本优势地埋管地源热泵系统首先是一种热泵技术。
热泵技术的基本原理基于卡诺循环,它采用电能(或其它方式)驱动,耗功n,从低温热源中吸取热量q’,并通过高温热源输送热量q,我们把输送的热量与驱动热泵消耗的功之比称为制热系数,即。
我国火力发电网输送到用户的综合效率为33%左右,理论上只要工程中地源热泵制热系数>3.3 , 热泵供暖对一次能源的利用率>1.0。
实际上,大多数情况下,地源热泵制热系数是可以达到 3.0~3.5 的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地埋管地源热泵地埋管换热器最佳出口温度的确定1 前 言土壤源热泵系统是利用土壤的蓄冷(热)性能,通过中间介质在封闭的地下换热器中循环流动,从而实现与土壤的热交换。
冬季通过热泵将大地中的热量取出对建筑物供暖,同时贮存冷量,以备夏用;夏季通过热泵将建筑物的热量释放到地下,对建筑物进行降温,同时贮存热量,以备冬用。
由于其技术上的优势,推广土壤源热泵具有明显的节能和环保效益。
根据文献[1],对于土壤源热泵竖直地下埋管换热器,夏季的设计出口温度一般为土壤温度加上11~14℃,冬季的设计出口温度为土壤温度减去8~11℃。
而山东建工学院报告厅地源热泵系统的测试表明[2],在达到准稳定工况时,夏季地下换热器的出口设计温度为土壤温度加上20~25℃,冬季的设计出口温度为土壤温度减去10~15℃。
由以上可知,两者给出的夏季和冬季设计出口温度均相差较大,而且都没有从土壤源热泵系统经济性的角度加以考虑。
实际上,地下换热器设计出口温度的高低对埋管长度以及热泵机组的运行效率都有较大的影响。
夏季,随着地下换热器的设计出口温度的升高,所需要的地下埋管长度变少,系统的初投资降低,而热泵机组的运行效率降低,运行成本就升高;冬季正好相反。
这就存在一个最佳出口温度问题。
如何确定地下换热器的最佳设计出口温度,使之在满足设计条件下土壤源热泵系统的经济成本最低,这将是本文讨论的重点。
2 数学模型地下换热器的设计是土壤源热泵系统设计的最重要部分。
在目前的工程设计中,地下埋管长度主要是根据建筑物的峰值冷负荷或热负荷确定出换热器的放热量或吸热量,然后确定地下换热器的布置方式,再根据手册中给定的单位管长或单位埋管深度的放热量即可求出所需的地下埋管长度。
这种方法简单,但是没有考虑当地的气候条件,岩土体及回填材料热物性的影响,会使设计结果不准确。
竖直地下换热器与土壤间的传热过程较复杂,对于工程实际应用的模型,可以在空间上以钻孔壁为界,把地热换热器的传热分为两个区域,分别采用不同的简化假定进行分析研究。
对于钻孔壁以内的传热过程,由于其几何尺寸和热容量相对较小,因此其传热过程可近似按稳态传热过程处理,根据文献[3]建立的二维模型,钻孔内的热阻可表示为:42442111110.5{[]}2222b b b b b b b b p r r r r R In In In In r D r D r h k r λλπλλλππ-=⋅+++++- (1)式中 λb ——钻孔回填材料的热导率;λ——钻孔周围土壤的热导率; r b ——钻孔半径;r 2——U 型埋管管子的外半径; r 1——U 型埋管管子的内半径;D ——U 型管支管中心至钻孔中心之间的距离; k p ——U 型塑料管的热导率。
h ——循环液的换热系数对于钻孔壁至外部土壤之间的传热应按非稳态传热处理,在工程计算中常可用线热源模型进行分析研究[4,5]。
在线源模型中,将垂直地下埋管看作一均匀的线热源,并假设该热源沿深度方向单位长度的散热量为常量,即具有恒定的热流,将管子周围的大地土壤连同回填部分看作是一无限大的实体。
土壤中的温度分布可以写为:20(,)()44l b b b q r t r t I a θτπλτ=-= (2)式中()sxe I x ds s-∞=⎰,称为指数积分;0t 为大地初始温度;l q 为线热源提供的恒定热流;a 为土壤的导温系数。
孔壁r b 处的过余温度为 20(,)()44l b b b q r t r t I a θτπλτ=-= (3) 根据能量守恒方程,联立式(1)~(3),用MA TLAB 编程即可以求出单位管长每一天的换热量以及供冷(热)季节的平均换热量。
3 地下换热器出口温度对埋管长度的影响地下换热器中循环液出口温度对垂直U 型管的单位管长换热量有很大的影响。
在夏季,循环液出口温度越高,单位管长换热量越大,所需要的埋管总长度则越短,而冬季正好相反。
地源热泵的技术规程指出,土壤源热泵系统地下换热器中循环液的设计平均温度夏季通常可选为37℃,冬季为-2~5℃。
一般考虑冬夏季进出口之间的换热温差为5℃左右,因此夏季出口温度一般可选为35℃,冬季为0~8℃。
以上海地区为例,土壤的热导率λ=1.6W/(m·k),土壤的导温系数a =9.1⨯10-7m 2/s ,深层土壤温度t 0=15.8℃。
根据所编程序得出单位管长换热量与地下换热器出口温度、运行时间、土壤热物性、埋管间距等各种变化参数的关系。
图1、图2分别为夏季、冬季不同出口温度下单位管长换热量与运行时间的变化关系;图3、图4分别表示夏季与冬季不同的地下换热器设计出口温度相对于出口温度为26℃和10℃时的埋管长度百分比。
由图1和图2可知,单位管长换热量随运行时间的增加而逐渐减少,在运行前5天内减小的幅度较大,这是由于运行时间较短,U 型管与土壤之间的非稳态传热引起的,随着时间的增加,传热过程逐渐趋于稳态,单位管长换热量也逐渐趋于稳定值。
图3和图4可知,夏季地下换热器设计出口温度增加,所需要的埋管长度减少,并且埋管长度的变化幅度随着出口温度的增加而减小,而冬季正好相反。
4 地下换热器出口温度对系统耗功量的影响以上海地区10000m 2办公建筑为例,用改良温频法(BIN )算出建筑物全年的能耗,采用的土壤源热泵系统为变流量系统。
当设计的出口温度确定后,压缩机的设计工况就可以确定,然后分别根据所选压缩机和水泵的部分负荷性能,拟合出任一温度下的压缩机和水泵的耗功率,用两者之和分别乘以该温度对应的小时数,最后相加就得出土壤源热泵系统总的耗电量。
图5为夏季供冷时土壤源热泵系统耗电量与地下换热器设计出口温度的关系。
图1 夏季单位管长换热量图2 冬季单位管长换热量图3 夏季埋管长度百分比图4 冬季埋管长度百分比图5 夏季耗电量与出口温度的关系由于上海地区的夏季冷负荷远远大于冬季的热负荷,地下换热器的设计是根据夏季冷负荷来选定的。
当地下换热器的夏季出口温度选定的时候,压缩机的型号就能确定下来,在满足冬季负荷的情况下,地下换热器冬季出口温度变化范围不大,因此本文不予逐一讨论与夏季设计出口温度相对应的冬季出口温度的变化情况。
5 经济性分析对上述办公楼空调系统采用三种方案:(1)冷水机组+燃气锅炉;(2)土壤源热泵机组;(3)空气源热泵机组。
现分别对这三种方案从初投资、年运行费用方面进行经济性分析。
5.1 初投资的比较由于三种冷热源系统方案中室内系统部分基本上相同,因此本文比较的初投资只是各系统冷热源部分的初投资,并未考虑室内部分的投资。
各方案的初投资见表1。
系统方案 冷水机组加燃气锅炉土壤源热泵 空气源热泵 设备费用123.66 98.16 166 安装费 30.92 14.72 24.9 机房建设费 27.6 10.8 0 配电费用 15 15 16 初投资197.18138.68206.9注:初投资中未包括土壤源热泵地下换热器的投资。
地下换热器的投资费用可以按80元/米井深来计算,不同的地下换热器夏季出口温度对应的土壤源热泵总投资见表2。
5.2 运行成本的比较上海市峰时段(8:00~11:00)电价为0.946元/kWh,平时段(11:00~18:00)电价为0.569元/ kWh 。
该办公建筑内空调系统的运行时间为8:00~18:00,根据运行时间的比例,可以取空调系统运行时间段内的平均电价为0.6821元/ kWh 。
夏季冷水机组的运行费用为20.42万元,冬季燃气锅炉的运行费用为17.4万元,则冷水机组加燃气锅炉的年运行费用为20.42+17.4=37.82万元。
空气源热泵运行费用夏季为25.16万元,冬季为10.55万元,年运行费用为25.16+10.55=35.71万元。
不同的地热换热器夏季出口温度对应的土壤源热泵年运行成本见表2。
表2 不同出口温度下土壤源热泵的总投资和年运行费用 (万元) 出口温度(℃) 26 28 30 32 34 363840 42 总投资 342.6 309.1 288.9 272.7 260.1 249.3 240.3 232.7 226.1 年运行费用24.626.227.128.830.332.5 34.335.837.25.3 费用年值法费用年值法是将项目初投资的资金现值按其时间价值等额分摊到各使用年限中去的动态经济分析方法。
费用年值法针对使用寿命期不同的对比方案进行评价,其中费用年值最小者为最佳方案。
表3列出了各种方案的使用寿命。
表3 各系统使用寿命系统分类使用寿命(年)冷水机组加燃气锅炉系统15 土壤源热泵系统 20 空气源热泵系统15费用年值法的计算公式为[6]:0(1)(1)1mmi i AW C C i +=⨯++- (4) 式中 AW ——费用年值(万元);C 0——初投资,包括设备购置费等(万元);i ——利率,一般取8%;m ——使用寿命(年),见表3 ;C ——年运行费用(万元)。
根据上式可以计算出不同系统的费用年值,图6给出了土壤源热泵系统在不同的出口温度下的费用年值。
由图6可知,上海地区使用空气源热泵系统比冷水机组加燃气锅炉系统经济,而土壤源热泵系统在地热换热器出口温度在25℃~41℃时比其他两种系统经济,尤其是出口温度在30℃~35℃时其经济性最好。
因此可以确定上海地区土壤源热泵地下换热器夏季最佳出口温度为30℃~35℃,即为土壤温度加上14~19℃。
当夏季出口温度确定后,在满足冬季设计及运行工况的条件下,出口温度越高,冬季运行成本越小,系统越经济。
本文选择的冬季出口温度为6℃~10℃,即为土壤温度减去6~10℃。
图6 三种方案的费用年值6 结论○1地下换热器出口温度对系统初投和运行成本都有较大的影响,夏季制冷时,出口温度越高,单位管长换热量越大,系统初投资减少,但是运行成本增加,冬季正好相反。
○2根据费用年值法的评价,上海地区冷热源系统的经济性从好到坏分别是土壤源热泵系统、空气源热泵系统、冷水机组+燃气锅炉系统。
○3上海地区是以冷负荷设计为主,因此土壤源热泵系统的经济性主要受地下换热器夏季出口温度的影响。
通过分析得出,上海地区地下换热器的夏季最佳出口温度为30℃~35℃,而冬季的出口温度受夏季最佳出口温度的影响,大致范围为6℃~10℃。