2022年各类太阳能电池特性对比表

合集下载

太阳能电池温度特性图文说明

太阳能电池温度特性图文说明

太阳能电池温度特性图文说明
除了太阳能电池的光谱特性外,温度特性也是太阳能电池的一个重要特征。

对于大部分太阳能电池,随着温度的上升,短路电流上升,开路电压减少,转换效率降低。

下图3-6为非晶硅太阳能电池片输出伏安特性随温度变化的一个例子。

0°C
25°C 50°C 75°C
I(A)P(V)
0°C
25°C 50°C 75°C I-V 特性曲线
P-V 特性曲线

3-6不同温度时非晶硅太阳能电池片的输出特性
下表2给出了单晶硅、多晶硅、非晶硅太阳能电池输出特性的温度系数(温度变化1℃对应参数的变化率,单位为:%/℃)测定的一次实验结果。

可以看出,随着温度变化开路电压变小,短路电流略微增大,导致转换效率的变低。

单晶硅与多晶硅转换效率的温度系数几乎相同,而非晶硅因为它的间隙大而导致它的温度系数较低。

表3-3 单晶硅与非晶硅电池特性
(表中的数值表示温度变化1℃的变化率(%/℃))
在太阳能电池板实际应用时必须考虑它的输出特性受温度的影响,特别是室外的太阳能电池,由于阳光的作用,太阳能电池在使用过程中温度可能变化比较大,因此温度系数是室外使用太阳能电池板时需要考虑的一个重要参数。

太阳能电池片效率功率对照表

太阳能电池片效率功率对照表

太阳能电池片效率功率对照表一、引言二、太阳能电池片的效率和功率1. 效率:太阳能电池片的效率指的是将太阳辐射能转化为电能的能力。

一般来说,太阳能电池片的效率越高,其转换太阳能为电能的能力越强。

太阳能电池片的效率通常以百分比表示,常见的效率范围为15%至25%。

2. 功率:太阳能电池片的功率指的是单位时间内产生的电能。

功率是电流和电压的乘积,通常以瓦特(W)表示。

太阳能电池片的功率与其效率和面积有关,功率越高意味着太阳能电池片单位面积产生的电能越多。

三、太阳能电池片效率功率对照表以下是一些常见太阳能电池片的效率和功率数据:1. 单晶硅太阳能电池片:单晶硅太阳能电池片是目前应用最广泛的太阳能电池片之一。

其效率通常在15%至22%之间,功率在200W 至350W之间。

2. 多晶硅太阳能电池片:多晶硅太阳能电池片是制造成本相对较低的一种太阳能电池片。

其效率通常在13%至18%之间,功率在150W至250W之间。

3. 薄膜太阳能电池片:薄膜太阳能电池片具有较高的柔韧性和透明性,可以应用于一些特殊场景。

其效率通常在10%至15%之间,功率在100W至200W之间。

4. 高效率太阳能电池片:除了上述常见太阳能电池片外,还有一些高效率太阳能电池片在不断研发中。

例如,钙钛矿太阳能电池片的效率已经超过25%,显示出很大的应用潜力。

四、太阳能电池片的应用太阳能电池片广泛应用于各种领域,包括太阳能发电系统、太阳能充电器、太阳能灯具等。

随着太阳能技术的不断进步和成本的不断降低,太阳能电池片的应用也越来越广泛。

太阳能发电系统是太阳能电池片最常见的应用之一。

通过将太阳能电池片组装成太阳能电池板,并与逆变器和储能系统等设备连接,可以将太阳能转化为电能供家庭或工业使用。

太阳能充电器是另一种常见的太阳能电池片应用。

太阳能充电器利用太阳能电池片将太阳能转化为电能,可以为手机、平板电脑、摄像机等电子设备提供绿色能源充电。

太阳能灯具是利用太阳能电池片将太阳能转化为电能供灯具使用的产品。

各类太阳能电池的比较

各类太阳能电池的比较

SHORT COMMUNICATIONResearchSolar Cell Efficiency Tables (Version 30)Martin A.Green 1*,y ,Keith Emery 2,Yoshihiro Hisikawa 3and Wilhelm Warta 41ARC Photovoltaics Centre of Excellence,University of New South Wales,Sydney 2052,Australia 2National Renewable Energy Laboratory,1617Cole Boulevard,Golden,CO 80401,USA 3National Institute of Advanced Industrial Science and Technology (AIST),Research Center for Photovoltaics (RCPV),Central 2,Umezono 1-1-1,Tsukuba,Ibaraki,Japan 4Fraunhofer Institute for Solar Energy Systems,Department of Solar Cells –Materials and Technology,Heidenhofstr.2D-79110Freiburg,GermanyConsolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented.Guidelines for inclusion of results into these tables are outlined and new entries since January 2007are reviewed.Copyright #2007John Wiley &Sons,Ltd.key words :solar cell efficiency;photovoltaic efficiency;energy conversion efficiency Received 6June 2007INTRODUCTIONSince January 1993,‘Progress in Photovoltaics’has published six monthly listings of the highest confirmed efficiencies for a range of photovoltaic cell and module technologies.1–3By providing guidelines for the inclusion of results into these tables,this not only provides an authoritative summary of the current state of the art but also encourages researchers to seek independent confirmation of results and to report results on a standardised basis.In the present article,new results since January 2007are briefly reviewed.The most important criterion for inclusion of results into the tables is that they must have been measured by a recognised test centre listed in an earlier issue.2A distinction is made between three different eligible areas:total area;aperture area and designated illumination area.1‘Active area’efficiencies are not included.There are also certain minimum values of the area sought for the different device types (above 0Á05cm 2for a concentrator cell,1cm 2for a one-sun cell,and 800cm 2for a module).1Results are reported for cells and modules made from different semiconductors and for subcategories within each semiconductor grouping (e.g.crystalline,polycrystalline and thin film).NEW RESULTSHighest confirmed cell and module results are reported in Tables I,II and IV .Any changes in the tables from those previously published 3are set in bold type.In most cases,a literature reference is provided that describes either the result reported or a similar result.Table I summarises the best measurements for cells and submodules,Table II shows the best results for modules and Table IV shows the best results for concentrator cells and concentrator modules.Table III contains what might be described as ‘notable exceptions’.While not conformingPROGRESS IN PHOTOVOLTAICS:RESEARCH AND APPLICATIONS Prog.Photovolt:Res.Appl.2007;15:425–430Published online in Wiley InterScience ()DOI:10.1002/pip.781*Correspondence to:Martin A.Green,ARC Photovoltaics Centre of Excellence,University of New South Wales,Sydney 2052,Australia.yE-mail:m.green@.auCopyright #2007John Wiley &Sons,Ltd.to the requirements to be recognised as a class record,the cells and modules in this table have notable characteristics that will be of interest to sections of the photovoltaic community with entries based on their significance and timeliness.To ensure discrimination,Table III is limited to nominally 10entries with the present authors having voted for their preferences for inclusion.Readers who have suggestions of results for inclusion into this Table are welcome to contact any of the authors with full details.Suggestions conforming to the guidelines will be included on the voting list for a future issue.(A smaller number of ‘notable exceptions’for concentrator cells and modules additionally is included in Table IV ,as are results under a recently proposed low aerosol optical depth direct-beam spectrum 4).This issue of the tables has some exceptional results to report.The first new result is reported in Table I where the 18Á8%result for a 1cm 2CdS/Cu(In,Ga)Se 2polycrystalline cell 5fabricated by the National RenewableTable I.Confirmed terrestrial cell and submodule efficiencies measured under the global AM1Á5spectrum (1000W/m 2)at 258CClassification ÃEffic.y (%)Area z (cm 2)V oc (V)J sc (mA/cm 2)FF x (%)Test centre ô(and date)DescriptionSiliconSi (crystalline)24Á7Æ0.54Á00(da)0Á70642Á282Á8Sandia (3/99)UNSW PERL 9Si (multicrystalline)20Á3Æ0.51Á002(ap)0Á66437Á780Á9NREL (5/04)FhG-ISE 10Si (thin film transfer)16Á6Æ0.44Á017(ap)0Á64532Á878Á2FhG-ISE (7/01)U.Stuttgart (45m m thick)11Si (thin film submodule)9Á8Æ0Á396Á3(ap)0Á487ÃÃ27Á0ÃÃ74Á5Sandia (8/06)CSG Solar (1-2m m on glass;20cells)12III–V CellsGaAs (crystalline)25Á1Æ0Á8 3.91(t)1Á02228Á287Á1NREL (3/90)Kopin,AlGaAs window 13GaAs (thin film)24Á5Æ0Á51Á002(t)1Á02928Á882Á5FhG-ISE (5/05)Radboud U.,NL 14GaAs (multicrystalline)18Á2Æ0Á54Á011(t)0Á9942379Á7NREL (11/95)RTI,Ge substrate 15InP (crystalline)21Á9Æ0Á74Á02(t)0Á87829Á385Á4NREL (4/90)Spire,epitaxial 16Thin film chalcogenide CIGS (cell)18Á8Æ0Á61Á00(ap)0Á7033478Á7FhG-ISE (8/06)NREL,CIGS on glass 5CIGS (submodule)16Á6Æ0Á416Á0(ap)0Á661ÃÃ33Á4ÃÃ75Á1FhG-ISE (3/00)U.Uppsala,4serial cells 17CdTe (cell)16Á5Æ0Á5yy1Á032(ap)0Á84525Á975Á5NREL (9/01)NREL,mesa on glass 18Amorphous/Nanocrystalline Si Si (amorphous)zz 9Á5Æ0Á31Á070(ap)0Á85917Á563NREL (4/03)U.Neuchatel 19Si (nanocrystalline)10Á1Æ0Á21Á199(ap)0Á53924Á476Á6JQA (12/97)Kaneka (2m m on glass)20Photochemical Dye sensitised10Á4Æ0Á31Á004(ap)0Á72921Á865Á2AIST (8/05)Sharp 21Dye sensitised (submodule)6Á3Æ0Á226Á5(ap)6Á1451Á760Á4AIST (8/05)Sharp 22OrganicOrganic polymer xx 3Á0Æ0Á11Á001(ap)0Á5389Á6852Á4AIST (3/06)Sharp,fullerene derivative 23Multijunction devices GaInP/GaAs/Ge 32Á0Æ1Á53Á989(t)2Á62214Á3785NREL (1/03)Spectrolab (monolithic)GaInP/GaAs30Á34Á0(t)2Á48814Á2285Á6JQA (4/96)Japan Energy (monolithic)24GaAs/CIS (thin film)25Á8Æ1Á34Á00(t)———NREL (11/89)Kopin/Boeing (4terminal)25a-Si/m c-Si (thin submodule)ôô11Á7Æ0Á414Á23(ap)5Á4622Á9971Á3AIST (9/04)Kaneka (thin film)26ÃCIGS ¼CuInGaSe 2;a-Si ¼amorphous silicon/hydrogen alloy.yEffic.¼efficiency.z(ap)¼aperture area;(t)¼total area;(da)¼designated illumination area.xFF ¼fill factor.ôFhG-ISE ¼Fraunhofer Institut fu¨r Solare Energiesysteme;JQA ¼Japan Quality Assurance;AIST ¼Japanese National Institute of Advanced Industrial Science and Technology.ÃÃReported on a ‘per cell’basis.yyNot measured at an external laboratory.zzStabilized by 800h,1sun AM1Á5illumination at a cell temperature of 508C.xxStability not investigated.ôôStabilised by 174h,1sun illumination after 20h,5sun illumination at a sample temperature of 508C.Copyright #2007John Wiley &Sons,Ltd.Prog.Photovolt:Res.Appl.2007;15:425–430DOI:10.1002/pip426M.A.GREEN ET AL.Energy Laboratory (NREL),reported in the previous version of these Tables,3has now been confirmed at an external laboratory.An identical efficiency,the highest ever for a polycrystalline thin-film cell of this area,was measured at the Fraunhofer Institute for Solar Energy Systems (FhG-ISE).The second new result appears in Table II where an efficiency of 19Á7%is reported on an aperture area basis for a large crystalline silicon module fabricated by SunPower using cells from a commercial production line,with module efficiency measured at NREL.6On a total area basis,including module frame,efficiency was still above 19%.A third new result is reported in Table III,‘notable exceptions’.An efficiency of 33Á8%is reported for a small area (0Á25cm 2)GaInP/GaAs/GaInAs cell 7fabricated and measured by NREL under the one-sun global spectrum.This cell has too small an area to be considered as an outright record,but shows the large potential for future improvement with this technology.Table III.‘Notable exceptions’:‘Top ten’confirmed cell and module results,not class records (Global AM1Á5spectrum,1000W/m 2,258C).Classification ÃEffic.y (%)Area z (cm 2)V oc (V)J sc (mA/cm 2)FF (%)Test centre(and date)DescriptionCells (silicon)Si (MCZ crystalline)24Á5Æ0Á54Á0(da)0Á70441Á683Á5Sandia (7/99)UNSW PERL,SEH MCZ substrate 33Si (moderate area)23Á7Æ0Á522Á1(da)0Á70441Á581Á0Sandia (8/96)UNSW PERL,FZ substrate 27Si (large FZ crystalline)21Á8Æ0Á7147Á4(t)0Á67740Á080Á6FhG-ISE (3/06)SunPower FZ substrate 34Si (large CZ crystalline)21Á8Æ0Á5100Á4(t)0Á71838Á479Á0AIST (4/06)Sanyo HIT,n-type CZ substrate 35Si (large multicrystalline)18Á1Æ0Á5137Á7(t)0Á63636Á977Á0FhG-ISE (8/05)U.Konstanz,laser grooved 36Cells (other)GaInP/GaInAs/GaInAs (tandem)33Á8Æ2Á0ô0Á25(ap)2Á96013Á186Á8NREL (1/07)NREL,monolithic 7CIGS (thin film)19Á5Æ0Á60Á410(ap)0Á69335Á379Á4FhG-ISE (9/04)NREL,CIGS on glass 37a-Si/a-Si/a-SiGe (tandem)12Á1Æ0Á70Á27(da)2Á2977Á5669Á7NREL (10/96)USSC stabilised (monolithic)38Photoelectrochemical 11Á1Æ0Á30Á219(ap)0Á73620Á972Á2AIST (3/06)Sharp,dye sensitised 21Organic polymer4Á8Æ0Á2x 0Á142(ap)0Á8599Á0462Á1NREL (7/05)Konarka,polymer:PCBM blend 39,40ÃCIGS ¼CuInGaSe 2.yEffic.¼efficiency.z(ap)¼aperture area;(t)¼total area;(da)¼designated illumination area.xStability not investigated.ôNot measured at an external laboratory.Table II.Confirmed terrestrial module efficiencies measured under the global AM1Á5spectrum (1000W/m 2)at a celltemperature of 258CClassification ÃEffic.y (%)Area z (cm 2)V oc (V)I sc (A)FF x (%)Test centre (and date)DescriptionSi (crystalline)22Á7Æ0.6778(da)5Á603Á9380Á3Sandia (9/96)UNSW/Gochermann 27Si (large crystalline)19Á7Æ0Á712082(ap)48Á66Á3676Á9NREL (5/07)SunPower 6Si (multicrystalline)15Á3Æ0Á4ô1017(ap)14Á61Á3678Á6Sandia (10/94)Sandia/HEM 28Si (thin-film polycrystalline)8Á2Æ0Á2661(ap)25Á00Á31868Á0Sandia (7/02)Pacific Solar (1-2m m on glass)29CIGSS 13Á4Æ0Á73459(ap)31Á22Á1668Á9NREL (8/02)Showa Shell (Cd free)30CdTe10Á7Æ0Á54874(ap)26Á213Á20562Á3NREL (4/00)BP Solarex 31a-Si/a-SiGe/a-SiGe (tandem)ÃÃ10Á4Æ0Á5905(ap)4Á3533Á28566Á0NREL (10/98)USSC (a-Si/a-Si/a-Si:Ge)32ÃCIGSS ¼CuInGaSSe;a-Si ¼amorphous silicon/hydrogen alloy;a-SiGe ¼amorphous silicon/germanium/hydrogen alloy.yEffic.¼efficiency.z(ap)¼aperture area;(da)¼designated illumination area.xFF ¼fill factor.ôNot measured at an external laboratory.ÃÃLight soaked at NREL for 1000h at 508C,nominally 1-sun illumination.Copyright #2007John Wiley &Sons,Ltd.Prog.Photovolt:Res.Appl.2007;15:425–430DOI:10.1002/pipSOLAR CELL EFFICIENCY TABLES 427A major photovoltaic milestone is reported in Table IV ,the first solar cell to exceed 40%energy conversion efficiency.An efficiency of 40Á7%is reported at 240suns concentration (more correctly,240kW/m 2direct irradiance)under the low aerosol optical depth direct-beam spectrum 4for a triple-junction GaInP/GaInAs/Ge cell 8fabricated by Spectrolab and measured at NREL.DISCLAIMERWhile the information provided in these tables is provided in good faith,the authors,editors and publishers cannot accept direct responsibility for any errors or omissions.REFERENCES1.Green MA,Emery K,King DL,Igari S.Solar cell efficiency tables (version 15).Progress in Photovoltaics:Research and Applications 2000;8:187–196.2.Green MA,Emery K,King DL,Igari S.Solar cell efficiency tables (version 17).Progress in Photovoltaics:Research and Applications 2001;9:49–56.3.Green MA,Emery K,King DL,Hishikawa Y ,Warta W.Solar cell efficiency tables (version 29).Progress in Photovoltaics:Research and Applications 2007;15:35–40.4.Gueymard CA,Myers D,Emery K.Proposed reference irradiance spectra for solar energy systems testing.Solar Energy 2002;73:443–467.Table IV .Terrestrial concentrator cell and module efficiencies measured under the direct beam AM1Á5spectrum at a celltemperature of 258CClassificationEffic.Ã(%)Area y (cm 2)Intensity z (suns)Test centre (and date)DescriptionSingle cells GaAs 27Á8Æ1Á00Á203(da)216Sandia x (8/88)Varian,Entech cover 41Si26Á8Æ0Á81Á60(da)96FhG-ISE (10/95)SunPower back-contact 42CIGS (thin film)21Á5Æ1Á5ô0Á102(da)14NREL (2/01)NRELMultijunction cellsGaInP/GaAs/Ge (2-terminal)34Á7Æ1Á70Á267(da)333NREL (9/03)Spectrolab,monolithic SubmodulesGaInP/GaAs/Ge 27Á0Æ1Á534(ap)10NREL (5/00)ENTECH 43Modules Si20Á3Æ0Á8ô1875(ap)80Sandia (4/89)Sandia/UNSW/ENTECH (12cells)44Low-AOD spectrumGaInP/GaInAs/Ge (2-terminal)40Á7Æ2Á4ÃÃ0Á267(da)240NREL (9/06)Spectrolab,lattice-mismatched 8Si27Á6Æ1Á0ÃÃ1Á00(da)92FhG-ISE (11/04)Amonix back-contact 45‘Notable exceptions’GaAs/GaSb (4-terminal)32Á6Æ1Á70Á053(da)100Sandia x (10/89)Boeing,mechanical stack 46InP/GaInAs (3-terminal)31Á8Æ1Á6ô0Á063(da)50NREL (8/90)NREL,monolithic 47GaInP/GaInAs (2-terminal)30Á2Æ1Á20Á1330(da)300NREL/FhG-ISE (6/01)Fraunhofer,monolithic 48GaAs (high concentration)26Á2Æ1Á00Á203(da)1000Sandia x (8/88)Varian 49Si (large area)21Á6Æ0Á720Á0(da)11Sandia x (9/90)UNSW laser grooved 50ÃEffic.¼efficiency.y(da)¼designated illumination area;(ap)¼aperture area.zOne sun corresponds to direct irradiance of 1000Wm À2.xMeasurements corrected from originally measured values due to Sandia recalibration in January 1991.ôNot measured at an external laboratory.ÃÃLow aerosol optical depth direct beam AM1Á5spectrum.Copyright #2007John Wiley &Sons,Ltd.Prog.Photovolt:Res.Appl.2007;15:425–430DOI:10.1002/pip428M.A.GREEN ET AL.SOLAR CELL EFFICIENCY TABLES429 5.Contreras MA,Egaas B,Ramanathan K,Hiltner J,Swartzlander A,Hasoon F,NoufiR.Progress towards20%efficiency in Cu(In,Ga)Se polycrystalline thin-film solar cell.Progress in Photovoltaics:Research and Applications 1999;7:311–316.6.Rose D,Koehler O,Kaminar N,Mulligan B,King D.Mass production of PV modules with18%total-area efficiencyand high energy delivery per peak Watt.IEEE4th World Conference on Photovoltaic Energy Conversion,pp.2018–2023,May7–12,2006,Waikoloa,HI.7.Wanlass M,Ahrenkiel P,Albin D,Carapella J,Duda A,Emery K,Friedman D,Geisz J,Jones K,Kibbler A,Kiehl J,Kurtz S,McMahon W,Moriarty T,Olson J,Ptak A,Romero M,Ward S.Monolithic,Ultra-Thin GaInP/GaAs/GaInAs Tandem Solar Cells,4th World Conference on Photovoltaic Energy Conversion(WCEP-4),Hawaii,May2006,pp.729–732.8.King RR,Sherif RA,Law DC,Yen JT,Haddad M,Fetzer ZM,Edmondson KM,Kinsey GS,Yoon H,Joshi M,MesropianS,Cotal HL,Krut DD,Ermer JH,Karam NH.New horizons in III-V multijunction terrestrial concentrator cell research.21st European PV Solar Energy Conference,Dresden,September2006.9.Zhao J,Wang A,Green MA,Ferrazza F.Novel19.8%efficient‘‘honeycomb’’textured multicrystalline and24.4%monocrystalline silicon solar cells.Applied Physics Letters1998;73:1991–1993.10.Schultz O,Glunz SW,Willeke GP.Multicrystalline Silicon Solar Cells Exceeding20%Efficiency.Progress inPhotovoltaics:Research and Applications2004;12:553–558.11.Bergmann RB,Rinke TJ,Berge C,Schmidt J,Werner JH.Advances in monocrystalline Si thin-film solar cells by layertransfer.Technical Digest,PVSEC-12,June,2001,Chefju Island,Korea,11–15.12.Basore PA.CSG-1:manufacturing a new polycrystalline silicon PV technology.4th World Conference on PhotovoltaicEnergy Conversion(WCEP-4),Hawaii,May,2006,pp.2089–2093.13.Gale RP,McClelland RW,Dingle DB,Gormley JV,Burgess RM,Kim NP,Mickelsen RA,Stanbery BF.High-efficiency GaAs/CuInSe2and AlGaAs/CuInSe2thin-film tandem solar cells.Conference Record,21st IEEE Photovoltaic Specialists Conference,Kissimimee,May1990,53–57.14.Bauhuis GJ,Mulder P,Schermer JJ,HaverKamp EJ,vanDeelen J,Larsen PK.HighefficiencythinfilmGaAssolarcellswithimproved radiation hardness.20th European Photovoltaic Solar Energy Conference,Barcelona,June,2005;468–471.15.Venkatasubramanian R,O’Quinn BC,Hills JS,Sharps PR,Timmons ML,Hutchby JA,Field H,Ahrenkiel A,KeyesB.18.2%(AM1Á5)efficient GaAs solar cell on optical-grade polycrystalline Ge substrate.Conference Record,25thIEEE Photovoltaic Specialists Conference,Washington,May1997,31–36.16.Keavney CJ,Haven VE,Vernon SM.Emitter structures in MOCVD InP solar cells.Conference Record,21st IEEEPhotovoltaic Specialists Conference,Kissimimee,May,1990,141–144.17.Kessler J,Bodegard M,Hedstrom J,Stolt L.New world record Cu(In,Ga)Se2based mini-module:16.6%.Proceedings,16th European Photovoltaic Solar Energy Conference,Glasgow,2000,2057–2060.18.Wu X,Keane JC,Dhere RG,DeHart C,Duda A,Gessert TA,Asher S,Levi DH,Sheldon P.16.5%-efficient CdS/CdTe polycrystalline thin-film solar cell.Conf.Proceedings,17th European Photovoltaic Solar Energy Conference, Munich,22–26October2001,995–1000.19.Meier J,Sitznagel J,Kroll U,Bucher C,Fay S,Moriarty T,Shah A.Potential of amorphous and microcrystallinesilicon solar cells.Thin Solid Films2004;451–452:518–524.20.Yamamoto K,Toshimi M,Suzuki T,Tawada Y,Okamoto T,Nakajima A.Thinfilm poly-Si solar cell on glasssubstrate fabricated at low temperature.MRS Spring Meeting,April,1998,San Francisco.21.Chiba Y,Islam A,Kakutani K,Komiya R,Koide N,Han L.High efficiency dye sensitized solar cells.TechnicalDigest,15th International Photovoltaic Science and Engineering Conference,Shanghai,October,2005,665–666.22.Han L,Fukui A,Fuke N,Koide N,Yamanaka R.High efficiency of dye sensitized solar cell and module.4th WorldConference on Photovoltaic Energy Conversion(WCEP-4),Hawaii,May,2006.23.Lee H-J,Arai T,Takeuchi Y,Koide N,Ham L,Shimizu M.Improvement of efficiency of polymer solar cells withsoluble fullerene derivatives.4th World Conference on Photovoltaic Energy Conversion(WCEP-4),Hawaii,May,2006.24.Ohmori M,Takamoto T,Ikeda E,Kurita H.High efficiency InGaP/GaAs tandem solar cells.Tech.Digest,International PVSEC-9,Miyasaki,Japan,November,1996,525–528.25.Mitchell K,Eberspacher C,Ermer J,Pier D.Single and tandem junction CuInSe2cell and module technology.Conf.Record,20th IEEE Photovoltaic Specialists Conference,Las Vegas,September,1988,1384–1389.26.Yoshimi M,Sasaki T,Sawada T,Suezaki T,Meguro T,Matsuda T,Santo K,Wadano K,Ichikawa M,Nakajima A,Yamamoto K.High efficiency thinfilm silicon hybrid solar cell module on1m2-class large area substrate.Conf.Record, 3rd World Conference on Photovoltaic Energy Conversion,Osaka,May,2003,1566–1569.27.Zhao J,Wang A,Yun F,Zhang G,Roche DM,Wenham SR,Green MA.20,000PERL silicon cells for the‘‘1996World Solar Challenge’’solar car race.Progress in Photovoltaics1997;5:269–276.Copyright#2007John Wiley&Sons,Ltd.Prog.Photovolt:Res.Appl.2007;15:425–430DOI:10.1002/pip430M.A.GREEN ET AL.28.King DL,Schubert WK,Hund TD.World’sfirst15%efficiency multicrystalline silicon modules.Conf.Record,1stWorld Conference on Photovoltaic Energy Conversion,Hawaii,December,1994,1660–1662.29.Basore PA.Pilot production of thin-film crystalline silicon on glass modules.Conf.Record,29th IEEE PhotovoltaicSpecialists Conference,New Orleans,May,2002,49–52.30.Tanaka Y,Akema N,Morishita T,Okumura D,Kushiya K.Improvement of V oc upward of600mV/cell withCIGS-based absorber prepared by Selenization/Sulfurization.Conf.Proceedings,17th EC Photovoltaic Solar Energy Conference,Munich,October,2001,989–994.31.Cunningham D,Davies K,Grammond L,Mopas E,O’Connor N,Rubcich M,Sadeghi M,Skinner D,Trumbly T.Large area Apollo TM module performance and reliability.Conf.Record,28th IEEE Photovoltaic Specialists Conference, Alaska,September,2000,13–18.32.Yang J,Banerjee A,Glatfelter T,Hoffman K,Xu X,Guha S.Progress in triple-junction amorphous silicon-based alloysolar cells and modules using hydrogen dilution.Conf.Record,1st World Conference on Photovoltaic Energy Conversion,Hawaii,December,1994,380–385.33.Zhao J,Wang A,Green MA.24.5%efficiency silicon PERT cells on MCZ substrates and24.7%efficiency PERL cellson FZ substrates.Progress in Photovoltaics1999;7:471–474.34.McIntosh K,Cudzonovic M,Smith D,Mulligan W,Swanson R.The choice of silicon wafer for the production ofrear-contact solar cells.Conference.Record,3rd World Conference on Photovoltaic Energy Conversion,Osaka,May 2003,971–974.35.Maruyama E,Terakawa A,Taguchi M,Yoshimine Y,Ide D,Baba T,Shima M,Sakata H,Tanaka M.Sanyo’schallenges to the development of high-efficiency HIT solar cells and the expansion of HIT business.4th World Conference on Photovoltaic Energy Conversion(WCEP-4),Hawaii,May,2006.36.McCann M,Raabe B,Jooss W,Kopecek R,Fath P.18.1%efficiency for a large area,multi-crystalline silicon solarcell.4th World Conference on Photovoltaic Energy Conversion(WCEP-4),Hawaii,May,2006.37.Contreras MA,Ramanathan K,AbuShama J,Hasoon F,Young D,Egass B,NoufiR.Diode characteristics instate-of-the-art ZnO/CdS/CuIn(1-x)Ga x Se2solar cells.Progress in Photovoltaics2005;13:209–216.38.Yang J,Banerjee A,Sugiyama S,Guha S.Recent progress in amorphous silicon alloy leading to13%stable cellefficiency.Conf.Record,26th IEEE Photovoltaic Specialists Conference,Anaheim,September/October,1997, 563–568.39.Heeger AJ.Solar cells and light-emittingfield effect transistors:recent progress in Santa Barbara,Materials and BasicResearch Needs for Solar Energy Conversion,MRS Spring Symposium,San Francisco,April,2006.40.See .41.Kaminar NR,Liu DD,MacMillan HF,Partain LD,Ladle Ristow M,Virshup GF,Gee JM.Concentrator efficiencies of29.2%for a GaAs cell and24.8%for a mounted cell-lens assembly.20th IEEE Photovoltaic Specialists Conference,LasVegas,September,1988,766–768.42.Verlinden PJ,Swanson RM,Crane RA,Wickham K,Perkins J.A26.8%efficient concentrator point-contact solar cell.Conf.Record,13th European Photovoltaic Solar Energy Conference,Nice,October,1995,1582–1585.43.O’Neil MJ,McDanal AJ.Outdoor measurement of28%efficiency for a mini-concentrator module.Proceedings,National Center for Photovoltaics Program Review Meeting,Denver,16–19April,2000.44.Chiang CJ,Richards EH.A20%efficient photovoltaic concentrator module.Conf.Record,21st IEEE PhotovoltaicSpecialists Conference,Kissimimee,May,1990,861–863.45.Slade A,Garboushian V.27.6%efficient silicon concentrator cell for mass production.Technical Digest,15thInternational Photovoltaic Science and Engineering Conference,Shanghai,October2005,701.46.Fraas LM,Avery JE,Sundaram VS,Kinh VT,Davenport TM,Yerkes JW,Gee JM,Emery KA.Over35%efficientGaAs/GaSb stacked concentrator cell assemblies for terrestrial applications.Conf.Record,21st IEEE Photovoltaic Specialists Conference,Kissimimee,May,1990,190–195.47.Wanless MW,Coutts TJ,Ward JS,Emery KA,Gessert TA,Osterwald CR.Advanced high-efficiency concentratortandem solar cells.Conf.Record,21st IEEE Photovoltaic Specialists Conference,Kissimimee,May,1990,38–45.48.Bett AW,Baur C,Beckert R,Diimroth F,Letay G,Hein M,Muesel M,van Riesen S,Schubert U,Siefer G,SulimaOV,Tibbits TND.Development of high-efficiency mechanically stacked GaInP/GaInAs-GaSb triple-junction con-centrator solar cells.Conf.Record,17th European Solar Energy Conference,Munich,October,2001,84–87.49.MacMillan HF,Hamaker HC,Kaminar NR,Kuryla MS,Ladle Ristow M,Liu DD,Virshup GF.28%efficient GaAssolar cells.20th IEEE Photovoltaic Specialists Conference,Las Vegas,September,1988,462–468.50.Zhang F,Wenham SR,Green rge area,concentrator buried contact solar cells.IEEE Transactions on ElectronDevices1995;42:144–149.Copyright#2007John Wiley&Sons,Ltd.Prog.Photovolt:Res.Appl.2007;15:425–430DOI:10.1002/pip。

太阳能电池各电性能参数-草稿

太阳能电池各电性能参数-草稿

太阳能电池各电性能参数的本质及工艺意义⏹武宇涛⏹电性能参数主要有:V oc,Isc,Rs,Rsh,FF,Eff,Irev1,…电性能参数在生产过程中尤其是在实时的生产控制现场,非常及时地反映了整个生产线生产工艺尤其是后道工序的动态变化情况,为我们对产线的控制及生产设备工艺参数的实时调节起到了非常重要的参考作用。

从可控性难易角度来说,V oc,Rs,Rsh,主要和原材料及生产工艺的本身特征相关,与工艺现场的调控波动性关系不是特别紧密,可称之为长程可控参数。

而Isc,FF, Irev1与工艺现场的调控联系紧密,对各调控参数比较敏感,可称之为短程可控参数。

当然我们最关心的是效率Eff。

而Eff则是以上所有参数的综合表现。

太阳能电池的理论基础建立在以下几个经典公式之上:Voc=(KT/q)×ln(Isc/Io+1)Voc=(KT/q)×ln(N aNd/ni2) 12 FF=Pm/(Voc×Isc)=Vm×Im/ (Voc×Isc) 34Eff=Pm/(APin)=FF×Voc×Isc/APin=FF×Voc×Jsc/Pin 5图-1太阳能电池的I-V曲线图-2太阳能电池等效电路从上面5式我们可以看到,与效率直接相关的电性能参数主要有:FF,Voc, Isc。

在生产中我们还比较关心暗电流情况:Irev1,由1式可以看出,它与Voc有比较紧密地联系(实际也是这样的)。

为了更好地说明各参数间的联系,这里先录用几组数据如下:表-1以上P156均系LDK片源。

1,Voc由于光生电子-空穴对在内建场的作用下分别被收集到耗尽层的两端,从而形成电势。

所以我们认为Voc是内建电场即PN 结扫集电流的能力的直观表现。

由上面公式1所反映,Voc主要与电池片的参杂浓度(Nd)相关。

对于宽△Eg的电池材料,相对会有比较高的Voc;但△Eg过高,又会导致光吸收效率的迅速下降(主要是长波段响应降低),使Isc是降低,所以需要找到一个最佳掺杂深度值。

太阳能电池的材料及性能分析

太阳能电池的材料及性能分析

太阳能电池的材料及性能分析随着环保意识的日益提高,太阳能电池这种绿色能源已经成为了人们关注的重点。

太阳能电池可将太阳能转化为电能供电,减少了对传统化石能源的依赖,具备无污染、可再生等优势,在未来的能源市场中具有广阔的发展前景。

而太阳能电池的核心技术之一就是材料的选用,不同的太阳能电池材料具有不同的性能和特点,对于太阳能电池性能的提高和成本的降低都起到了关键作用。

一、硅基太阳能电池硅基太阳能电池是当前市场上最主流的太阳能电池,也是最为成熟的太阳能电池技术之一。

硅基太阳能电池主要靠p型硅和n型硅两种不同掺杂的硅材料组成。

目前硅基太阳能电池分为单晶硅太阳能电池、多晶硅太阳能电池和非晶硅太阳能电池三种类型。

硅基太阳能电池的优点是具有较高的转换效率,太阳能电池制造成本较低;缺点是材料稳定性较差,且制造过程会对环境产生污染。

此外,硅基太阳能电池的材料制造成本占整个太阳能电池系统制造成本的大部分,因此在未来硅基太阳能电池材料的成本降低势在必行。

二、薄膜太阳能电池薄膜太阳能电池相对于硅基太阳能电池来说,薄膜太阳能电池既可用于大面积太阳能电池组件的生产,也可用于具有多种复杂形态的器件的生产,具有制造成本低、重量轻、透明度高等优势。

目前主流的薄膜太阳能电池主要有铜铟镓硒(CIGS)太阳能电池、铜锌锡硫(CZTS)太阳能电池、有机太阳能电池和染料敏化太阳能电池等。

CIGS铜铟镓硒太阳能电池是目前薄膜太阳能电池中发展最为成熟的一种。

CIGS太阳能电池主要由铜、铟、镓、硒等元素组成,采用真空热蒸发技术在玻璃基板上进行涂覆、热处理、反应等工艺制造而成,具备高转换效率、长寿命等优点,但制造成本较高。

CZTS铜锌锡硫太阳能电池是一种新型的薄膜太阳能电池,在近年来得到了研究人员的广泛关注。

CZTS太阳能电池的材料成本低于CIGS材料,而且是由地球上最丰富的元素组成,具有极高的潜力和发展前景,但转换效率较低、稳定性差等问题也亟待解决。

太阳能电池各电性能参数-草稿

太阳能电池各电性能参数-草稿

太阳能电池各电性能参数的本质及工艺意义⏹武宇涛⏹电性能参数主要有:Voc,Isc,Rs,Rsh,FF,Eff,Irev1,…电性能参数在生产过程中尤其是在实时的生产控制现场,非常及时地反映了整个生产线生产工艺尤其是后道工序的动态变化情况,为我们对产线的控制及生产设备工艺参数的实时调节起到了非常重要的参考作用。

从可控性难易角度来说,Voc,Rs,Rsh,主要和原材料及生产工艺的本身特征相关,与工艺现场的调控波动性关系不是特别紧密,可称之为长程可控参数。

而Isc,FF, Irev1与工艺现场的调控联系紧密,对各调控参数比较敏感,可称之为短程可控参数。

当然我们最关心的是效率Eff。

而Eff则是以上所有参数的综合表现。

太阳能电池的理论基础建立在以下几个经典公式之上:Voc=(KT/q)×ln(Isc/Io+1)Voc=(KT/q)×ln(N aNd/ni2) 12 FF=Pm/(Voc×Isc)=Vm×Im/ (Voc×Isc) 34Eff=Pm/(APin)=FF×Voc×Isc/APin=FF×Voc×Jsc/Pin 5图-1太阳能电池的I-V曲线图-2太阳能电池等效电路从上面5式我们可以看到,与效率直接相关的电性能参数主要有:FF,Voc, Isc。

在生产中我们还比较关心暗电流情况:Irev1,由1式可以看出,它与Voc有比较紧密地联系(实际也是这样的)。

为了更好地说明各参数间的联系,这里先录用几组数据如下:在620mv左右达到了峰值。

另外通过对高Voc电池片(如E-CELL)进行QE扫描发现其长波长响应显著降低。

在现在既定工艺背景下,在没有大的工艺改动下,对产线的技术参数调整对Voc影响不会太大。

在生产中,我们曾对各种能够调节的参数进行了大量的调整,尤其是背电场和烧结温度参数方面,但结果总是很不理想,比如P156的LDK的片子其整体平均值变化范围也就是618m v±2mv左右。

太阳能电池片性能参数

太阳能电池片性能参数

太阳能电池片目录国内常用的太阳能电池片根据尺寸和单多晶可分为:太阳能电池片单晶125*125多晶156*156单晶150*150单晶103*103多晶125*125编辑本段太阳能电池片的技术参数25*125单晶电池片晶体硅太阳电池的优良性能简介:·高效率,低衰减,可靠性强;·先进的扩散技术,保证了片间片内的良好均匀性,降低了电池片之间的匹配损失;·运用先进的管式PECVD成膜技术,使得覆盖在电池表面的深蓝色氮化硅减反射膜致密、均匀、美观;·应用高品质的金属浆料制作电极和背场。

确保了电极良好的导电性、可焊性以及背场的平整性;·高精度的丝网印刷图形,使得电池片易于自动焊接。

156*156多晶电池片晶体硅太阳电池的优良性能简介:·高效率,低衰减,可靠性强;·先进的扩散技术,保证了片间片内的良好均匀性,降低了电池片之间的匹配损失;·运用先进的管式PECVD成膜技术,使得覆盖在电池表面的深蓝色氮化硅减反射膜致密、均匀、美观;·应用高品质的金属浆料制作电极和背场。

确保了电极良好的导电性、可焊性以及背场的平整性;·高精度的丝网印刷图形,使得电池片易于自动焊接。

125单晶电池组件晶体硅太阳能电池组件的优良性能简介:·SF-PV的组件可以满足不同的消费层次·使用高效率的硅太阳能电池·组件标称电压24/12V DC·3.2mm厚的钢化玻璃·为提高风的压力和雪的负载,使用耐用的铝框架以方便装配,·组件边框设计有用于排水的漏水孔消除了在冬天雨或雪水长期积累在框架内造成结冰甚至使框架变形·电缆线使用快速连接头来装配·满足顾客要求的包装·保证25年的使用年限156多晶电池组件晶体硅太阳能电池组件的优良性能简介:·SF-PV的组件可以满足不同的消费层次·使用高效率的硅太阳能电池·组件标称电压24/12V DC·3.2mm厚的钢化玻璃·为提高风的压力和雪的负载,使用耐用的铝框架以方便装配,·组件边框设计有用于排水的漏水孔消除了在冬天雨或雪水长期积累在框架内造成结冰甚至使框架变形·电缆线使用快速连接头来装配·满足顾客要求的包装·保证25年的使用年编辑本段中国太阳能光伏设备产业的发展依靠中国半导体设备行业数十年来的技术积累,通过和一流光伏电池企业的深度合作,经过连续多年的不懈努力,中国光伏设备企业已基本具备太阳能电池制造设备的整线装备能力。

几种新型太阳能电池性能比较

几种新型太阳能电池性能比较

以化合物半导体为基体制成的太阳能电池。

在种类繁多的化合物半导体材料中,不乏兼备优良光电特性、高稳定性、宜于加工制造的太阳能电池材料。

化合物可构成同质结太阳能电池、异质结太阳能电池和肖特基结太阳能电池。

它既可制成高效或超高效太阳能电池,又可制成低成本大面积薄膜太阳能电池,从而拓宽了光电材料的研究范围,也极大地丰富了太阳能电池家族。

目前,世界上光电转换效率最高的是化合物半导体太阳能电池(如砷化镓太阳能电池效率η=24%~28%),或者是以化合物作为重要组分的太阳能电池(如砷化镓和硅叠合聚光太阳能电池效率η=32%~37%,薄膜硒铟铜/非晶硅太阳能电池效率η=14%~17%)。

在元素周期表中的Ⅲ-Ⅴ族化合物半导体,如砷化镓(GaAs)、磷化铟(InP);Ⅱ-Ⅵ族化合物半导体,如硫化镉(CdS)、硒化镉(CdSe)、碲化镉(CdTe)、硫化锌(ZnS)、硒化锌(ZnSe)、碲化锌(ZnTe)等,都具有直接禁带跃迁的能带结构,吸收系数大,结构比较稳定。

若用Ⅰ-Ⅲ族元素取代Ⅱ-Ⅵ族化合物中的Ⅱ族元素,则得到Ⅰ-Ⅲ-Ⅵ族三元化合物,如硒铟铜(CuInSe)、硫铟铜(CuInS)等。

对应地,用Ⅱ-Ⅳ族元素代替Ⅲ-Ⅴ族化合物中的Ⅲ族元素,则构成Ⅱ-Ⅳ-Ⅴ族三元化合物,如锌硅砷(ZnSiAs2)等。

从中可以挑选禁带宽度适合于吸收不同波长的太阳光、且可制成低电阻p型或n型基体的化合物半导体来制造太阳能电池。

具有代表性的化合物半导体太阳能电池有砷化镓太阳能电池、硫化镉太阳能电池和硒铟铜太阳能电池。

砷化镓太阳能电池Ⅲ-Ⅴ族化合物太阳能电池,其主要特点是:(1) GaAs的禁带宽度达1.43 eV,能有效地吸收太阳光,其理论效率达28%。

(2) GaAs是直接禁带跃迁材料,吸收系数大。

吸收90%的太阳能只需5μm厚的GaAs,而硅则需厚为100μm以上才能吸收同样多的太阳能。

(3)耐高温,耐辐射,适宜于做聚光太阳能电池(聚光比可以高达1000~1735倍),也适宜于做太空飞行器上用的太阳能电池。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022年各类太阳能电池特性对比表
对比薄膜和聚光组件,晶硅电池因其制造技术成熟、产品性能稳定、使用寿命长、光电转化效率相对较高等特点,应用最为广泛。

此外,晶硅电池市场价格在1.3~1.7元/Wp之间,非晶硅薄膜电池在5~6元/Wp之间,而聚光电池(带跟
踪系统)则在20元/Wp附近。

综合考虑技术成熟度、转换效率和投资成本,本项目建议采用晶硅电池。

晶硅类电池又分为单晶硅电池组件和多晶硅电池组件,两者最大差别在于单晶硅电池的光电转化效率高于多晶硅电池。

因此封装组件的尺寸相同时,单晶硅组件的峰值功率高于多晶硅电池组件,而两者在电性能、寿命等重要指标上相差不大,执行的标准也相同。

相关文档
最新文档