电磁感应现象教案

合集下载

探究电磁感应现象的实验教案二

探究电磁感应现象的实验教案二

Introduction电磁感应现象是我们日常生活中用到的常见现象,在发电站、变压器、电机和许多其他电子设备中都有所应用。

这个现象的理解和应用有助于我们深入了解电和磁领域的相互作用,以及如何利用这种相互作用来构建有用的设备和发现新的科学知识。

这篇文章将介绍一个实验教案,旨在通过实验帮助学生更好地理解电磁感应原理。

实验设计实验名称:探究电磁感应现象实验目的:通过利用电磁感应现象的实验,帮助学生理解电磁感应现象,并了解它在生活中的应用。

实验设备:1.电池2.线圈3.磁铁4.电线5.万用表实验过程:第一步:将绕有导线的线圈放在桌子上。

第二步:接上一个直流电源,将电线放在两端的接头上。

第三步:在线圈的中心放置一个磁铁并移动它,注意观察读数仪的读数。

第四步:将电源更换为交流电源,再次移动磁铁并注意观察读数仪的读数。

结果分析:在使用直流电源时,只有在移动磁铁的瞬间才会测量到电流。

这是因为当电流流经导线时,它产生的磁场与移动的磁铁相互作用,从而产生一个电力,使电流在电路中流动。

但是,当磁铁不移动时,电路中不会有电流流动。

现在让我们将电源更改为交流电源。

在这种情况下,当磁铁移动或在磁场中改变时,电路中也会观察到电流的流动,而不是在磁铁被保持静止的情况下。

结论:通过这个简单的实验,我们可以发现电磁感应现象。

当电磁感应现象中的磁场发生变化时,就会在电路中引起电荷的位移,从而产生电流。

这种现象不仅在我们的生活中有广泛应用,而且在电和磁领域的其他方面也扮演着重要的角色。

实验总结和教育意义:这个实验可以让学生通过实践来理解电磁感应现象。

实验也可以帮助学生了解电磁场如何在电路中工作以及电路中电流如何受到磁场的影响。

此外,学生还可以了解并学习到许多现实世界中的电磁感应应用,例如发电机,变压器,电动机等。

本实验可以鼓励学生参与实验过程,培养他们的创造力和实验技能。

此外,它可以促进学生的好奇心,提高他们对科学的兴趣,并激发他们继续进行更深入的学习和探索的欲望。

奥斯特实验:探究电磁感应现象的教案

奥斯特实验:探究电磁感应现象的教案

奥斯特实验:探究电磁感应现象的教案。

一、实验原理奥斯特实验是探究电磁感应现象的经典实验之一。

实验基于法拉第电磁感应定律,即磁通量的变化会产生感应电动势。

在奥斯特实验中,我们需要使用一个线圈和一个磁铁进行实验。

二、实验步骤1.将一根铁杆放置在一个线圈中,铁杆没有触碰线圈,因此线圈中并没有电流流过。

2.将线圈连接到一个万用表上,读取电流表的值。

3.移动铁杆,使其靠近线圈。

由于铁杆是铁制品,具有磁导率,因此当铁杆靠近线圈时,磁感线会从铁杆流过,从而切割线圈。

切割线圈的磁通量发生变化,电动势会由线圈发出,从而在电流表上产生一个电流。

4.再次移动铁杆,使其靠近线圈。

当铁杆离线圈较近时,电流表的读数会变大,表示电磁感应现象的强度增强。

当铁杆距离线圈较远时,电流表的读数会减小,表示电磁感应现象的强度减弱。

5.移动铁杆,让它离开线圈。

由于铁杆上的磁场消失,因此线圈中的电流也会消失。

6.将铁杆翻转,并再次执行该实验。

当铁杆靠近线圈时,电流的方向与之前相反。

这样,我们可以了解到电流方向与磁场方向的关系。

三、实验过程中需要注意的事项1.应使用直流电源作为电源。

2.铁杆不应与线圈直接接触,其距离应保持在一定范围内。

3.实验过程中应注意电流表的读数,并记录下实验数据。

四、进行实验的教学目的1.让学生了解磁感线、磁通量和电动势的基本知识。

2.让学生理解电磁感应定律,并能够应用该定律进行计算。

3.让学生了解电流方向与磁场方向之间的关系。

4.通过实验,让学生掌握奥斯特实验的实验方法、实验步骤和实验过程,培养学生的实验操作能力。

五、总结奥斯特实验是一种常用于电磁感应教学的实验方法。

通过这种实验方法,可以帮助学生更好地理解电磁感应现象,并能够应用法拉第电磁感应定律进行计算。

在实验过程中,需要注意实验方法和实验步骤,并记录下实验数据。

实验结果可以帮助学生更好地掌握相关的知识,提高其实验操作能力。

电磁感应教学设计【优秀5篇】

电磁感应教学设计【优秀5篇】

电磁感应教学设计【优秀5篇】作为一名教职工,总归要编写教案,借助教案可以提高教学质量,收到预期的教学效果。

教案应当怎么写呢?下面是我辛苦为大家带来的电磁感应教学设计【优秀5篇】,盼望可以启发、关心到大家。

电磁感应篇一(一)教学目的1.知道现象及其产生的条件。

2.知道感应电流的方向与哪些因素有关。

3.培育同学观看试验的力量和从试验事实中归纳、概括物理概念与规律的力量。

(二)教具蹄形磁铁4~6块,漆包线,演示用电流计,导线若干,开关一只。

(三)教学过程1.由试验引入新课重做奥斯特试验,请同学们观看后回答:此试验称为什么试验?它揭示了一个什么现象?(奥斯特试验。

说明电流四周能产生磁场)进一步启发引入新课:奥斯特试验揭示了电和磁之间的联系,说明电可以生磁,那么,我们可不行以反过来进行逆向思考:磁能否生电呢?怎样才能使磁生电呢?下面我们就沿着这个猜想来设计试验,进行探究讨论。

2.进行新课(1)通过试验讨论现象板书:〈一、试验目的:探究磁能否生电,怎样使磁生电。

〉提问:依据试验目的,本试验应选择哪些试验器材?为什么?师生争论认同:依据讨论的对象,需要有磁体和导线;检验电路中是否有电流需要有电流表;掌握电路必需有开关。

老师展现以上试验器材,留意让同学弄清蹄形磁铁的N、S极和磁感线的方向,然后按课本图12—1的装置安装好(直导线先不要放在磁场内)。

进一步提问:如何做试验?其步骤又怎样呢?我们先做如下设想:电能生磁,反过来,我们可以把导体放在磁场里观看是否产生电流。

那么导体应怎样放在磁场中呢?是平放?竖放?斜放?导体在磁场中是静止?还是运动?怎样运动?磁场的强弱对试验有没有影响?下面我们依次对这几种状况逐一进行试验,探究在什么条件下导体在磁场中产生电流。

用小黑板或幻灯出示观看演示试验的记录表格。

老师按试验步骤进行演示,同学认真观看,每完成一个试验步骤后,请同学将观看结果填写在上面表格里。

试验完毕,提出下列问题让同学思索:上述试验说明磁能生电吗?(能)在什么条件下才能产生磁生电现象?(当闭合电路的一部分导体在磁场中左右或斜着运动时)为什么导体在磁场中左右、斜着运动时能产生感应电流呢?(师生争论分析:左右、斜着运动时切割磁感线。

电磁感应现象及应用-教案

电磁感应现象及应用-教案

电磁感应现象及应用【教学目标】1.理解什么是电磁感应现象。

2.掌握产生感应电流的条件。

3.了解电磁感应在生产生活中的应用。

4.通过观察演示实验,归纳、概括出利用磁场产生电流的条件,培养学生的观察、概括能力。

【教学重点】掌握只要闭合电路的磁通量发生变化,闭合电路中就会产生感应电流。

【教学难点】闭合电路磁通量的变化。

【教学过程】一、复习提问、新课导入教师:在初中的时候我们学习了产生感应电流的方法,请同学们回忆一下是什么方法?学生回答:线圈切割磁感线会产生感应电流。

师生一起回顾产生感应电流的条件与感应电流的方向与什么有关。

复习之后再次发问:这是产生感应电流的唯一方法吗?通过这节课我们来学习一下这种现象是如何发现的,产生感应电流条件又有哪些?二、新课教学教师投影奥斯特实验,引出法拉第磁生电的理论。

(一)划时代的发现1.奥斯特梦圆“电生磁”由于受康德哲学与谢林的自然哲学的影响,坚信自然力是可以相互转化的,长期探索电与磁之间的联系。

1820年4月终于发现了电流对磁针的作用,即电流的磁效应。

同年7月21日以《关于磁针上电冲突作用的实验》为题发表了他的发现。

这篇短短的论文使欧洲物理学界产生了极大震动,导致了大批实验成果的出现,由此开辟了物理学的新领域──电磁学。

1820年因电流磁效应这一杰出发现获英国皇家学会科普利奖章。

1829年起任哥本哈根工学院院长。

2.法拉第心系“磁生电”1820年奥斯特发现电流的磁效应,受到科学界的关注,促进了科学的发展。

1821年英国《哲学年鉴》的主编约请戴维撰写一篇文章,评述奥斯特发现以来电磁学实验的理论发展概况。

戴维把这一工作交给了法拉第。

法拉第在收集资料的过程中,对电磁现象的研究产生了极大的热情,并开始转向电磁学的研究。

他仔细地分析了电流的磁效应等现象,认为既然电流能产生磁,磁能否产生电呢?1822年他在日记中写下了自己的思想:“磁能转化成电”。

他在这方面进行了系统的研究。

起初,他试图用强磁铁靠近闭合导线或用强电流使另一闭合导线中产生电流,做了大量的实验,都失败了。

电磁感应现象教案

电磁感应现象教案

电磁感应现象教案教案:电磁感应现象【教学目标】1.知识目标:了解电磁感应的概念,掌握法拉第电磁感应定律的内容。

2.能力目标:能够运用法拉第电磁感应定律解决相关问题。

3.情感目标:培养学生的实践操作能力和科学探究精神,增强学生对物理知识的兴趣与热情。

【教学重点】1.理解电磁感应的概念和原理。

2.掌握法拉第电磁感应定律的表达和运用。

【教学难点】1.理解电磁感应的物理原理。

2.运用法拉第电磁感应定律解决问题。

【教学过程】一、导入(5分钟)1.引入:学生举例说明电磁感应的现象。

例如,当手机靠近扬声器时会发出噪音;当车速超过电子眼的设定速度时,电子眼会发出警报。

2.老师再举一些例如电动车充电、发电机发电的实例,引出电磁感应的概念。

二、学习与讲解(20分钟)1.讲解电磁感应的概念和原理:通过变化磁通量产生感应电动势的现象称为电磁感应。

引导学生理解磁感线、磁通量和磁通量变化的概念。

2.示意图法引入法拉第电磁感应定律:在磁通量变化时,感应电动势的大小与磁通量变化率成正比。

介绍法拉第电磁感应定律的表达式:ε=-ΔΦ/Δt。

3.通过示例演示法拉第电磁感应定律的应用,例如,当磁场中的电导线快速移动时,通过该电导线所围成的面积会发生变化,从而引发感应电动势。

三、实验操作(30分钟)1.小组实验:选取两个小组进行实验操作,以验证法拉第电磁感应定律。

实验材料包括一个线圈、一个永磁铁和一个挤压发电机。

2.实验步骤:a.小组A通过在挤压发电机中运动永磁铁的方式改变磁场强度。

b.小组B通过改变线圈的面积来改变磁通量。

3.实验记录:记录两个小组实验的结果,并通过法拉第电磁感应定律计算感应电动势的大小。

四、讨论与总结(15分钟)1.学生交流实验结果,与小组成员一起讨论感应电动势的大小与何种因素有关。

2.引导学生总结出法拉第电磁感应定律的基本内容。

3.提问:电磁感应的应用有哪些?4.学生展示自己的实验报告,并得出实验结论。

五、拓展延伸(10分钟)1.提醒学生注意电磁感应在生活中的应用,例如变压器、感应电炉等。

高中物理选修2-1教案-3.1电磁感应现象-人教版

高中物理选修2-1教案-3.1电磁感应现象-人教版

电磁感应现象教学设计一、课标分析1.在现实情境中进一步理解电磁感应现象。

2.能够通过实验观察,从中总结相应的实验结论。

二、教材分析《电磁感应现象》是高中物理新课程(选修2-1)第三章第一节的内容。

本节内容揭示了磁和电的内在联系,通过探究实验的方法归纳出了“磁生电”的规律,在教材中起到了承前启后的作用,是学生今后学习法拉第电磁感应定律、楞次定律和交变电流产生的基础。

在教材的编排上本节从初中知识点闭合电路的部分导线切割磁感线产生电流入手,再设计学生探究实验,对现象进行分析归纳,最后总结出产生感应电流的条件,这样的编排符合学生的认知规律。

教材中对法拉第坚信磁能生电,并历经十年的不懈努力,最后终于发现电磁感应规律的物理学史料的介绍,是一个很好的德育切入点,同时也体现了教材对学生人文思想和科学精神的熏陶。

此外,电磁感应知识与人们日常生活、生产技术有着密切的联系,因此,学习这部分知识有重要的现实意义三、学生分析学生对闭合电路的部分导线切割磁感线能产生电流,在初中已有一定的认识,但在空间想象、问题本质的分析等方面还较为薄弱。

因此,在教学中从学生的已有知识出发,通过学生自主学习、探究实验、产生问题、协作交流等学习方法,从而解决问题得出产生感应电流的条件的结论。

四、教学目标1、三维目标(1)知识与技能①理解电磁感应现象。

②启发学生观察实验现象,从中分析归纳通过磁场产生电流的条件。

③通过实验的观察和分析,培养学生运用所学知识,分析问题的能力。

(2)过程与方法①通过经历探究“磁生电”的过程,培养学生进行逆向思维和发散思维的能力。

②通过学生分组实验较全面地培养学生科学探究能力(实验动手能力、观察能力、思维能力、创造能力)。

(3)情感、态度与价值观①通过向学生介绍法拉第的贡献,培养学生锲而不舍、坚忍不拔的思想品质。

②通过介绍发电机的发明,使学生了解科技发展是人类社会进步的巨大推动力。

2、教学重点和难点(1)教学重点:磁如何产生电。

电磁感应现象及其在生活中的应用教案

电磁感应现象及其在生活中的应用教案

电磁感应现象及其在生活中的应用教案一.教学目标1.了解电磁感应现象及其相关概念;2.能够理解法拉第电磁感应定律的含义;3.能够识别电磁感应现象在生活中的应用;4.能够设计和实验电磁感应相应的实验;5.能够通过讨论、分析和总结,深入理解电磁感应现象及其应用。

二.教学内容1.电磁感应的概念和原理电磁感应现象是指当磁场的变化引起一定的电势和电流时,称为电磁感应现象。

这是电磁学中最基本的一种现象。

电磁感应的前提条件:(1)磁场强度的变化:只有磁场强度有变化,电磁感应现象才会发生。

(2)磁场与导体之间存在相对运动:必须存在磁场与导体之间的相对运动,才可以产生电磁感应现象。

2.法拉第电磁感应定律最早证实了电磁感应现象的是英国物理学家迈克尔·法拉第。

法拉第电磁感应定律是从实验中总结出来的规律,它表明,磁通量的变化率就是感应电动势的大小,即:① 磁通量的变化率与感应电动势的大小成正比;② 磁通量的变化率与磁通量的变化时间的乘积成正比;③ 磁通量变化率的方向总是使其自身产生一个感应电动势的方向。

这个定律通常表示为 V = -NdΦ/dt,其中V表示感应电动势的大小,N表示线圈的匝数,Φ表示线圈周围的磁通量,dΦ/dt表示磁通量的变化率。

3.电磁感应现象的应用电磁感应现象在生活中有许多应用,以下是常见的几个应用:(1)发电机发电机是使用电磁感应现象将机械能转化为电能的一种设备。

通过旋转线圈在磁场中产生变化的磁通量,从而在导线中感应出电动势,最后输出电能。

发电机被广泛应用于人类生产生活中,为各种电器设备供电。

(2)电动机电动机与发电机恰恰相反,它们使用电能将机械能转化为旋转动能。

电动机根据法拉第电磁感应定律的原理工作。

当导体在磁场中运动时,将会感应出电动势。

如果导体形成了一个线圈,该线圈可以旋转,由于旋转所造成的磁通量发生变化,从而也产生电动势。

(3)电磁铁电磁铁由磁芯和线圈组成。

当通电时,线圈中流过电流。

电磁感应实验教案及演示

电磁感应实验教案及演示

电磁感应实验教案及演示电磁感应实验是物理学中非常基础的实验之一,它是指在一个磁场中通过导体运动产生电流,或者通过变化的磁场感应出电动势的过程,这个过程是电机、变压器、电机等电气设备的基础原理。

我们可以通过电磁感应实验更深入地了解电磁现象,掌握电磁感应规律,加深实验操作技巧等。

因此,编写一份详细的电磁感应实验教案,并进行演示,将会对学生的物理学习有很大的助益。

一、实验目的1.了解电磁感应规律,掌握法拉第电磁感应定律。

2.学习利用电磁感应现象构造电气设备的基本原理。

3.加深实验操作技巧,提高实验水平。

二、实验器材铝筒、磁铁、直流电源、导线、万用表、瞬变电流测量器、小电灯泡等。

三、实验原理电磁感应定律是物理学上的一个重要定律,它规定了导体中感应电动势的大小与导体运动的速度、磁场强度和导体长度的关系。

其数学表达式为:ε=Bvl,其中ε为感应电动势,B为磁场强度,v为导体的速度,l为导体的长度。

四、实验步骤1.将铝筒垂直固定在电流滑动导轨上,磁铁的北极和铝筒上下方向垂直。

2.接通直流电源,在两条铝条之间形成一定电流。

3.离开电流滑动导轨,使铝筒在重力作用下下滑,观察小灯泡是否亮起或瞬变电流测量器的瞬变电流大小。

4.改变铝筒下滑速度,记录小灯泡亮起时间或瞬变电流测量器的瞬变电流大小。

5.分析实验数据,观察电磁感应现象的规律,并与理论公式进行比较。

五、实验注意事项1.铝筒轻轻地下滑,以避免磨损和过早损坏铝筒。

2.操作时注意安全,避免电击和电磁辐射。

3.保持实验器材清洁和整洁,以避免误差。

4.记录实验数据时,应注意精确性和准确性。

六、实验效果分析通过该实验,学生可以更深入地了解电磁现象,掌握电磁感应规律,加深实验操作技巧等。

设备调试和实验数据分析过程,可以锻炼学生的动手操作能力和实验开展过程中出现问题时解决问题的能力。

同时,通过对实验数据进行分析,学生可以进一步理解和应用电磁感应现象的规律,从而更好地掌握对电气设备构造和电气工程设计的理论和技能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应现象教学方案
教学目的:
1、启发学生观察实验现象,从中分析归纳通过磁场产生电流的条件.
2、通过实验的观察和分析,培养学生运用所学知识,分析问题的能力.
教学重点:感应电流的产生条件
教学难点:正确理解感应电流的产生条件.
教学仪器:电池组,电键,导线,大磁针,矩形线圈,碲形磁铁,条形磁铁,原副线圈,演示用电流表等.
教学过程:
一、教学引入:
在磁可否生电这个问题上,英国物理学家法拉第坚信,电与磁决不孤立,有着密切的联系.为此,他做了许多实验,把导线放在各种磁场中想得到电流需要一定的条件,他以坚韧不拔的意志历时10年,终于找到了这个条件,从而开辟了物理学又一崭新天地.
板书:电磁感应现象:
二、教学内容
1.复习:磁通量()的概念
教师:我们知道,磁场的强弱(即磁感应强度)可以用磁感线的疏密来表示.如果一个面积为
的面垂直一个磁感应强度为的匀强磁场放置,则穿过这个面的磁感线的条数就是确定的.我
们把与的乘积叫做穿过这个面的磁通量.
(1)定义:面积为,垂直匀强磁场放置,则与乘积,叫做穿过这个面的磁通量,用Φ表示.
(2)公式:
(3)单位:韦伯(Wb) 1Wb=1T·m2
磁通量就是表示穿过这个面的磁感线条数.
注意强调:
①只要知道匀强磁场的磁感应强度和所讨论面的面积,在面与磁场方向垂直的条件下
(不垂直可将面积做垂直磁场方向上的投影.)磁通量是表示穿过讨论面的磁感线条数的多少.在今后的应用中往往根据穿过面的净磁感线条数的多少定性判断穿过该面的磁通量的大
小.如果用公式来计算磁通量,但是只适合于匀强磁场.
②磁通量是标量,但是有正负之分,磁感线穿过某一个平面,要注意是从哪一面穿入,哪一面穿出.
2、电磁感应现象:
内容引入:奥斯特实验架起了一座连通电和磁的桥梁,此后人们对电能生磁已深信不疑,但磁能否生电呢?
在磁可否生电这个问题上,英国物理学家法拉第坚信,电与磁决不孤立,有着密切的联系.为此,他做了许多实验,把导线放在各种磁场中想得到电流需要一定的条件,他以坚韧不拔的意志历时10年,终于找到了这个条件,从而开辟了物理学又一崭新天地.
3、实验演示
实验1:学生实验——导体在磁场中切割磁力线的运动
观察现象:AB做切割磁感线运动,可见电流表指针偏转.
学生得到初步结论:当闭合回路中的部分导体做切割磁感线的运动时,电路中有了电流.
现象分析:如图1导体不切割磁力线时,电路中没有电流;而切割磁力线时闭合电路中有电流.回
忆磁通量定义(师生讨论)对闭合回路而言,所处磁场未变,仅因为AB的运动使
回路在磁场中部分面积变了,使穿过回路的磁通变化,故回路中产生了电流.
设问:那么在其它情况下磁通变化是否也会产生感应电流呢?
实验2:演示实验——条形磁铁插入线圈
观察提问:
A、条形磁铁插入或取出时,可见电流表的指针偏转.
B、磁铁与线圈相对静止时,可见电流表指针不偏转.
现象分析:(师生讨论)对线圈回路,当线圈与磁铁有沿轴线的相对运动时,所处磁场因磁
铁的远离和靠近而变化,而未变,故穿过线圈的磁通变化,产生感应电流,而当磁铁不动时,
线圈处,不变,故无感应电流.
实验3:演示实验——关于原副线圈的实验演示
实验观察:移动变阻器滑片(或通断开关),电流表指针偏转.当A中电流稳定时,电流表指针不偏转.
现象分析:对线圈,滑片移动或开关通断,引起A中电流变,则磁场变,穿过B的磁通变,故B中产生感应电流.当A中电流稳定时,磁场不变,磁通不变,则B中无感应电流.
教师总结:不同的实验,其共同处在于:只要穿过闭合回路的磁通量的变化,不管引起磁通量变化的原因是什么,闭合电路中都有感应电流产生.
结论:
无论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路就有电流产生,这种利用磁场产生电流的现象叫电磁感应,产生的电流叫感应电流.
电磁感应现象中的能量转化:
引导学生讨论分析上述三个实验中能量的转化情况.
3、例题讲解
4、教师总结:
能量守恒定律是一个普遍定律,同样适合于电磁感应现象.电磁感应现象中产生的电能不是凭空产生的,它们或者是其它形式的能转化为电能,或者是电能在不同电路中的转移.
5、布置作业。

相关文档
最新文档