物理气相沉积

合集下载

物理气相沉积技术

物理气相沉积技术
• 使得磁控溅射具有低温、高速的特点。
• 在电场E作用下,电子与氩 原子碰撞,电离产生Ar+和 新的电子。
• 新电子飞向衬底,Ar+电场 作用加速飞向阴极靶,以 高能量轰击,发生溅射。
• 靶原子沉积成膜,产生的 二次电子沿EXB所指方向 漂移。碰撞次数增加,二 次电子能量下降,逐渐远 离靶表面,最终沉积在衬 底上。传递能量很小,致 使衬底温升较低。
• ⑤溅射工艺适用于淀积合金,而且具有保持复杂 合金元组分的能力。比如常用的溅射AlSiCu合金中 靶材含有0.5%的Cu,那么淀积的薄膜也含有0.5% 的Cu。
3.溅射镀膜的缺点
• 溅射设备复杂,需要高压装置 • 溅射淀积的成膜速度低,真空蒸发镀膜淀积速率
为0.1~5μm/min,溅射速率为0.01~0.5 μm/min。 • 基片温升较高,易受杂质气体影响。
• 2).汤生放电区:这时,放电电流迅速增加,但是电压变 化不大。
• 3).辉光放电:在汤生放电之后,气体发生电击穿现象,I↑,U↓ • 继续增大电流,放电就会进入正常辉光放电区,显然电流的增大与电压
无关。 • 正常辉光放电时的电流密度比较小,所以溅射不选在这个区,而选在反
常辉光放电区。
• 4).反常辉光放电:I ↑,U ↑,发光仍为辉光(异于正常),增大至f点,不 稳定,I ↑,U ↓,放电系统马上会过渡到电弧放电区。
三、溅射方法
• 具体溅射方法较多。 • 直流溅射,射频溅射,磁控溅射,反应溅射,离
子束溅射,偏压溅射等。
1).直流溅射
• 靶材置于阴极,阳极 为衬底。
• 常用氩气作为工作气 体。
• 溅射电压1~5kV,靶电 流密度0.5mA/cm2,薄 膜淀积速率低于0.1 μm/min

物理气相沉积

物理气相沉积

图1 真空蒸镀装置示意图 1.衬底加热器;2.衬底;3. 原料;4.料舟;5.真空罩
蒸发源类型
(1)电阻加热蒸发源
选择原则:在所需蒸发温度下不软化,饱和蒸气压小,不发生反应; 一般采用高熔点金属如钨、钽、钼等材质,常作成螺旋丝状或箔舟状,如图2.所示。 特点:结构简单,造价低,使用广泛;存在污染,也不能蒸镀高Tm材料。
4. 二级溅射
影响溅射工艺的主要因素: a.放电气体压强P; b.放电电压VDC; c.放电电流IDC; d.可调参量: IDC ; P; 特点:方法及设备简单;放电不稳, 常因局部放电引起IDC变化;沉 积速率低。 最早采用的一种溅射方法,现在已经渐趋于淘汰。 图4 二极溅射装置示意图
5. 磁控溅射
离,使辉光放电持续不断的进行下去。
3. 溅射机理的两种假说
(1)Hippel理论(1926提出)
离子轰击靶产生的局部高温使靶材料(阴极材料)的局部蒸发,在阳极上沉积制膜。
(2)动能转移机理(Stark,1909,Langmuir, Henschk) (I) 溅射出的原子能量比热蒸发原子能量高一个数量级; (II) 轰击离子存在一个临界能量,低于这个能量,不能产生溅射; (Ⅲ) 溅射系数=溅射原子数/轰击离子数,既与轰击离子的能量有关,也与轰击离子的质量有关; (Ⅳ) 离子能量过高,溅射系数反而下降,可能是因为离子深入到靶材内部,能量没有交给表面附近原子的缘故; (Ⅴ) 溅射原子出射的角分布,对于单晶靶材,粒子主要沿几个方向出射。 最强的出射方向对应于晶格中原子最密集排列的方向,这种现象可用“聚焦碰撞”解释。
极),使其熔化便实现蒸镀。蒸镀时,基片加上负偏压即可从等离
子体中吸引氩离子向其自身轰击,从而实现离子镀。

物理气相沉积(PVD)

物理气相沉积(PVD)
会产生分馏,对策——连续加料,调节熔池成分 例如:镀A4B1 膜,已知:P A 0:P B 010 :10
控制镀料成分:A1B25, 保证:P A :P B 1: 0 2 0 5 4 :1 A4B1膜料成分 若:一次性加料,A消耗快; ∴ 连续加料,保证熔池料为 A1B25, 从而膜料成分为A4B1;
dP Lv dT TV
(1)
∵ ∴
积分:
VV汽V固 、液V汽P 1R, T
dP dT
PLV RT 2
lnp ALV 1 RT
(2)
图8.2.2 几种材料的蒸气压——温度曲线
(3)蒸发速率和凝结速率
① 蒸发速率Ne:
——热平衡条件下,单位时间内,从蒸发源每单位 面积上射出的平均原子数。
N e1 4n 2 P m k3 .5 T1 13 20 2M P(T 1/cm2·s) (3)
设:物质含A,B成分,MA、MB,PA、PB, 则由(3)式,得 :
NA CA PA MB NB CB PB MA
(14)
改进工艺:
1)选择基片温度,使之有利于凝聚而不是分凝;
2)选用几个蒸发源,不同温度下分别淀积,但控制困难; 3)氧化物,可采用反应蒸镀法,引入活性气体。
4. 蒸发源类型
(1)电阻加热蒸发源
70年代,在阴极溅射基础上发展起来,能有效克服溅射速 率低,电子碰撞使基片温度升高的弱点。
(1)基本原理
在阴极靶面上加一环行磁场,使 BE , 控制二次电子运动轨迹,
电子运动方程: d e (EB)
(16)
dt m
运动轨迹为一轮摆线,电子在靶面上沿着垂直于E、B的方向前进,电 子被束缚在一定的空间内,减少了电子在器壁上的复合损耗;同时,延长 了电子路径,增加了同工作气体的碰撞几率,提高了原子的电离几率,使

物理气相沉积法名词解释

物理气相沉积法名词解释

物理气相沉积法名词解释
物理气相沉积法(Physical相沉积法)是一种化学沉积技术,通过物理过程
将化学物质沉积到基材表面,从而制备出具有特殊结构或功能的膜、涂层或颗粒。

物理气相沉积法通常涉及三个基本步骤:气相沉积反应、沉积时间和冷却。

其中,气相沉积反应是指将化学物质溶解在气相中,并通过气相流在基材表面形成沉积物的过程。

沉积时间是指沉积物从气相中形成到脱落的时间。

冷却则是指使用气流或喷淋等方式将沉积物表面降温,从而使其更加稳定。

物理气相沉积法的应用非常广泛,包括制备膜材料、涂层材料、纳米材料、生物材料、催化剂等。

其中,膜材料是物理气相沉积法最为著名的应用之一。

膜材料可以用于水处理、废气处理、药物分离等领域,具有高效过滤、分离、浓缩等功能。

此外,物理气相沉积法还可以用于制备纳米材料、生物材料等,具有治疗疾病、提高材料性能等潜在应用价值。

除了应用价值外,物理气相沉积法还存在一些挑战和限制。

例如,沉积物质量的影响因素很多,包括气相组成、反应条件、温度、压力等。

因此,在实际应用中需要不断调整反应条件,以达到最优的沉积效果。

此外,由于沉积物表面通常需要经过清洗和表征等步骤,因此需要对沉积物表面进行处理,以获得所需的表征结果。

总之,物理气相沉积法是一种制备高性能材料的有效方法,具有广泛的应用前景和研究价值。

随着技术的不断发展和完善,相信它将在未来发挥更加重要的作用。

物理气相沉积综述

物理气相沉积综述

1第二章 物理气相沉积一、物理气相淀积(Physical Vapor Deposition, PVD )的第一类1、电阻热蒸发(thermal vaporization )蒸发材料在真空室中被加热时,其原子或分子就会从表面逸出,这种现象叫热蒸发。

A 、饱和蒸气压P V在一定温度下,真空室中蒸发材料的蒸汽在与固体或液体平衡过程中所表现出的压力称为该温度下的饱和蒸汽压。

()L G V V V T HdT dP -∆=∆H :mol 汽化热,T :绝对温度。

V G 、V L :分别为汽相和液相mol 体积。

RTH C P V ∆-=ln R :气体普适常数TBA P V -=ln 下图给出了以lgP V 和lgT 为坐标而绘制的各种元素的饱和蒸汽压曲线。

图2-1 某些元素的平衡蒸气压2饱和蒸汽压随着温度升高而迅速增加。

由上图1曲线知,a. 达到正常薄膜蒸发速率所需的温度,即P V =1Pa 时温度;b. 蒸发速率随温度变化的敏感性;c. 蒸发形式:蒸发温度高于熔点,蒸发状态是熔化的,否则是升华。

下表是几种介质材料的蒸汽压与温度的关系B 、蒸发粒子的速度和能量CT KT E M RTm KT v kTm v E m m 2500~1000 23332122====== 平均速度105cm/s ,eV E 2.0~1.0=C 、蒸发速率和淀积速率()[]mkT P P dtA dN h V e πα2/Re -=⋅= (个/米2·秒)dN :蒸发粒子数,α e :蒸发系数,A :面积P V :饱和蒸汽压;P h :液体静压,m :原子量, K :玻耳兹曼常数。

设α e =1, P h =0mkT Pv π2/Re =质量蒸发速率:3RT MP kTmP m R VVm ππ22Re ===(千克/米2·秒) 沉积速率:mkT rA P R V d /2cos 2ππρθ⋅=(米/秒)U 型旋螺形篮形舟加盖舟圆筒形Jacques形坩埚+辐射丝“榴弹炮”2、电子束加热法电子的动能:45()skm v kv u s cm u v U e m v E /106 ,10/1093.521472⨯==⨯=⋅==电子束的能量:W=n ⋅e ⋅U=IU 热量:Q=0.24WtA 、直式电子枪图2-2 直枪(皮尔斯枪)结构示意图B 、电磁偏转式电子枪: 环枪(电偏转)e 形枪(磁偏转)图2-3 环枪剖面图图2-4 e枪结构示意图3、激光蒸发激光作为蒸发材料的一种热源。

物理气相沉积综述

物理气相沉积综述

第二章物理气相堆积一、物理气相淀积(Physical Vapor Deposition, PVD)的第一类1、电阻热蒸发( thermal vaporization)蒸发资料在真空室中被加热时,其原子或分子就会从表面逸出,这类现象叫热蒸发。

A 、饱和蒸气压 P V在必定温度下,真空室中蒸发资料的蒸汽在与固体或液体均衡过程中所表现出的压力称为该温度下的饱和蒸汽压。

dP V HdT TV G V LH:mol汽化热, T:绝对温度。

V G、V L:分别为汽相和液相 mol体积。

ln P V CH R:气体普适常数RTln P V A B T以下图给出了以 lgP V和 lgT为坐标而绘制的各样元素的饱和蒸汽压曲线。

图2-1某些元素的均衡蒸气压1饱和蒸汽压跟着温度高升而快速增添。

由上图1曲线知,a. 达到正常薄膜蒸发速率所需的温度,即P V=1Pa时温度;b.蒸发速率随温度变化的敏感性;c.蒸发形式:蒸发温度高于熔点,蒸发状态是融化的,不然是升华。

下表是几种介质资料的蒸汽压与温度的关系材料抵达以下蒸汽压的温度熔点( C)10-5 10-4 10-3 10-2 10-1 1 760(Torr)Al 2O3 1050 1150 1280 1440 1640 1860 3000 2034 MgO 1040 1130 1260 1410 1600 1800 2900 2672 ZrO 1430 1620 1820 2050 3600 2710 SiO2 1220 1380 1830 2227 1710 ZnS 870 925 980 1050 1120 1220 1850B、蒸发粒子的速度和能量E m 1mv m2 kT 22 3KT 3RT vm ME 3T 1000 ~ 2500 C KT均匀速度 105cm/s,E2C、蒸发速率和淀积速率Re dN e P V P h / 2 mkT (个/米2·秒)A dtdN:蒸发粒子数,e:蒸发系数, A :面积P V:饱和蒸汽压; P h:液体静压, m:原子量,K:玻耳兹曼常数。

科学11-班——物理气相沉积(PVD)

科学11-班——物理气相沉积(PVD)
♣ 按溅射方式的不同,又可分为直流溅射、射频溅射、偏压 溅射和反应溅射等。
1、直流溅射
设备简单,操作方便,适合于溅射金属薄膜 但直流溅射中靶材只接收正离子,如果靶材是绝缘材料,阴 极表面聚集的大量正离子无法被电子中和使其电位不断上 升,阴阳两极电势减小,使溅射不能持续进行.
惰性气体
2、射频溅射
射频溅射原理:交变电场使得靶材正半周接收电子,负半周接收 正离子,相互中和,从而使阴阳两极电位的大小保持稳定,使溅射 能够持续进行.
入射粒子引起靶材表面 原子的级联碰撞示意图
在溅射过程中,通过动量传递,95%的离子能量作为热量而被损耗,仅有5%的能量传递 给二次发射的粒子。 溅射的中性粒子:二次电子:二次离子=100:10:1
辉光放电
离子束溅射
工艺昂贵
溅射过程的物理模型
阴极溅射镀膜原理示意图
1-高压屏蔽 2-高压线 3-基片 4-钟罩 5-阴极屏蔽 6-阴极 (靶材)
离子镀的类型:(从离子来源的角度可分为) 蒸发源离子镀和溅射离子镀两大类。
离子镀技术的特征:在基片上施加负偏压, 用来加速离子,增加调节离子的能量。
二极直流放电离子镀示意图
离子镀的主要优点:⑴等离子体的活性有利于降低化合物的合成温度;⑵离子 轰击提高了薄膜的致密度;⑶改善了膜层的组织结构;⑷提高膜/基结合力。
1. 所生长的材料以物理的方式由固体转化为气体 2. 生长材料的蒸汽经过一个低压区域到达衬底 3. 蒸汽在衬底表面上凝结,形成薄膜
Substrate
Substrate Substrate Substrate Substrate
热运动 原子团簇
岛 薄膜
PVD所需实验条件及实验配置
实验条件
高真空 (HV) 高纯材料

物理气相沉积

物理气相沉积

物理气相沉积(PVD)技术第一节概述物理气相沉积技术早在20世纪初已有些应用,但在最近30年迅速开展,成为一门极具广阔应用前景的新技术。

,并向着环保型、清洁型趋势开展。

20世纪90年代初至今,在钟表行业,尤其是高档手表金属外观件的外表处理方面到达越来越为广泛的应用。

物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真空条件下,采用物理方法,将材料源——固体或液体外表气化成气态原子、分子或局部电离成离子,并通过低压气体(或等离子体)过程,在基体外表沉积具有某种特殊功能的薄膜的技术。

物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。

开展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。

真空蒸镀根本原理是在真空条件下,使金属、金属合金或化合物蒸发,然后沉积在基体外表上,蒸发的方法常用电阻加热,高频感应加热,电子柬、激光束、离子束高能轰击镀料,使蒸发成气相,然后沉积在基体外表,历史上,真空蒸镀是PVD法中使用最早的技术。

溅射镀膜根本原理是充氩(Ar)气的真空条件下,使氩气进展辉光放电,这时氩(Ar)原子电离成氩离子(Ar+),氩离子在电场力的作用下,加速轰击以镀料制作的阴极靶材,靶材会被溅射出来而沉积到工件外表。

如果采用直流辉光放电,称直流(Qc)溅射,射频(RF)辉光放电引起的称射频溅射。

磁控(M)辉光放电引起的称磁控溅射。

电弧等离子体镀膜根本原理是在真空条件下,用引弧针引弧,使真空金壁(阳极)和镀材(阴极)之间进展弧光放电,阴极外表快速移动着多个阴极弧斑,不断迅速蒸发甚至“异华〞镀料,使之电离成以镀料为主要成分的电弧等离子体,并能迅速将镀料沉积于基体。

因为有多弧斑,所以也称多弧蒸发离化过程。

离子镀根本原理是在真空条件下,采用某种等离子体电离技术,使镀料原子局部电离成离子,同时产生许多高能量的中性原子,在被镀基体上加负偏压。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特点
1)
2) 3)
加热速度快,晶粒度小,硬度↑,脆性↓
表层残余压应力 → 提高疲劳强度 不易氧化、脱碳、变形小。
4)
加热温度和淬硬层厚度容易控制。
2.火焰加热表面淬火 原理: (乙炔-氧等火焰) 特点: 设备简单,但生产率低。
应用:大型工件
2.
钢的化学热处理
将工件置于特定的介质中加热、保温,使介质中的 活性原子渗入工件表层,以改变表层的化学成分、组织 和性能。
3.淬火
加热到Ac3、Ac1以上,保温, 快速冷却 → M 。
目的:获得马氏体组织,使钢 具有高硬度和高耐磨性。淬火 是强化钢材的重要方法。
淬火温度 1) 亚共析钢 Ac3 + 30~50 ℃ 2) 过共析钢 Ac1 + 30~50 ℃,
→ M + Fe3CII + A' ,硬度大。
A中C%↓→ M 脆性↓ ,残余A%↓ 淬火温度低 → M细小,淬火应力 小。
Ac1、Ac3、Accm
冷却时:Ar1、Ar3、Arcm (二 )钢的普通热处理
1.退火 2.正火
3.淬火
4.回火
1、退火
加热、保温后,缓冷(炉冷)→ 近平衡组织 P ( + F 或 Fe3CII )
目的:1)降低硬度以利于切削加工; 2)提高塑性以利于塑性加工成型; 3)细化晶粒以提高力学性能; 4)消除应力以防工件变形或开裂。 退火一般作为改善工艺性能的预备热处理。
(三) 电刷镀 电刷镀又称涂镀、刷镀。是近十几年发 展起来的零件修复工艺。它是利用电化学原 理,在金属工件表面局部有选择地快速沉积 金属镀层,达到恢复零件尺寸和改变零件表 面性能的目的。 特点:镀层均匀、致密,力学、化学性 能好。 电刷镀液按其作用可分为预热溶液、金属 刷镀溶液、退镀溶液和钝化溶液四类。汽车维 修中常用的是前两种镀液。
目的:是为了减少或消除淬火应力,防止工件 变形与开裂,稳定工件尺寸及获得必需的力学性 能。
(1)常见回火工艺
低温回火(150~250℃) → 回火M ( 过饱和F +薄片状Fe2.4C ) + A' 淬火应力↓ ,韧性↑ ,保持淬火后的高硬度。 用于高C工具钢等。 中温回火(350~500℃)→ 回火T (F +细粒状Cm ) 弹性极限和屈服强度↑,韧性和硬度中等。 用于弹簧等。 高温回火(500~650℃)→ 回火S (等轴状F +粒状Cm ) 综合机械性能最好, 即强度、塑性和韧性都较好。 用于重要零件。 调质处理 —— 淬火 + 高温回火
二、金属材料的表面技术
(一) 钢的表面热处理(表面淬火)
(二) 热喷涂技术 (三) 电刷镀 (四) 气相沉积技术
(一) 钢的表面热处理(表面淬火)
不改变心部组织,利用快速加热将表层A化后进行淬火。
目的 : 提高表面硬度,保持心部良好的塑韧性。
1.感应加热表面淬火
交变磁场 → 感应表面电流 → 表面加热
课题三
钢的热处理
一.
钢的热处理
热处理的概念与原理
(一 )
1.
2.
钢在加热时的转变
钢在冷却时的转变
(二)
钢的普通热处理
热处理的概念
把固态金属材料在一定介质中的加热、保温和 冷却,以改变其组织和性能的一种工艺。
图2-23 热处理与成分、组织、性 能间关系示意图
图2-24 热处理基本工艺曲线
1.
钢在加热时的转变 临界温度 平衡时: A1、 A3 、Acm 加热时:
分类 —— 渗 C、N化、C N共渗、渗硼、渗铬、渗 Al等。
1.钢的渗 C —— 气体、固体渗 C
低C钢在高C介质中加热到900~ 950℃、保温 → 高碳表层(约 1.0%) 目的:表面硬度,耐磨性↑ ,心 部保持一定的强度和塑韧性。
渗碳后的的热处理
淬火
直接淬火 —— 晶粒粗大,残余A多,耐磨性低,变形大。 一次淬火 —— 加热温度Ac3以上(心部性能↑ )或 Ac1以上(表面性 能↑ ) 二次淬火 —— Ac3以上(心部性能↑ )+ Ac1以上(表面性能↑ )
冷却介质
冷却速度: 盐水 > 水 > 盐浴 淬火方法 > 油
单介质淬火:水、油冷
双介质淬火:水冷 + 油冷
分级淬火: >Ms盐浴中均温+空冷
等温淬火( 在盐、碱浴中) → 下B
4.回火
回火工艺是将淬火后的钢加热到A1线以下某 一温度,保温一定时间后出炉空冷到室温的一种 热处理工艺。回火是淬火的后续工序.
再结晶退火: 加热温度 TR + 30~ 50℃ 目的:消除加工硬化 去应力退火 加热温度< Ac1 , 一般为 500~650℃ 目的: 消除冷热加工后的内应力
2.正火
加热温度
Ac3 ( Accm ) + 30~50℃, 空冷 → S ( + F 或 Fe3CII )
常作最终热处理。
应用:
1) 钢的最终热处理 细化晶粒,组织均匀化,增加亚共析钢中 P(S)% → 强度、韧性、硬度↑ 2) 预先热处理 —— 淬火、球化退火前 改善组织。 3) 增加低碳钢的硬度,以改善切削加工 性能。
1.退火
完全退火(亚共析钢) 加热温度 Ac3 + 20~30℃ 缓冷→ F + P 目的: 细化晶粒,均匀化组织 降低硬度 → 切削性↑ 扩散退火 加热至略低于固相线 目的:使成分、组织均匀
等温退火: 等温转变→F + P,再缓冷
球化退火(过共析钢) 在Ac1+ 20~30℃等温, 使Fe3CⅡ球化,再缓冷 → 球状P (F +球状Cm) 目的: 硬度↓,切削性↑,韧性↑
2、热喷涂技术
常用的热喷涂的主要方法如下: 1)火焰喷涂 2)电弧喷涂 3)等离子喷涂(气体导电(或放电)所产生的 等离子电弧作为高温热源 )
图2-46氧乙炔火焰喷涂原理(原书图3-21)1-进料口 2气体通道 3-喷嘴 4-火焰 5-喷涂层 6-工件 7-氧乙炔入 口 8-气体出口
图2-47电弧喷涂示意图(原书图3-22)1-送丝 轮 2-金属丝 3-喷嘴 4-涂层 5-工件
低温回火, 150~200℃,
消除淬火应力,提高韧性。
2.钢的氮化
工件表面渗入N原子,以提高硬度、耐磨性,疲劳强度 和耐蚀性。 氮化温度低(500~600℃),时间长(20~50h),渗层 薄。 氮化前调质处理、氮化后无须淬火。
(二) 热喷涂技术
1.原理:
指以某种热源,将粉末或线状材料加热到 熔化或熔融状态后,用高压高速气流将其雾 化成细小的颗粒喷射到零件表面上,形成一 层覆盖层的过程。
相关文档
最新文档