高等数学,线性代数,概率解题万能技巧。期末,考研复习必备!!
数学考研攻略五大重点知识点让你事半功倍

数学考研攻略五大重点知识点让你事半功倍数学是许多考生在考研过程中最头疼的科目之一,尤其是对于非数学专业的考生来说。
然而,只要掌握了一些重点知识点和解题技巧,就能在考试中事半功倍。
本文将介绍数学考研中的五大重点知识点,帮助考生更有效地备考。
一、高等代数高等代数是数学考研中最重要的一个模块,也是考生必须掌握的基础。
高等代数的知识点包括矩阵与行列式、线性方程组、特征值与特征向量等,考研中常考的题型有解线性方程组、计算矩阵的特征值等。
在备考中,考生应重点复习相关公式和定理,并通过大量的练习题来提升解题能力。
二、数学分析数学分析是考研数学中另一个重要的知识点。
在考研中常考的数学分析内容包括函数极限、连续性、导数与微分、积分等。
考生应重点掌握函数的极限运算法则、导数运算法则和积分运算法则等基本概念和性质。
此外,考生还需通过大量的练习题来熟悉各种求导、求极限和求定积分的方法。
三、概率论与数理统计概率论与数理统计是数学考研中的另一个重点部分。
考生需要理解概率和统计的基本概念,包括样本空间、随机事件、概率、独立性等。
常考的题型有概率计算、随机变量的分布函数和概率密度函数的求解等。
在备考中,考生应掌握各种常见的概率分布,如二项分布、正态分布等,并了解各种分布函数和概率密度函数的性质和特点。
四、常微分方程常微分方程是数学考研中的一道难题,但也是一个重点知识点。
考生应熟悉常微分方程的基本概念和基本解法,包括常微分方程的一阶与高阶、齐次与非齐次、线性与非线性方程等。
常见的题型包括求解一阶常微分方程和二阶常微分方程等。
在备考中,考生应掌握各种求解常微分方程的方法,如变量分离法、齐次方程的解法等,并通过大量的练习题来提高解题能力。
五、离散数学离散数学在数学考研中的重要性逐渐提升。
离散数学的知识点包括集合论、图论、代数结构等。
考生需要了解图的基本概念和性质,如路径、回路、连通性等。
在备考中,考生应重点复习离散数学的相关定理和算法,并通过大量的习题来巩固知识。
考研数学解题宝典重要公式及解题技巧

考研数学解题宝典重要公式及解题技巧数学在考研中占据着非常重要的地位,作为考试科目之一,数学的解题技巧和重要公式的掌握都对考生的成绩起着至关重要的作用。
本文将介绍一些考研数学解题宝典中的重要公式及解题技巧,帮助考生更好地备考。
一、线性代数1. 行列式的性质- 若行列式的两行(或两列)互换,行列式变号。
- 若行列式中某行(或某列)元素全为0,则行列式的值为0。
- 若行列式两行(或两列)成比例,则行列式的值为0。
- 若行列式两行(或两列)有相同的元素,则行列式的值为0。
- 行列式的某一行(或某一列)的元素都乘以同一个数,行列式的值也乘以这个数。
2. 矩阵的基本运算法则- 两个矩阵的和(或差)的行数、列数相等,相应元素相加(或相减)。
- 两个矩阵相乘,第一个矩阵的行数等于第二个矩阵的列数,乘积矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。
3. 线性方程组的解法- 初等变换法。
通过初等行变换或初等列变换将线性方程组化为行简化阶梯形或列简化阶梯形,进一步求得解。
- 矩阵法。
使用矩阵表示线性方程组,通过矩阵运算求得方程组的解。
- Cramer法则。
若线性方程组的系数行列式不为0,可以使用克拉默法则求得方程组的解。
二、概率论与数理统计1. 基本概率公式- 事件的概率为其样本点的概率之和。
- 若A、B为互不相容事件,则P(A∪B) = P(A) + P(B)。
- 若A、B为任意两事件,则P(A∪B) = P(A) + P(B) - P(A∩B)。
2. 排列组合公式- 排列公式:A(n, m) = n!/(n-m)!- 组合公式:C(n, m) = n!/(m!(n-m)!)3. 概率分布函数- 二项分布:P(X=k) = C(n, k) p^k (1-p)^(n-k)- 正态分布:P(a ≤ X ≤ b) = Φ((b-μ)/σ) - Φ((a-μ)/σ)三、数学分析1. 一元函数求导公式- 基本导函数:(常数函数)' = 0, (x^n)' = nx^(n-1)- 三角函数导函数:(sinx)' = cosx, (cosx)' = -sinx, (tanx)' = sec^2x 2. 一元函数的极限公式- 无穷小量的性质:lim(x→0) sinx/x = 1, lim(x→∞) (1+1/x)^x = e 3. 一元函数的级数展开公式- 泰勒级数:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ...四、高等代数1. 矩阵运算公式- 矩阵转置:(A^T)^T = A- 矩阵加法交换律:A + B = B + A- 矩阵数乘结合律:k(A + B) = kA + kB2. 矩阵的特征值与特征向量公式- 矩阵A的特征方程:det(A-λI) = 0- 矩阵A的特征值:满足特征方程的λ值- 矩阵A的特征向量:Ax = λx,x为非零向量3. 矩阵的对角化与相似矩阵公式- 若矩阵A与对角矩阵D相似,则存在可逆矩阵P,使得D = P^-1AP五、常微分方程1. 一阶线性微分方程公式- 可分离变量的微分方程:dy/dx = g(x)f(y)- 齐次方程的解法:dy/dx = g(y)/f(x)2. 高阶常系数线性微分方程公式- 齐次线性微分方程的解法:a_ny^n + a_(n-1)y^(n-1) + ... + a_1y' + a_0y = 0- 特解的叠加原理:若y_1, y_2, ..., y_n是对应于非齐次线性方程的解,y_c是对应于齐次线性方程的解,那么通解为y = y_c + y_p六、数值分析1. 数值求根方法- 二分法:f(x)在[a, b]上连续,且f(a)f(b)<0,则方程f(x) = 0在[a, b]上有解。
考研线性代数有哪些复习技巧及建议

考研线性代数有哪些复习技巧及建议考研线性代数有哪些复习技巧及建议新一族考研人奔向考研战场时,其中数学复习成为不少考生的拦路虎,尤其是数学中的线性代数部分,复习起来有一定的难度。
店铺为大家精心准备了考研线性代数复习方法和意见,欢迎大家前来阅读。
考研线性代数复习技巧和建议集锦考研数学试题的题量一般在20-22道之间,一般6道填空题,6道选择题,10道大题。
数学试卷的结构是总共20道题,填空5个,选择5个,大的综合题10个,其中高数6个,线性代数和概率论各2个。
首先填空题命题原则是考查考生最基本的运算,它的难易度一般要求都是容易和中等偏下的。
通过填空题的考察要了解同学快捷准确的能力,这就要求考生平时复习中一定要注意计算的准确。
有的填空题有一些小窍门,要学会总结和积累,做到快捷准确答题。
其次选择题命题原则考两个方面,一是对数学概念的理解,二是对数学方法的掌握。
选择题的难易度是中下等。
前两部分不会有难题,所以应该有个比较高的得分率,考生要针对这部分好好复习。
最后,简答题中数一15到19是微积分,20、21是线性代数,22、23是概率论。
数二15到21是微积分,22、23是线性代数。
在这9道题里应该有1到2个难题,而且出在微积分部分,因为微积分部分题多分多。
考研试卷是按块出题,15到19题难度逐渐上升,21到23题然后再下降,所以在考场上一定要灵活,如果复习的好,这5道微积分就一股作气答完,如果感到棘手就先做容易的题。
线性代数复习技巧指导对于基础一般的考生,不管是线性代数还是数学的其他部分,都要进行一个前期的复习。
考生可以报一个春季数学基础班,春季基础班只在周末上课,战线比较长。
另外不同于强化班连续上课,考生能够抽出一些时间提前预习上课内容,课后也有时间巩固、强化上课内容。
如果能够跟着老师认认真真复习一段时间,我想数学肯定会有很大提高的。
数学的复习离不开做题,所以一定要通过做题巩固所学的概念、原理和方法。
做题时不要找难题、怪题,要针对基本知识点和基本原理多做练习,体会这些知识点和原理的应用。
考研数学线性代数复习技巧

考研数学线性代数复习技巧考研数学线性代数复习技巧对于考研数学中的线性代数这一门有很多的复习技巧,掌握这些技巧之后对于提高有着很大的帮助。
店铺为大家精心准备了考研数学线性代数复习方法,欢迎大家前来阅读。
考研数学线性代数复习秘诀一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。
线性代数的概念很多,重要的有:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。
往年常有考生没有准确把握住概念的内涵,也没有注意相关概念之间的区别与联系,导致做题时出现错误。
例如,矩阵A=(α1,α2,…,αm)与B=(β1,β2…,βm)等价,意味着经过初等变换可由A 得到B,要做到这一点,关键是看秩r(A)与r(B)是否相等,而向量组α1,α2,…αm与β1,β2,…βm等价,说明这两个向量组可以互相线性表出,因而它们有相同的秩,但是向量组有相同的秩时,并不能保证它们必能互相线性表现,也就得不出向量组等价的信息,因此,由向量组α1,α2,…αm与β1,β2,…βm等价,可知矩阵A=(α1,α2,…αm)与B=(β1,β2,…βm)等价,但矩阵A与B等价并不能保证这两个向量组等价。
又如,实对称矩阵A与B合同,即存在可逆矩阵C使CTAC=B,要实现这一点,关键是二次型xTAx与xTBx的正、负惯性指数是否相同,而A与B相似是指有可逆矩阵P使P-1AP=B 成立,进而知A与B有相同的特征值,如果特征值相同可知正、负惯性指数相同,但正负惯性指数相同时,并不能保证特征值相同,因此,实对称矩阵A~B?A?B,即相似是合同的充分条件。
线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
考研数学线性代数题解题技巧与方法

考研数学线性代数题解题技巧与方法线性代数是考研数学中的一门重要课程,也是许多考生感到头疼的科目。
在考研数学线性代数题中,解题技巧和方法是至关重要的。
本文将探讨几种在解线性代数题目时常用的技巧和方法,希望能对考生们有所帮助。
一、方程组求解1. 列主元消去法:列主元消去法是求解线性方程组的一种常用方法。
它的基本思想是通过一系列的行变换,将方程组化为“简化行梯阵”,然后逆序回代求解未知数。
在进行列主元消去法时,可以采用高斯-约当消去法或高斯-塞尔曼消去法。
2. 矩阵求逆法:求解线性方程组可以借助矩阵求逆。
当方程组可用矩阵表示时,我们可以通过求解矩阵的逆矩阵来求解方程组。
矩阵求逆法可以使用伴随矩阵法、初等变换法或分区法等方法求解。
二、特征值和特征向量1. 特征方程法:求解特征值和特征向量可以通过解特征方程来实现。
根据定义,特征值和特征向量满足方程AX = λX,其中 A 是给定的 n阶方阵,X 是 n 维非零向量,λ 是标量。
我们可以通过解特征方程det(A-λI) = 0 来获得特征值λ,然后代入方程组进行求解得到特征向量X。
2. 相似对角化法:相似对角化是一种常用的特征值和特征向量求解方法。
根据特征分解定理,对于 n 阶矩阵 A,若存在可逆矩阵 P,使得P⁻¹AP = D,其中 D 是对角矩阵,那么 D 的对角线上的元素就是 A 的特征值,P 的列向量就是 A 的特征向量。
三、向量空间1. 基与维数:向量空间是线性代数的重要概念之一。
对于给定的向量空间 V,若存在 V 的一个向量组 v₁, v₂, ..., vₙ,满足:(1) 向量组中的向量线性无关;(2) 向量空间 V 中的任意向量都可以由该向量组线性表示;那么这个向量组就是 V 的一组基。
而向量空间 V 的维数就是它的基的向量个数。
2. 基变换与坐标表示:在向量空间中,基的选择对于向量的表示是至关重要的。
不同的基会导致不同的坐标表示。
考研数学线性代数6个解题小技巧

考研数学线性代数6个解题小技巧考研数学线性代数6个解题小技巧【摘要】线性代数考研数学中占有重要的地位,多以计算题为主,证明题为辅。
以下是总结的线性代数解题技巧,以供大家参考。
一、行列式行列式这一块,它在整个考研数学试卷中所占分量不是很大,一般主要是以填空选择题为主。
这一块是考研数学中必考内容,它不单单考察行列式的概念、性质、运算,与行列式有关的考题也是很多的,比如在逆矩阵、向量组的线性相关性、方阵的秩、线性方程组解的判断、特征值的求解、正定二次型与正定矩阵的判断等问题中都会用到行列式的有关计算。
因此,对于行列式的计算方法我们一定要熟练掌握。
二、矩阵关于矩阵这一块:矩阵是线性代数的核心知识,它是后面各章节的基础,在向量组、线性方程组、特征值、二次型中均有体现。
矩阵的概念、运算及理论贯穿整个线性代数的知识部分。
这部分的考点涉及到伴随矩、逆矩阵、初等矩阵、矩阵的秩以及矩阵方程,这些内容是有关矩阵知识中的一类常见的`试题。
三、向量关于向量这部分:它既是重点又是难点,主要是因为其比较抽象,因此很多考生对这一块比较陌生,进而就会导致我们们在理解以及做题上的困难。
这一部分主要是要掌握两类题型:一是关于一个向量能否由一组向量线性表出的问题,二是关于一组向量的线性相关性的问题。
而这两类题型我们一般是与非齐次方程组和齐次方程组一一对应来求解的。
四、线性方程关于线性方程组这一块;线性方程组在近些年出现的频率较高,几乎每年都有考题,它也是线性代数部分考查的重点内容。
所以对于线性方程组这一部分的内容,同学们一定要掌握。
其常见的题型如下:(1)线性方程组的求解(2)方程组解向量的判别及解的性质(3)齐次线性方程组的基础解系(4)非齐次线性方程组的通解结构(5)两个方程组的公共解、同解问题。
五、特征值、特征向量关于特征值、特征向量这一块:它也是线性代数的重点内容,在我们考研数学中一般都是题多分值大。
其常见题型如下:(1)数值矩阵的特征值和特征向量的求法(2)抽象矩阵特征值和特征向量的求法(3)判定矩阵的相似对角化(4)由特征值或特征向量反求A(5)有关实对称矩阵的问题。
考研数学线性代数的解题技巧

考研数学线性代数的解题技巧线性代数是考研数学中的重要组成部分,对于很多考生来说,线性代数的解题是一个相对较难的任务。
然而,只要掌握了一些解题技巧,就能够在考试中更好地应对线性代数题目。
本文将为大家介绍几种常用的解题技巧,希望对考生的复习有所帮助。
一、矩阵的基本变换在解线性代数题目时,经常需要进行矩阵的基本变换。
常见的矩阵变换包括行变换、列变换和矩阵的转置等。
行变换是通过对矩阵的行进行加减乘除等运算,使得矩阵的某些元素变为零或者满足特定的条件。
列变换与行变换类似,只不过是对矩阵的列进行操作。
矩阵的转置是将矩阵的行与列对调形成的新矩阵,如矩阵A的转置记为A^T。
转置后,矩阵的主对角线元素不变,其它元素按照相应位置互换。
通过合理运用矩阵的基本变换,可以简化解题过程,提高解题效率。
二、矩阵的初等变换矩阵的初等变换是指对矩阵进行行变换、列变换或者矩阵转置的运算。
常见的初等变换包括倍加行、倍减行、行交换等操作。
倍加行是将一个矩阵的某一行的每个元素都乘以一个非零数然后加到另一行上。
倍减行与倍加行类似,只不过是将一个矩阵的某一行的每个元素都乘以一个非零数然后减去另一行。
行交换是将矩阵的两行进行互换位置。
通过矩阵的初等变换,可以将矩阵化简为最简形或者找到矩阵的特殊解等。
三、特征值和特征向量特征值和特征向量是线性代数中的重要概念,解题中经常会用到。
对于一个n阶方阵A,如果存在一个λ使得A*x = λ*x,其中x为非零向量,那么λ称为矩阵的特征值,对应的x称为特征向量。
求矩阵的特征值和特征向量可以通过求解矩阵的特征方程来实现。
特征值和特征向量的求解对于解线性方程组、矩阵的对角化等都具有重要的作用。
在解题时,可通过特征值和特征向量的性质来简化问题,提高解题效率。
四、向量空间和基在线性代数中,向量空间是指由一组向量线性组合而成的集合。
解题中,对于给定的向量空间和一组基,可以通过判断向量是否属于该向量空间,求解向量的线性表示等来解题。
解析考研数学线性代数高分解题技巧

解析考研数学线性代数高分解题技巧在考研数学线性代数这个科目中,许多考生认为解题技巧是取得高分的重要因素之一。
本文将分析解析考研数学线性代数高分解题技巧,希望能给考生提供实用的指导。
一、理解基本概念要想在线性代数中取得高分,首先要对基本概念有深入的理解。
线性代数中的基本概念包括矩阵、向量、行列式等。
建议考生在备考过程中,将这些基本概念的定义和性质牢记于心,并多做相关题型的练习,以加深对这些概念的理解和应用。
二、掌握基本定理和性质熟练掌握线性代数中的基本定理和性质是解题的基础。
比如矩阵的秩与零空间的维数的关系、特征值与特征向量的性质等。
考生要牢记这些基本定理和性质,并能够熟练灵活地运用于解题过程中。
三、强化计算能力在线性代数的考试中,计算题是比较常见的一种题型。
因此,考生需要通过大量的计算练习,提高计算的准确性和速度。
对于矩阵的运算和行列式的计算,考生要掌握相应的运算法则和计算技巧,以提高解题的效率。
四、注意题目中的关键信息在解题过程中,考生需要仔细阅读题目,注意题目中的关键信息。
有时候,题目中隐藏着解题的关键。
比如,题目中给定了一个矩阵的特定性质,可以利用该性质进行解题;题目中提到了矩阵的秩和零空间的维数之间的关系,可以通过这一关系推导出相关的结论。
因此,考生需要善于发现题目中的关键信息,并能够巧妙地运用于解题过程中。
五、分析解题方法在解题过程中,考生可以根据题目的不同,选择不同的解题方法。
比如,在求解矩阵的特征值和特征向量时,可以选择特征方程和特征多项式法,也可以选择初等变换法;在计算矩阵的秩时,可以选择高斯消元法或行阶梯形法。
考生需要对各种解题方法有所了解,并能够灵活选择和应用于解题过程中。
总结起来,解析考研数学线性代数高分解题技巧包括理解基本概念,掌握基本定理和性质,强化计算能力,注意题目中的关键信息以及分析解题方法。
通过不断的练习和实践,考生将能够更好地掌握这些解题技巧,提高解题能力,取得更好的成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数解题技巧。
(高等数学、考研数学通用)【欢迎分享】tiantian
高数解题的四种思维定势
●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。
●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。
●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。
●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。
线性代数解题的八种思维定势
●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。
●第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
●第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE再说。
●第四句话:若要证明一组向量α1,α2,…,αS线性无关,先考虑用定义再说。
●第五句话:若已知AB=0,则将B的每列作为Ax=0的解来处理
●第六句话:若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。
●第七句话:若已知A的特征向量ξ0,则先用定义Aξ0=λ0ξ0处理一下再说。
●第八句话:若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。
概率解题的九种思维定势
●第一句话:如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式
●第二句话:若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli 试验,及其概率计算公式
●第三句话:若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发生概率是用全概率公式计算。
关键:寻找完备事件组
●第四句话:若题设中给出随机变量X ~ N 则马上联想到标准化~ N(0,1)来处理有关问题。
●第五句话:求二维随机变量(X,Y)的边缘分布密度的问题,应该马上联想到先画出使联合分布密度的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,而的求法类似。
●第六句话:欲求二维随机变量(X,Y)满足条件Y≥g(X)或(Y≤g(X))的概率,应该马上联想到二重积分的计算,其积分域D是由联合密度的平面区域及满足Y≥g(X)或(Y≤g(X))的区域的公共部分。
●第七句话:涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作(0-1)分解。
即令
●第八句话:凡求解各概率分布已知的若干个独立随机变量组成的系统满足某种关系的概率(或已知概率求随机变量个数)的问题,马上联想到用中心极限定理处理。
●第九句话:若为总体X的一组简单随机样本,则凡是涉及到统计量的分布问题,一般联想到用卡方分布,t分布和F分布的定义进行讨论。