关于双足机器人的设计与研究

合集下载

双足行走机器人知识点总结

双足行走机器人知识点总结

双足行走机器人知识点总结一、概述双足行走机器人是一种仿生机器人,模拟人类的行走方式,具有独特的工作原理和技术特点。

双足行走机器人的出现,不仅是人工智能和机器人技术的进步,也是对人类步行机理的深入研究和模拟。

双足行走机器人在军事、医疗、救援、娱乐等领域有着广泛的应用前景,具有较高的研究和开发价值。

本文将对双足行走机器人的相关知识点进行总结,包括其工作原理、技术特点、应用领域、研究进展等方面的内容。

二、工作原理双足行走机器人的工作原理主要包括下面几个方面:1. 仿生学原理双足行走机器人的设计初衷是模拟人类的行走方式,因此其工作原理主要受到仿生学的影响。

通过对人类步行过程和髋关节、膝关节等关节运动原理的研究,获得了双足行走机器人的灵感和设计方向。

2. 动力学原理双足行走机器人的行走是由电动机、液压系统或气动系统提供动力,通过控制步进和踢腿的方式,实现机器人步态的模拟。

通过对机械结构的精确设计和动力学方程的优化计算,提高了双足行走机器人的步行效率和稳定性。

3. 控制原理双足行走机器人的控制系统是其核心技术之一,包括硬件控制和软件控制两方面。

在硬件控制方面,采用传感器检测地面状态和机器人姿态,实现对机器人动作的精确控制;在软件控制方面,采用运动规划和动力学优化算法,实现机器人稳定行走和适应不同地形的能力。

4. 感知与决策双足行走机器人的感知与决策系统是其智能化的重要组成部分,包括视觉、声音、激光雷达等传感器,以及路径规划、障碍避障等决策算法。

通过对环境信息的感知和对行为的决策,实现双足行走机器人在复杂环境中的稳定行走和智能导航。

三、技术特点双足行走机器人具有以下技术特点:1. 多关节结构双足行走机器人与传统的轮式机器人相比,具有更加复杂的多关节结构,可以实现更加灵活的步态和更加复杂的动作。

通过对关节结构和驱动方式的优化设计,提高了机器人的运动性能和动态稳定性。

2. 动力系统双足行走机器人的动力系统包括电动机、液压系统或气动系统,可以实现不同的步态演示和负重运输。

双足竞步机器人设计与制作技术报告

双足竞步机器人设计与制作技术报告

双足竞步机器人设计与制作技术报告摘要本报告介绍了双足竞步机器人的设计与制作技术。

首先介绍了双足竞步机器人的背景和应用领域,然后详细讲解了机器人的整体设计思路和关键技术,包括步行算法、动力系统、传感器系统等。

接着介绍了机器人的制作过程和各个部件的选材与制作方法。

最后,对该机器人进行了实验验证和性能评估,并提出了进一步的改进方向。

关键词:双足竞步机器人、设计、制作、技术、步行算法一、引言双足竞步机器人作为一种仿生机器人,可以模拟人类的步行方式,具有广泛的应用前景。

本报告旨在介绍双足竞步机器人的设计与制作技术,为相关领域的研究人员提供借鉴和参考。

二、双足竞步机器人的背景和应用领域双足竞步机器人是一种类似于人类的步行机器人,可以进行类似于人类的步行运动。

由于其具有良好的稳定性和灵活性,因此在许多领域有着广泛的应用前景,如医疗康复、工业生产等。

三、双足竞步机器人的整体设计思路双足竞步机器人的整体设计思路包括步行算法的设计、动力系统的设计和传感器系统的设计等。

步行算法是机器人实现类似于人类步行的关键,通过对人类步行的分析和建模,设计出合适的算法来控制机器人的步伐和平衡。

动力系统是机器人的运动能力的基础,需要选用合适的电机和驱动器来提供足够的动力。

传感器系统用于获取机器人周围环境的信息,需要选用合适的传感器并设计相应的信号处理算法。

四、双足竞步机器人的制作过程双足竞步机器人的制作过程包括选材和制作各个部件、装配和调试等步骤。

选材需要根据机器人的要求选择合适的材料,如轻量化的材料和具有良好刚度的材料。

制作部件需要基于设计图纸进行加工和制造,包括框架、关节和传动装置等。

最后进行装配和调试,确保机器人能够正常运行。

五、双足竞步机器人的实验验证和性能评估对于双足竞步机器人的实验验证和性能评估可以通过搭建仿真平台或实际制作机器人来进行。

通过与人类的步行进行对比,评估机器人的步态和平衡性能。

同时还可以测试机器人在不同地形和环境下的稳定性和适应性。

(完整版)双足竞步机器人设计与制作技术报告

(完整版)双足竞步机器人设计与制作技术报告

中国矿业大学徐海学院双足竞步机器人设计与制作技术报告队名:擎天柱班级:电气13-5班成员:郭满意游世豪侯敏锐唐丽丽侯伟俊王胜刘利强杨光题目:双足竞步机器人任课教师:***2015 年12月双足竞步机器人设计与制作任务书班级电气13-5班学号22130263 学生姓名郭满意任务下达日期:2015年10月16 日设计日期:2015 年11 月1 日至2014年12月31日设计题目:双足竞步(窄足)机器人的设计与制作设计主要内容和完成功能:1、双足竞步机器人机械图设计;2、双足竞步机器人结构件加工;3、双足竞步机器人组装;4、双足竞步机器人电气图设计;5、双足竞步机器人控制板安装;6、整机调试7、完成6米的马拉松比赛。

教师签字:摘要合仿人双足机器人控制的机构。

文章首先从机器人整体系统出发,制定了总体设计方案,再根据总体方案进行了关键器件的选型,最后完成了各部分机构的详细设计工作。

经过硬件设计、组装;软件设计、编写;整体调试,最终实现外型上具有仿人的效果,在功能上完全满足电气各部件机载化的安装要求。

本文介绍一个六个自由度的小型双足机器人的设计、调试与实现。

包括机械结构设计、电路设计与制作,机器人步态规划算法研究,利用Atmega8 芯片实现了对六个舵机的分时控制,编写 VC 上位机软件,通过串口通信对双足竞步机器人进行调试,通过人体仿生学调试出机器人的步态规划。

实现了双足竞步机器人稳定向前行走、立正。

关键词:双足机器人、机械结构目录1 系统概述 (1)2 硬件设计 (2)2.1机械结构 (2)3.2 PC 上位机调试软件设计 (4)4 系统调试 (5)5 结束语 (6)6 参考文献 (7)7 附录 (8)7.1源程序 (8)7.2相关图片 (9)1 系统概述针对项目根据实际拟订目标,结合我们所学知识,从仿人外形和仿人运动功能实现,首先确定了双足双足机器人自由度。

双足机器人的机构是所有部件的载体,也是设计两足双足机器人最基本的和首要的工作。

双足机器人课程设计

双足机器人课程设计

双足机器人课程设计一、课程目标知识目标:1. 让学生了解双足机器人的基本结构和原理,掌握其关键组成部分及功能;2. 使学生掌握双足机器人的运动控制算法,了解不同行走模式的特点;3. 帮助学生了解双足机器人在现实生活中的应用,提高对人工智能技术的认识。

技能目标:1. 培养学生运用所学知识分析和解决实际问题的能力,能够针对双足机器人进行简单的设计与调试;2. 提高学生的团队协作能力和沟通能力,学会在小组合作中共同完成任务;3. 培养学生的创新思维,能够提出改进双足机器人性能的设想。

情感态度价值观目标:1. 激发学生对机器人技术的兴趣,培养其探究精神和学习主动性;2. 培养学生的科学素养,使其认识到科技对社会发展的推动作用,增强社会责任感;3. 培养学生遵守实验操作规范,尊重团队成员,形成良好的道德品质。

课程性质:本课程为实践性较强的课程,旨在通过理论与实际操作相结合的方式,让学生深入了解双足机器人相关知识。

学生特点:学生处于好奇心强、求知欲旺盛的阶段,具有一定的物理、数学和信息技术基础,喜欢动手实践。

教学要求:结合学生特点,注重理论与实践相结合,鼓励学生积极参与讨论和实践活动,培养其创新精神和实际操作能力。

将课程目标分解为具体的学习成果,以便于教学设计和评估。

二、教学内容1. 双足机器人的基本结构:介绍双足机器人的关节、驱动器、传感器等关键组成部分及其功能;教材章节:第一章 双足机器人的结构与原理2. 双足机器人的运动控制算法:讲解双足机器人的运动学、动力学原理,介绍不同行走模式的控制算法;教材章节:第二章 双足机器人的运动控制3. 双足机器人设计与制作:引导学生学习双足机器人的设计与制作方法,包括电路设计、编程调试等;教材章节:第三章 双足机器人的设计与制作4. 双足机器人在现实生活中的应用:介绍双足机器人在医疗、救援、家庭等领域的应用案例;教材章节:第四章 双足机器人的应用与前景5. 双足机器人实践操作:安排学生进行双足机器人的组装、编程和调试,培养实际操作能力;教材章节:第五章 双足机器人实践操作6. 小组讨论与成果展示:组织学生进行小组讨论,分享学习心得,展示实践成果;教材章节:第六章 双足机器人项目实践与评价教学进度安排:课程共计12课时,每课时45分钟。

一种新型的多足仿生机器人的机构设计与研究

一种新型的多足仿生机器人的机构设计与研究
臧 红 彬
( 西南科 技大学 制造科 学 与工程 学院 , 阳 6 1 1 ) 绵 2 0 0
A e d sg fbo i llg e ob tme h nc I n w e in o in c mut e g d r o c a ia i
ZANG o g— i H n— n b

【 要1 一 型 足 机器 运 机构,机构 有 动灵 自 度少 特点 利 摘 提出 种新 的多 仿生 人的 动 该 具 运 活, 由 的 。
{ 用 D H矩阵对该机构基本运动单元的运动学进行 了理论分析, — 给出了运动学方程。 基于虚拟样机技术对
l该运动学方程进行了 仿真验证, 表明运动学方程是正确的。建立了 结果 这种新型的多 足仿生 机器人的虚 l
中图分 类号 : H1 文献标 识 码 : T 3 A
J日 U舌
多足仿生机器人近几年一直是国内外研究的一 个热点 , 困 各
利用机构运动学分析中的常用数学工具 D H齐次坐标变换 —
矩 阵 沿 着 路 线 o ~ 一 > 一 > 一 >)图 l , _ 口 c , ( 中粗 线 条 表 示 的 路
p t , d i m taeu i a s . a d n i at i ,rapo t e e ehn mo ; le a n ac ao W tp B e rl y n vt ty t cai e d n k e i qt n s e u s o vt p g i l rop o h m l u u f sf
、 0 0 1 、 0 0 1 / \ 0 0 1 / \ 0 0 1
( c o lo nomainEn ie rn , o twetUnv ri f ce c n e h oo y, a y n 2 01 C ia S h o f fr t gn eig S uh s ie st o in ea dT c n lg Min a g6 1 0, h n ) I o y S

毕业论文(设计)基于matlab的双足步行机器人腿部运动模型的建立与运动仿真

毕业论文(设计)基于matlab的双足步行机器人腿部运动模型的建立与运动仿真

诚信声明本人郑重声明:本论文及其研究工作是本人在指导教师的指导下独立完成的,在完成论文时所利用的一切资料均已在参考文献中列出。

本人签名:年月日毕业设计任务书设计题目:基于MATLAB的双足步行机器人腿部运动模型的建立与运动仿真系部:机械工程系专业:机械电子工程学号:112012337学生:指导教师(含职称):(讲师)专业负责人:1.设计的主要任务及目标1)通过查阅有关资料,了解双足型机器人主要技术参数;2)双足型机器人的腿部模型建立及运动部件设计3)利用Pro/E完成动作的仿真2.设计的基本要求和内容1)双足型机器人的腿部功能选择;2)模型的建立;3)运动的仿真4)完成毕业设计说明书的撰写3.主要参考文献[1] 孙增圻.机器人系统仿真及应[ J ].系统仿真报,1995 ,7( 3 ):23-29.[2] 蒋新松,主编.机器人学导论[ M ].沈阳:辽宁:辽宁科学技术出版社,1994.[3] 蔡自兴.机器人学[ M ].北京:清华大学出版社,2000.[4] 薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[ M ].北京:清华大学出版社,20024.进度安排设计各阶段名称起止日期1 发放毕业设计题目及选题2015.03.03—2015.03.232 查阅文献,了解研究意义,完成开题报告2015.03.24—2015.04.133 编写说明书,已完成工作,完成中期答辩2015.04.14—2015.05.044 继续编写毕业设计说明书2015.05.01—2015.06.015 提交设计说明书,完成毕业答辩2015.06.02—2015.06.22审核人:年月日基于Matlab的双足步行机器人腿部运动模型的建立与运动仿真摘要:最近几年,双足仿人步行机器人发展很快,有很高的科学研究价值。

步行机器人的运动是模仿人的步行运动的形式,相比其它机器人有更好的灵活性,所以可以完成各种生活中的难度更大的任务,实用价值远高于其它机器人,当然研究难度和控制也相当复杂。

双足机器人参数设计及步态控制算法

双足机器人参数设计及步态控制算法

制算法的改进方向,为未来的研究提供参考。
05
结论与展望
研究工作总结
01
参数设计优化
通过深入研究双足机器人的动力学特性和运动学要求,我们成功优化了
机器人的各项参数,包括惯性参数、连杆长度、关节角度范围等,从而
提升了机器人的稳定性和运动效率。
02
步态控制算法开发
我们开发了一种基于深度强化学习的步态控制算法,该算法能够根据不
VS
控制硬件
双足机器人的控制系统硬件需要具备足够 的计算能力和实时性能,以支持复杂的步 态控制算法和传感器数据处理。选择高性 能的处理器和专用的运动控制芯片,可以 确保机器人对行走指令的快速响应和精确 执行。
动力系统设计参数
要点一
能源供应
双足机器人的动力系统需要为其提供足够的能源供应,以 确保持续稳定的行走能力。选择合适的电池类型和容量, 以满足机器人的能量需求,并在必要时进行能源管理和优 化,以延长机器人的行走时间。
步态稳定性与优化
步态稳定性分析
通过建立机器人的稳定性判据,分析不同步态下的稳定性,为步 态控制算法提供理论指导。
最优控制
以能量消耗、行走速度等为目标函数,通过优化算法求解最优步态 控制策略,实现机器人的高效行走。
仿生学优化
借鉴生物行走的步态特征,对机器人的步态进行优化,提高机器人 在复杂环境中的行走性能。
意义
双足机器人具有人类类似的行走能力,能够在复杂地形中进行灵活移动,这对 于救援、探索等任务具有重要意义。同时,研究双足机器人也有助于我们更深 入地理解人类行走的机理。
双足机器人的应用领域
01
02
03
04
救援领域
在灾难救援场景中,双足机器 人能够跨越障碍,进入危险区

基于深度强化学习技术的双足机器人稳定行走研究

基于深度强化学习技术的双足机器人稳定行走研究

基于深度强化学习技术的双足机器人稳定行走研究近年来,随着人工智能技术的不断发展,深度强化学习技术已成为许多领域中的热门话题。

其中,基于深度强化学习技术的双足机器人稳定行走研究,备受关注。

本文将探讨这一领域的研究进展和前景。

一、双足机器人稳定行走问题双足机器人是模仿人类步态设计的机器人,随着机器人技术的发展,双足机器人已经可以用于许多领域,如救援、行业等。

但是,双足机器人在行走时经常会失去平衡,这影响了它的稳定性和可靠性。

稳定行走是双足机器人设计的重要问题。

它要求机器人不仅要能够平稳地行走,还要具备一定的适应性和反应能力,以应对不同的环境和场景。

二、深度强化学习技术在双足机器人稳定行走中的应用深度强化学习作为一种新兴的人工智能技术,已经广泛应用于机器人领域,尤其是在双足机器人稳定行走问题中得到了广泛应用。

强化学习是机器学习中的一种方法,它是通过试错的方式来学习。

与传统的机器学习不同,强化学习需要机器人不断地尝试和优化,以达到最佳结果。

深度强化学习是强化学习的一种方法,它使用深度神经网络来学习和决策。

深度强化学习技术在双足机器人稳定行走的应用主要有以下几点:1. 获得更加精准的感知信息深度强化学习技术可以帮助机器人获得更加精准的感知信息。

在行走时,机器人需要不断地感知周围的环境和地形,并根据这些信息进行调整和优化。

深度强化学习技术可以通过神经网络的学习和优化,使机器人获得更加精准的感知信息。

2. 提高机器人的决策能力深度强化学习技术可以帮助机器人提高决策能力。

在行走时,机器人需要不断地做出决策,以确保自身的稳定性和平衡性。

深度强化学习技术可以通过神经网络的学习和优化,使机器人做出更加精准的决策。

3. 提高机器人的适应能力深度强化学习技术可以帮助机器人提高适应能力。

在行走时,机器人需要适应不同的环境和场景,并做出相应的调整。

深度强化学习技术可以通过神经网络的学习和优化,使机器人适应更多的环境和场景。

三、深度强化学习技术在双足机器人稳定行走中的应用案例1. MuJoCoMuJoCo是一款基于物理仿真的双足机器人行走模拟器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于双足机器人的设计与研究
引言
机器人是一门综合性很强的学科,有着极其广泛的研究和应用领域。

机器人技术是综合计算机技术、信息融合技术、机构学、传感技术、仿生科学以及人工智能等多学科而形成的高新技术,它不仅涉及到线性、非线性、基于多种传感器信息控制以及实时控制技术,而且还包括复杂机电系统的建模、数字仿真技术及混合系统的控制研究等方面的技术。

仿人形机器人是机器人技术中的一个重要研究课题,而双足机器人是仿人形机器人研究的前奏。

步行技术是人与大多数动物所具有的移动方式,是一种高度自动化的运动,双足步行系统具有非常复杂的动力学特性,具有很强的环境适应性。

相对轮式、履带式机器人,它具有无可比拟的优越性,可进入狭窄的作业空间,也可跨越障碍、上下台阶、斜坡及在不平整的地面上工作,以及护理老人、康复医学和一般家庭的家政服务。

另一方面,由于双足机器人具有多关节、多驱动器和多传感器的特点,而且一般都具有冗余的自由度,这些特点对其控制问题带来很大难度,为各种控制和优化方法提供理想的实验平台,使其成为一个令人瞩目的研究方向,因此对双足步行机器人行走规划机器控制的研究不仅具有很高的学术价值,而且具有一定的现实意义。

以小型双足机器人的设计为重点,介绍一款小型双足机器人的设计,包括自由度配置,动力源核材料选择,并针对所设计的机器人进行静态步行规划。

1 小型双足机器人本体设计作为一种双足机器人研究平台,要求所设计的机器人能够满足研究者对双足机器人的基本要求,即机器人具备稳定行走的能力,为研究双足机器人的行走方法步态规划提供平台。

图1为所设计的双足机器人的平面图。

机器人共有18个自由度,头部的前方和左右两侧都装有超声波传感器,用来检测障碍物,头顶装有声敏传感器,用来检测声音。

1.1 机器人自由度配置。

相关文档
最新文档