数学建模图论模型
数学建模方法模型

数学建模方法模型一、统计学方法1 多元回归1、方法概述:在研究变量之间的相互影响关系模型时候用到。
具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。
2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx可以转化为y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。
3、注意事项在做回归的时候,一定要注意两件事:(1)回归方程的显著性检验(可以通过 sas 和 spss 来解决)(2)回归系数的显著性检验(可以通过 sas 和 spss 来解决)检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。
4、使用步骤:(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系; (2)选取适当的回归方程;(3)拟合回归参数;(4)回归方程显著性检验及回归系数显著性检验(5)进行后继研究(如:预测等)2 聚类分析1、方法概述该方法说的通俗一点就是,将n个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取m 聚类中心,通过研究各样本和各个聚类中心的距离Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas软件或者spss软件来做聚类分析,就可以得到相应的动态聚类图。
这种模型的的特点是直观,容易理解。
2、分类聚类有两种类型:(1)Q型聚类:即对样本聚类;(2)R型聚类:即对变量聚类;通常聚类中衡量标准的选取有两种:(1)相似系数法(2)距离法聚类方法:(1)最短距离法(2)最长距离法(3)中间距离法(4)重心法(5)类平均法(6)可变类平均法(8) 利差平均和法在具体做题中,适当选区方法;3、注意事项在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。
数学建模培训讲义-建模概论与初等模型

模型建立 建立t与n的函数关系有多种方法:
1. 右轮盘转过第 i 圈的半径为r+wi, m圈的总长度 等于录象带在时间t内移动的长度vt, 所以
m kn
模型建立
2. 考察右轮盘面积的 变化,等于录象带厚度 3. 考察t到t+dt录象带在 乘以转过的长度,即 右轮盘缠绕的长度,有
[(r wkn)2 r 2 ] wvt (r wkn)2kdn vdt
• 亲自动手,认真作几个实际题目
数学建模的论文结构
1、摘要——问题、模型、方法、结果
2、问题重述
3、模型假设
4、分析与建立模型
5、模型求解
6、模型检验
7、模型推广
8、参考文献
9、附录
谢 谢!
二、初等模型
例1 哥尼斯堡七桥问题
符号表示“一笔画问题”(抽象分析法) 游戏问题图论(创始人欧拉) 完美的回答连通图中至多两结点的度数为奇
3. 对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,
使椅子的任何位置至少有三只脚同时着地。
A
y A
椅脚连线为正方形ABCD(如右图).
模 型
t ——椅子绕中心点O旋转角度
构 f(t)——A,C两脚与地面距离之和 D
B
t
x
成 g(t)——B,D两脚与地面距离之和
O
B
f(t), g(t) 0
D
C
模型构成 由假设1,f和g都是连续函数 A
实际上, 由于测试有误差, 最好用足够多的数据作拟合。
若现有一批测试数据:
t 0 20 40 60 n 0000 1153 2045 2800 t 100 120 140 160 n 4068 4621 5135 5619
数学建模中的图论方法

数学建模中的图论方法一、引言我们知道,数学建模竞赛中有问题A和问题B。
一般而言,问题A是连续系统中的问题,问题B是离散系统中的问题。
由于我们在大学数学教育内容中,连续系统方面的知识的比例较大,而离散数学比例较小。
因此很多人有这样的感觉,A题入手快,而B题不好下手。
另外,在有限元素的离散系统中,相应的数学模型又可以划分为两类,一类是存在有效算法的所谓P类问题,即多项式时间内可以解决的问题。
但是这类问题在MCM中非常少见,事实上,由于竞赛是开卷的,参考相关文献,使用现成的算法解决一个P类问题,不能显示参赛者的建模及解决实际问题能力之大小;还有一类所谓的NP问题,这种问题每一个都尚未建立有效的算法,也许真的就不可能有有效算法来解决。
命题往往以这种NPC问题为数学背景,找一个具体的实际模型来考验参赛者。
这样增加了建立数学模型的难度。
但是这也并不是说无法求解。
一般来说,由于问题是具体的实例,我们可以找到特殊的解法,或者可以给出一个近似解。
图论作为离散数学的一个重要分支,在工程技术、自然科学和经济管理中的许多方面都能提供有力的数学模型来解决实际问题,所以吸引了很多研究人员去研究图论中的方法和算法。
应该说,我们对图论中的经典例子或多或少还是有一些了解的,比如,哥尼斯堡七桥问题、中国邮递员问题、四色定理等等。
图论方法已经成为数学模型中的重要方法。
许多难题由于归结为图论问题被巧妙地解决。
而且,从历年的数学建模竞赛看,出现图论模型的频率极大,比如:AMCM90B-扫雪问题;AMCM91B-寻找最优Steiner树;AMCM92B-紧急修复系统的研制(最小生成树)AMCM94B-计算机传输数据的最小时间(边染色问题)CMCM93B-足球队排名(特征向量法)CMCM94B-锁具装箱问题(最大独立顶点集、最小覆盖等用来证明最优性)CMCM98B-灾情巡视路线(最优回路)等等。
这里面都直接或是间接用到图论方面的知识。
要说明的是,这里图论只是解决问题的一种方法,而不是唯一的方法。
数学建模-图论

如例2中球队胜了,可从v1引一条带箭头的连线到v2,每 场比赛的胜负都用带箭头的连线标出,即可反映五个球队比 赛的胜负情况。如下图
v5
v1
v2 v3
v4
Байду номын сангаас
由图可知, v1三胜一 负, v4打了三场球, 全负等等
类似胜负这种非对称性的关系,在生产和生活中也是常见 的,如交通运输中的“单行线”,部门之间的领导和被领导关 系,一项工程中各工序之间的先后关系等等。
B
哥尼斯堡七桥问题
从某点出发通过每座桥且每桥只通过一次回到起点 A B D
建模:
C
A B D C
点——陆地 岛屿 边——桥
后来,英国数学家哈密尔顿在1856年提出“周游世界”的 问题:一个正十二面体,20个顶点分别表示世界上20个大城市, 要求从某个城市出发,经过所有城市一次而不重复,最后回到出 发地.这也是图论中一个著名的问题. “四色问题”也是图论中的著名问题:地图着色时,国境 线相邻的国家需要着上不同的颜色,最少需要几种颜色?1976 年,美国人阿佩尔和哈肯用计算机运行1200个小时,证明4种颜 色就够了.但至今尚有争议.
图论起源
图论最早处理的问题是哥尼 斯堡城的七桥问题:18世纪在哥 尼斯堡城(今俄罗斯加里宁格勒) 有一条名叫普莱格尔(Pregel) 的河流横经其中,河上有7座桥, 将河中的两个岛和河岸连结。
C A D
城中的居民经常沿河过桥 散步,于是提出了一个问 题:能否一次走遍7座桥, 后来有人请教当时的大数学家 而每座桥只许通过一次, 欧拉,欧拉用图论的方法证明这个问 最后仍回到起始地点? 题无解,同时他提出并解决了更为一 般的问题,从而奠定了图论的基础, 欧拉也被誉为“图论之父”.
数学建模-图论模型

思路分析
• 每学期任课老师都有一定工作量的要求往往可能要上不止一门课 程。
• 每位同学需要在学期内完成若干门课程的学习。 • 某些对上课设施有特殊要求的课程,也不可以安排在同一时间。 • 为了方便开展一些全校性的活动,有些时段不安排课程。 • 受到教室数量的限制,在同一时段无法安排太多的课程。
模型建立
• 以每个课程为顶点,任何两个顶点之间连一条边当且仅当两门课 程的任课老师为同一人,或有学生同时选了这两门课或上课教室 冲突。
• 那么一个合理的课程安排就是将图中的点进行分化,使得每一个 部分里的点为一个独立集。
• 通过极小覆盖找出图中的极 大独立集,然后删去该极大 独立集,在剩下的图中找出 极大独立集,直到剩下的图 为一个独立集。
匈牙利算法
• 饱和点:M是图G的一个匹配,若G中顶点v是M中某条边的端 点,则称M饱和v,否则称v是M的非饱和点。
• 可扩路:一条连接两个非饱和点x和y的由M外的边和M的边交错 组成的路称为M的(x,y)可扩路。
• 算法基本步骤:
Kuhn-Munkres算法
1.2 图的独立集应用
• 问题描述:各大学学期临近结束时,需要根据老师任课 计划和学生选课情况,再结合教室资源情况安排下一学 期的课程及上课时间和地点。下表所示是某大学电信学 院的大三各专业部分课程情况。该学院每届学生按专业 分班,统一选课。另外,学院只有一间普通机房和一间 高级机房。那么应该如何合理地排这些课程呢?
则称其是双连通或强连通的。对于不是双连通的图,都可以分解成 若干个极大的双连通分支,且任意两分支之间的边是同向的。
举例:
• 右图所示竞赛图不是双连通的
•
为一条有向
的D哈密尔A顿路B。 C E
数学建模图论模型

任意两点均有通路的图称为连通图。
连通而无圈的图称为树,常用T=<V,E>表示树。
若图G’是图 G 的生成子图,且G’又是一棵树, 则称G’是图G 的生成树。
例 Ramsey问题
图1
图2
并且常记: V = v1, v2, … , vn, |V | = n ; E = {e1, e2, … , em}ek=vivj , |E | = m
称点vi , vj为边vivj的端点 在有向图中, 称点vi , vj分别为边vivj的 始点和终点. 该图称为n,m图
8
对于一个图G = V, E , 人们常用图形来表示它, 称其 为图解 凡是有向边, 在图解上都用箭头标明其方向.
4、P'代替P,T'代替T,重复步骤2,3
定理2 设 T为V的子集,P=V-T,设 (1)对P中的任一点p,存在一条从a到p的最短路径,这条路径仅有P中的
点构成, (2)对于每一点t,它关于P的指标为l(t),令x为最小指标所在的点, 即:
l(x)mli(tn )} t{ ,T
(3)令P’=P Ux,T’=T-{x},l’(t)表示T'中结点t关于P'的指标,则
解:用四维01向量表示人,狼,羊,菜例在过河西河岸问的题状态(在
岸则分量取1;否则取0),共有24 =16 种状态; 在河东岸 态类似记作。
由题设,状态(0,1,1,0),(0,0,1,1),(0,1,1,1)是不允许的
其对应状态:(1,0,0,1), (1,1,0,0),(1,0,0,0)也是不允许
数学建模简介

MATLAB求解代码: x=[50,100,150,200,250,300,350,400,450,500,550]; y=[1.000,1.875,2.750,3.250,4.375,4.875,5.675,6.500,7.250,8.000,8.750]; scatter(x,y,'.') xlabel('质量') ylabel('伸长')
MATLAB求解代码: x=[50,100,150,200,250,300,35 0,400,450,500,550]; y=[1.000,1.875,2.750,3.250,4.3 75,4.875,5.675,6.500,7.250,8.0 00,8.750]; c1=polyfit(x,y,1); tp1=0:50:550; x1=polyval(c1,tp1); plot(tp1,x1,x,y,'.') xlabel('质量m') ylabel('伸长e')
建立数学模型过程
建立数学模型没有固定模式,一般大致可分为 以下几个步骤: 分析问题 合理假设(简化) 模型建立 模型求解 模型检验(包含了模型评价、推广或改进等) 模型应用
简化关系:比例性
例1 测试比例性
y k x( k 0)
y 记为:∝ x
做一个测量弹簧的伸长作为置于弹簧末端的质量(以重量计) 的函数的实验。
模型检验:数据拟合效果好,所以建立的比例模型合理。
数学建模基础
基本概念
原型(Prototype)
人们在现实世界中关心、研究、从 事的生产、管理的实际对象称为原型。 模型(Modle)为了某个特定的目的将原型的某一部分 信息进行简缩、提炼而成的原型的替代物称为模型。 模型有直观模型、物理模型、思维模型、符号模型、 计算模型、数学模型等。一个原型可以有多个不同的 模型。 数学模型(Mathematical Model)由数字、字母或其他 数学符号组成,描述实际对象的数量规律的数学公式、 图形或算法称为数学模型。即就是对于现实世界的一 个特定对象,为一个特定目的,根据特有的内在规律, 做出一些必要的简化假设,也能用适当的数学工具, 得到一个数学结构。
数学建模第三版习题答案

数学建模第三版习题答案数学建模是一门应用数学的学科,通过建立数学模型来解决实际问题。
《数学建模第三版》是一本经典的教材,其中的习题对于学生来说是非常重要的练习材料。
在这篇文章中,我将为大家提供《数学建模第三版》习题的答案,希望能够帮助大家更好地理解和应用数学建模的知识。
第一章:数学建模的基础知识1. 数学建模的定义:数学建模是指将实际问题转化为数学问题,并通过建立数学模型来解决问题的过程。
2. 数学建模的基本步骤:问题的分析与理解、建立数学模型、求解数学模型、模型的验证与应用。
3. 数学建模的分类:确定性建模和随机建模。
4. 数学建模的特点:抽象性、理想化、简化性和应用性。
第二章:线性规划模型1. 线性规划模型的基本形式:目标函数和约束条件都是线性的。
2. 线性规划模型的求解方法:图形法、单纯形法和对偶理论。
3. 线性规划模型的应用:生产计划、资源分配、运输问题等。
第三章:整数规划模型1. 整数规划模型的基本形式:目标函数是线性的,约束条件中包含整数变量。
2. 整数规划模型的求解方法:分枝定界法、割平面法、动态规划法等。
3. 整数规划模型的应用:项目选择、装配线平衡问题、旅行商问题等。
第四章:动态规划模型1. 动态规划模型的基本思想:将一个大问题分解为若干个子问题,通过求解子问题的最优解来求解整个问题的最优解。
2. 动态规划模型的求解方法:递推法、备忘录法和自底向上法。
3. 动态规划模型的应用:背包问题、最短路径问题、最长公共子序列问题等。
第五章:非线性规划模型1. 非线性规划模型的基本形式:目标函数和约束条件中包含非线性函数。
2. 非线性规划模型的求解方法:牛顿法、拟牛顿法、全局优化法等。
3. 非线性规划模型的应用:经济增长模型、生态系统模型、医学诊断模型等。
第六章:图论模型1. 图论模型的基本概念:顶点、边、路径、回路等。
2. 图论模型的求解方法:深度优先搜索、广度优先搜索、最短路径算法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
9
一个图会有许多外形不同的图解, 下面两个图表示同一个图G = (V, E )的图解.这两 个图互为同构图,今后将不计较这种外形上的差别,而用一个容易理解的、确定的图解 去表示一个图.
① V称为G的顶点集, V≠, 其元素称为顶点或结点, 简称点; ② E称为G的边集, 其元素称为边, 它联结V 中的两个点, 如果这两个点是无序的, 则称该边为无向边, 否则, 称为有向边. 如果V = {v1, v2, … , vn}是有限非空点集, 则称G为有限图或n阶图.
A
7
如果E的每一条边都是无向边, 则称G为无向图(如图1); 如果E的每一条边都是有 向边, 则称G为有向图(如图2); 否则, 称G为混合图.
欧拉指出: 如果每块陆地所连接的桥都是偶数座,则从任一
陆地出发,必能通过每座桥恰好一次而回到出发地.
A4Biblioteka 问题2(哈密顿环球旅行问题): 十二面体的20个顶点代表世界上20个城市, 能否从某个城市出发在十二面体上依次经过每个 城市恰好一次最后回到出发点?
欧拉问题是“边遍历”,哈密尔顿问题是“点遍历”
并且常记:
图1
图2
V = {v1, v2, … , vn}, |V | = n ; E = {e1, e2, … , em}(ek=vivj ) , |E | = m.
称点vi , vj为边vivj的端点. 在有向图中, 称点vi , vj分别为边vivj的始点和终点. 该图称为 (n,m)图
A
8
对于一个图G = (V, E ), 人们常用图形来表示它, 称其 为图解. 凡是有向边, 在图解上都用箭头标明其方向.
推论1:无向图中必有偶数个度数为奇数的结点。
推论2:有向图中所有结点的出度之和等于入度之和。
A
12
我们今后只讨论有限简单图:
(1) 顶点个数是有限的; (2) 任意一条边有且只有两个不同的点与它相互关联; (3) 若是无向图, 则任意两个顶点最多只有一条边与之相联结; (4) 若是有向图, 则任意两个顶点最多只有两条边与之相联结. 当两个顶点有 两条边与之相联结时,这两条边的方向相反. 如果某个有限图不满足(2)(3)(4),可在某条边上增设顶点使之满足.
• 若将图G的每一条边e都对应一个实数F(e),则称F(e)为该边的 权,并称图G为赋权图(网络), 记为G = <V, E , F>。
• 任意两点均有通路的图称为连通图。 • 连通而无圈的图称为树,常用T=<V,E>表示树。 • 若图G’是图 G 的生成子图,且G’又是一棵树,则称G’是图G 的
生成树。
图论模型
A
1
图论模型
1. 图论基本概念 2. 最短路径算法 3. 最小生成树算法 4. 遍历性问题 5. 二分图与匹配
6. 网络流问题 7. 关键路径问题 8. 系统监控模型 9. 着色模型
A
2
1、图论的基本概念
问题1(哥尼斯堡七桥问题): 能否从任一陆地出发通过每座桥恰好一次而
回到出发点?
A
3
A
5
问题3(四色问题): 对任何一张地图进行着色,两个共同边界的国家染不同的颜色,则只需要四种颜
色就够了.
问题4(关键路径问题): 一项工程任务,大到建造一座大坝,一座体育中心,小至组装一台机床,一架电视机,
都要包括许多工序.这些工序相互约束,只有在某些工序完成之后, 一个工序才能开始. 即它们之间存在完成的先后次序关系,一般认为这些关系是预知的, 而且也能够预计完 成每个工序所需要的时间.
A
13
定义2 若将图G的每一条边e都对应一个实数F (e), 则称F (e)为该边的权, 并称图G为赋权图(网络), 记为G = (V, E , F ).
定义3 任意两点均有通路的图称为连通图. 定义4 连通而无圈的图称为树, 常用T表示树.
A
14
常用的图
• 给定图G=<V,E> 和 G’ =<V’,E’ > 是两个图,如果有 V’ ⊆ V 和 E’ ⊆ E,则称图G’是图 G 的子图。若V’ =V 称图G’是图 G 的生成子 图;
A
15
例 Ramsey问题
• 问题:任何6个人的聚会,其中总会有3个互相认识或3人互相不认识。 • 图论模型:用红、蓝两种颜色对6个顶点的完全图K6的边进行任意着色
论如何着色必然都存在一个红色的K3或一个蓝色的K3 。
• 对应关系:每个人即为一个结点;人与人之间的关系即为一条边
A
16
例 Ramsey问题
• 图论证明: • 用红、蓝两种颜色对K6的边进行着色, • K5条6的边任必意有一3个条顶边点的均颜有色5是条相边同与的之,相不连妨接设,为这
蓝色(如图) • 与这3条边相关联的另外3个节点之间的3条边,
若都为红色,则形成红色的K3; • 若另外3个节点之间的3条边有一条为蓝色,
A
10
有边联结的两个点称为相邻的点, 有一个公共端点的边称为相邻边. 边和它的端点称为 互相关联. 常用d(v)表示图G中与顶点v关联的边的数目, d(v)称为顶点v的度数. 对于有向图, 还有出度和入度之分.
用N(v)表示图G中所有与顶点v相邻的顶点的集合.
d(v1)= d(v3)= d(v4)=4, d(v2)=2
dout(v1)= dout (v3)= dout (v4)=2, dout(v2)=1 din(v1)= din(v3)= din(v4)=2, din(v2)=1
A
11
握手定理
握手定理:无向图中,所有结点的度数之和等于2m。
n
d(vi ) 2m
i1
右图:
n
d(vi ) 2*714
i1
d(v1)= d(v3)= d(v4)=4, d(v2)=2
这时工程领导人员迫切希望了解最少需要多少时间才能够完成整个工程项目, 影 响工程进度的要害工序是哪几个?
A
6
图的定义
图论中的“图”并不是通常意义下的几何图形或物体的形状图, 而是以一种抽 象的形式来表达一些确定的事物之间的联系的一个数学系统.
定义1 一个有序二元组(V, E ) 称为一个图, 记为G = (V, E ), 其中