UDP协议及包格式
UDP协议

介绍UDP协议的基本概念和特点User Datagram Protocol(UDP)是一种面向无连接的传输层协议,用于在计算机网络上发送数据。
与TCP协议相比,UDP协议更加轻量级和简单。
基本概念UDP协议基于IP协议,它使用数据报(Datagram)的形式在网络上进行通信。
数据报是一种独立的、自包含的数据单元,每个数据报都带有源地址和目的地址信息。
特点UDP协议具有以下特点:1.无连接性:UDP协议在通信之前不需要建立连接,发送方直接将数据报发送给接收方。
这种无连接性使得UDP协议的开销较小,适用于实时性要求较高的应用。
2.不可靠性:UDP协议不保证数据报的可靠传输。
它不提供确认、重传和流量控制等机制,因此在传输过程中可能会丢失、重复或乱序。
这意味着应用程序需要自行处理数据的可靠性和顺序性。
3.简单性:相比于TCP协议,UDP协议的头部开销较小,没有连接建立和断开的开销,以及流量控制和拥塞控制等复杂机制。
这使得UDP协议的实现和处理相对简单。
4.高效性:由于不需要维护连接状态和控制机制,UDP协议的传输效率较高。
它适用于对实时性要求较高、数据量较小、丢失一些数据不会造成严重影响的应用场景,如实时音频和视频传输。
5.广播和多播支持:UDP协议支持向多个主机发送数据报,包括广播和多播功能。
这使得UDP协议在一些组播和广播应用中得到广泛应用。
尽管UDP协议在可靠性和流量控制方面存在局限性,但它在一些特定的应用场景下具有独特的优势,特别是对于实时性要求较高、数据量较小、丢失一些数据可以容忍的场景。
UDP协议的工作原理和数据包格式User Datagram Protocol(UDP)是一种无连接的传输层协议,用于在计算机网络上进行数据传输。
本节将介绍UDP协议的工作原理以及数据包的格式。
工作原理UDP协议的工作原理相对简单。
发送方将数据划分为适当的数据包,每个数据包都是独立的、自包含的单元。
发送方将数据包发送给接收方的IP地址和端口号。
以太网帧格式、IP报文格式、TCPUDP报文格式

以太⽹帧格式、IP报⽂格式、TCPUDP报⽂格式1、ISO开放系统有以下⼏层:7应⽤层6表⽰层5会话层4传输层3⽹络层2数据链路层1物理层2、TCP/IP ⽹络协议栈分为应⽤层(Application)、传输层(Transport)、⽹络层(Network)和链路层(Link)四层。
通信过程中,每层协议都要加上⼀个数据⾸部(header),称为封装(Encapsulation),如下图所⽰不同的协议层对数据包有不同的称谓,在传输层叫做段(segment),在⽹络层叫做数据报(datagram),在链路层叫做帧(frame)。
数据封装成帧后发到传输介质上,到达⽬的主机后每层协议再剥掉相应的⾸部,最后将应⽤层数据交给应⽤程序处理。
其实在链路层之下还有物理层,指的是电信号的传递⽅式,⽐如现在以太⽹通⽤的⽹线(双绞线)、早期以太⽹采⽤的的同轴电缆(现在主要⽤于有线电视)、光纤等都属于物理层的概念。
3、集线器(Hub)是⼯作在物理层的⽹络设备,⽤于双绞线的连接和信号中继(将已衰减的信号再次放⼤使之传得更远)。
交换机是⼯作在链路层的⽹络设备,可以在不同的链路层⽹络之间转发数据帧(⽐如⼗兆以太⽹和百兆以太⽹之间、以太⽹和令牌环⽹之间),由于不同链路层的帧格式不同,交换机要将进来的数据包拆掉链路层⾸部重新封装之后再转发。
路由器是⼯作在第三层的⽹络设备,同时兼有交换机的功能,可以在不同的链路层接⼝之间转发数据包,因此路由器需要将进来的数据包拆掉⽹络层和链路层两层⾸部并重新封装。
4、⽹络层的IP 协议是构成Internet 的基础。
IP 协议不保证传输的可靠性,数据包在传输过程中可能丢失,可靠性可以在上层协议或应⽤程序中提供⽀持。
传输层可选择TCP 或UDP 协议。
TCP 是⼀种⾯向连接的、可靠的协议,有点像打电话,双⽅拿起电话互通⾝份之后就建⽴了连接,然后说话就⾏了,这边说的话那边保证听得到,并且是按说话的顺序听到的,说完话挂机断开连接。
数据包报文格式(IP包TCP报头UDP报头)

数据包报文格式(IP包TCP报头UDP报头)一、IP包格式IP数据包是一种可变长分组,它由首部和数据负载两部分组成。
首部长度一般为20-60字节(Byte),其中后40字节是可选的,长度不固定,前20字节格式为固定。
数据负载部分的长度一般可变,整个IP数据包的最大长度为65535B。
1、版本号(Version)长度为4位(bit),IP v4的值为0100,IP v6的值为0110。
2、首部长度指的是IP包头长度,用4位(bit)表示,十进制值就是[0,15],一个IP包前20个字节是必有的,后40个字节根据情况可能有可能没有。
如果IP包头是20个字节,则该位应是20/4=53、服务类型(Type of Service TOS)长度为8位(bit),其组成:前3位为优先级(Precedence),后4位标志位,最后1位保留未用。
优先级主要用于QoS,表示从0(普通级别)到7(网络控制分组)的优先级。
标志位可分别表示D(Delay更低的时延)、T(Throughput 更高的吞吐量)、R(Reliability更高的可靠性)、C(Cost 更低费用的路由)。
TOS只表示用户的请求,不具有强制性,实际应用中很少用,路由器通常忽略TOS字段。
4、总长度(Total Length)指IP包总长度,用16位(bit)表示,即IP包最大长度可以达216=65535字节。
在以太网中允许的最大包长为1500B,当超过网络允许的最大长度时需将过长的数据包分片。
5、标识符(Identifier)长度为16位,用于数据包在分段重组时标识其序列号。
将数据分段后,打包成IP 包,IP包因走的路由上不同,会产生不同的到达目地的时间,到达目地的后再根据标识符进行重新组装还原。
该字段要与标志、段偏移一起使用的才能达到分段组装的目标。
6、标志(Flags)长度为3位,三位从左到右分别是MF、DF、未用。
MF=1表示后面还有分段的数据包,MF=0表示没有更多分片(即最后一个分片)。
帧格式及IP,TCP,UDP,ICMP报文格式

以太网数据格式与各种报文格式一、数据封装当我们应用程序用TCP传输数据的时候,数据被送入协议栈中,然后逐个通过每一层,知道最后到物理层数据转换成比特流,送入网络。
而再这个过程中,每一层都会对要发送的数据加一些首部信息。
整个过程如下图。
如图可以看出,每一层数据是由上一层数据+本层首部信息组成的,其中每一层的数据,称为本层的协议数据单元,即PDU.应用层数据在传输层添加TCP报头后得到的PDU被称为Segment(数据段),图示为TCP段传输层的数据(TCP段)传给网络层,网络层添加IP报头得到的PDU被称为Packet(数据包); 图示为IP数据包网络层数据报(IP数据包)被传递到数据链路层,封装数据链路层报头得到的PDU被称为Frame(数据帧),图示为以太网帧。
最后,帧被转换为比特,通过网络介质传输。
这种协议栈逐层向下传递数据,并添加报头和报尾的过程称为封装。
二、数据格式需要注意的是,这里所说的以太网帧,与我们常说的以太网是不一样的。
下面我们就来介绍每一层数据的首部信息内容。
首先我们知道世界上有个协会叫作IEEE,即电子工程师协会,里面有个分会,叫作IEEE802委员会,是专门来制定局域网各种标准的。
而802下面还有个分部,叫作802.3.就是我们经常提到的IEEE802.3,这个部门制定的规范叫以太网规范,这个以太网规范中就定义了上面提到的“以太网首部”,这个以太网规范,实际只定义了数据链路层中的MAC层和物理层规范。
(注意数据链路层包括MAC子层和LLC子以太网帧格式:以太网常用帧格式有两种,一种是Ethernet II,另一种是IEEE 802.3 格式。
这两种格式区别是:Ethernet II中包含一个Type字段,。
其中Type字段描述了,以太网首部后面所跟数据包的类型,例如Type为0x8000时为IP协议包,Type为8060时,后面为ARP协议包。
以太网中多数数据帧使用的是Ethernet II帧格式。
TCP&UDP报文格式

TCP/UDP报文格式TCP 协议为终端设备提供了面向连接的、可靠的网络服务,UDP 协议为终端设备提供了无连接的、不可靠的数据报服务。
从上图我们可以看出,TCP 协议为了保证数据传输的可靠性,相对于UDP 报文,TCP 报文头部有更多的字段选项。
首先让我们来看一下TCP 的报文头部主要字段:每个TCP 报文头部都包含源端口号(source port)和目的端口号(destination port),用于标识和区分源端设备和目的端设备的应用进程。
在TCP/IP 协议栈中,源端口号和目的端口号分别与源IP 地址和目的IP 地址组成套接字(socket),唯一的确定一条TCP 连接。
序列号(Sequence number)字段用来标识TCP 源端设备向目的端设备发送的字节流,它表示在这个报文段中的第一个数据字节。
如果将字节流看作在两个应用程序间的单向流动,则TCP 用序列号对每个字节进行计数。
序列号是一个32bits 的数。
既然每个传输的字节都被计数,确认序号(Acknowledgement number,32bits)包含发送确认的一端所期望接收到的下一个序号。
因此,确认序号应该是上次已成功收到的数据字节序列号加1。
TCP 的流量控制由连接的每一端通过声明的窗口大小(windows size)来提供。
窗口大小用数据包来表示,例如Windows size=3, 表示一次可以发送三个数据包。
窗口大小起始于确认字段指明的值,是一个16bits 字段。
窗口大小可以调节。
校验和(checksum)字段用于校验TCP 报头部分和数据部分的正确性。
最常见的可选字段是MSS(Maximum Segment Size,最大报文大小)。
MSS指明本端所能够接收的最大长度的报文段。
当一个TCP 连接建立时,连接的双方都要通告各自的MSS 协商可以传输的最大报文长度。
我们常见的MSS有1024(以太网可达1460 字节)字节。
拓扑中udp协议发挥的作用

拓扑中udp协议发挥的作用协议方:1. 协议方甲姓名:________________ 。
单位:________________ 。
联系电话:________________ 。
电子邮件:________________。
2. 协议方乙姓名:________________ 。
单位:________________ 。
联系电话:________________ 。
电子邮件:________________。
3. 协议方丙姓名:________________ 。
单位:________________ 。
联系电话:________________ 。
电子邮件:________________。
背景说明:在互联网的世界里,数据就像是川流不息的车流,而这些车流的畅通无阻,很大程度上取决于“交通规则”——网络协议。
今天,我们要聊的是一位低调却至关重要的“交通指挥员”——UDP协议。
第一章:什么是UDP协议?UDP(User Datagram Protocol,用户数据报协议)是一种简单的网络通信协议。
你可以把它想象成一个快递小哥,他迅速把包裹送出去,可能连门铃都不按一下,直接放到门口。
听起来很随意吧,但这种“速战速决”的风格对于某些场景来说,简直是无可替代。
UDP不同于TCP,它不需要建立连接,也不管包裹能不能成功送到,只要你把地址和内容填好,它就会毫不犹豫地丢出去。
因此,UDP特别适合那些对时效要求极高的场景,比如实时视频传输、在线游戏等。
第二章:UDP协议在拓扑结构中的作用你可能会想,既然UDP这么简单,不管结果,只要能发出去就行,它到底在网络拓扑中发挥着什么样的作用呢?好吧,让我们打个比方,假设你有一台服务器,要把视频流传给全球各地的用户。
每个用户的位置可能不同、设备也不同,甚至网络条件也五花八门。
传统的“有连接”协议(如TCP)就像是你精心安排的一场宴会,所有的菜肴都得按时送到,避免任何一桌客人少菜、凉菜。
实验四 TCPUDP协议分析

实验四TCP/UDP协议分析【实验目的】1、理解与掌握TCP协议2、UDP协议通信机制【预习要求】1、复习课堂上所学习的TCP协议、UDP协议方面基本知识。
【工具软件】协议解码工具:wireshark(或sniffer pro)【实验原理】(一)TCP说明:(1)每个TCP段都包括源端和目的端的端口号,用于寻找发送端和接收端的应用进程。
这两个值加上IP首部的源端IP地址和目的端IP地址唯一确定一个TCP连接。
(2)序号用来标识从TCP发送端向接收端发送的数据字节流,它表示在这个报文段中的第一个数据字节。
如果将字节流看作在两个应用程序间的单向流动,则TCP用序号对每个字节进行计数。
(3)当建立一个新连接时,SYN标志变1。
序号字段包含由这个主机选择的该连接的初始序号ISN,该主机要发送数据的第一个字节的序号为这个ISN加1,因为SYN标志使用了一个序号。
(4)既然每个被传输的字节都被计数,确认序号包含发送确认的一端所期望收到的下一个序号。
因此,确认序号应当时上次已成功收到数据字节序号加1。
只有ACK标志为1时确认序号字段才有效。
(5)发送ACK无需任何代价,因为32位的确认序号字段和ACK标志一样,总是TCP 首部的一部分。
因此一旦一个连接建立起来,这个字段总是被设置,ACK标志也总是被设置为1。
(6)TCP为应用层提供全双工的服务。
因此,连接的每一端必须保持每个方向上的传输数据序号。
(7)TCP可以表述为一个没有选择确认或否认的华东窗口协议。
因此TCP首部中的确认序号表示发送方已成功收到字节,但还不包含确认序号所指的字节。
当前还无法对数据流中选定的部分进行确认。
(8)首部长度需要设置,因为任选字段的长度是可变的。
TCP首部最多60个字节。
(9)6个标志位中的多个可同时设置为1◆URG-紧急指针有效◆ACK-确认序号有效◆PSH-接收方应尽快将这个报文段交给应用层◆RST-重建连接◆SYN-同步序号用来发起一个连接◆FIN-发送端完成发送任务(10)TCP的流量控制由连接的每一端通过声明的窗口大小来提供。
UDP协议 2

UDP协议UDP协议是User Datagram Protocol的简称,中文名是用户数据包协议,是 OSI 参考模型中一种无连接的传输层协议,提供面向事务的简单不可靠信息传送服务。
在网络中它与TCP协议一样用于处理 UDP数据包。
在OSI模型中,在第四层——传输层,处于IP协议的上一层。
UDP有不提供数据包分组、组装和不能对数据包进行排序的缺点,也就是说,当报文发送之后,是无法得知其是否安全完整到达的。
UDP用来支持那些需要在计算机之间传输数据的网络应用。
包括网络视频会议系统在内的众多的客户/服务器模式的网络应用都需要使用UDP协议。
UDP适用于一次只传送少量数据、对可靠性要求不高的应用环境。
比如,我们经常使用“ping”命令来测试两台主机之间TCP/IP通信是否正常,其实“ping”命令的原理就是向对方主机发送UDP数据包,然后对方主机确认收到数据包,如果数据包是否到达的消息及时反馈回来,那么网络就是通的。
例如,在默认状态下,一次“ping”操作发送4个数据包(如图2所示)。
大家可以看到,发送的数据包数量是4包,收到的也是4包(因为对方主机收到后会发回一个确认收到的数据包)。
这充分说明了UDP协议是面向非连接的协议,没有建立连接的过程。
正因为UDP协议没有连接的过程,所以它的通信效果高;但也正因为如此,它的可靠性不如TCP协议高。
QQ就使用UDP发消息,因此有时会出现收不到消息的情况。
UDP协议从问世至今已经被使用了很多年,虽然其最初的光彩已经被一些类似协议所掩盖,但是即使是在今天,UDP仍然不失为一项非常实用和可行的网络传输层协议。
与所熟知的TCP(传输控制协议)协议一样,UDP协议直接位于IP(网际协议)协议的顶层。
根据OSI(开放系统互连)参考模型,UDP 和TCP都属于传输层协议。
UDP协议的主要作用是将网络数据流量压缩成数据包的形式。
一个典型的数据包就是一个二进制数据的传输单位。
每一个数据包的前8个字节用来包含报头信息,剩余字节则用来包含具体的传输数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UDP协议及包格式
做密码编码学与网络安全的抓包试验,选择了UDP协议。
对UDP协议进行了一下复习:
------------------
总结起来:
1.无连接,不可靠;
2.出错(通过校验和检查)就丢掉此包,丢失不重传,只是给个警告;
3.包的格式,有源端口和目的端口,校验和等;
4.端口号,根据应用层服务的不同,可以是默认的端口,也可以自己设定。
-----------------
(以下转自网络)
UDP协议的主要特点
UDP是一种无连接的、不可靠的传输层协议;
在完成进程到进程的通信中提供了有限的差错检验功能;
设计比较简单的UDP协议的目的是希望以最小的开销来达到网络环境中的进程通信目的;
进程发送的报文较短,同时对报文的可靠性要求不高,那么可以使用UDP协议。
UDP的基本工作过程
UDP用户数据报传输过程中的封装与拆封
UDP报文传输队列
UDP的复用和分用
TCP/IP协议族中用端口号来标识进程;
端口号是在0到65535之间的整数;
客户程序随机选取的临时端口号;
每一种服务器程序被分配了确定的全局一致的熟知端口号;每一个客户进程都知道相应的服务器进程的熟知端口号。
UDP使用的熟知端口号
UDP数据报格式
UDP检验和的检验范围:
伪头部
UDP头
应用层数据
阅读(16362)|评论(0)。