现代优化算法简介31页PPT

合集下载

现代优化计算方法课件

现代优化计算方法课件
在STEP 3中,蚁群永远记忆到目前为止的最优解。
20
图的蚁群系统(GBAS) 6/12
可以验证,下式满足:
ij (k) 1,k 0
(i, j)A
即 (k) 是一个随机矩阵。 四个城市的非对称TSP问题,距离矩阵和城市图示如下:
0 1 0.5 1
D
(dij
)
1
1.5
0 5
1 0
1
1
1 1 1 0
蚁群算法
起源 应用领域 研究背景 基本原理
1
蚁群优化算法起源
蚁群算法最开始的提出是在90年代有人受了蚂蚁觅食时的 通讯机制的启发用来解决计算机算法学中经典的“旅行商 问题(Traveling Salesman Problem, TSP)”。 TSP问题属于易于描述但难于解决的著名难题之一,至今 世界上还有不少人在研究它。该问题的基本描述是:某售 货员要到若干个村庄售货,各村庄之间的路程是已知的, 为了提高效率,售货员决定从所在商店出发,到每个村庄 都售货一次后再返回商店,问他应选择一条什么路线才能 使所走的总路程最短? 其实有很多实际问题可归结为TSP问 题。
城市间的距离矩阵为 (d ij ) nn ,给TSP图中的每
一条弧 (i, j)
赋信息素初值 ij (0)
1 | A|
,假设m
只蚂蚁在工作,所有蚂蚁都从同一城市i0 出发。当前最 好解是 w (1,2,, n) 。
16
初始的蚁群优化算法—基于图的蚁群系 统(GBAS) 2/12
STEP 1 (外循环)如果满足算法的停止规则,则停止计算并输
若按以上规则继续,蚁群在ABD路线上再增派一只蚂蚁(共3只),而 ACD路线上仍然为一只蚂蚁。再经过36个时间单位后,两条线路上的信息素 单位积累为24和6,比值为4:1。

现代优化方法

现代优化方法
◦ 智能是个体认识客观事物和运用知识解决问题的能力。 ◦ 人类个体的智能是一种综合能力。
2021/7/1
7
人工神经网络:概念的提出
智能的概念的八个方面
2021/7/1
8
人工神经网络:概念的提出
人工智能:研究如何使类似计算机这样的设备去模 拟人类的这些能力。
研究人工智能的目的
◦ 增加人类探索世界,推动社会前进的能力 ◦ 进一步认识自己
牵涉到的学科广泛
◦ 生物进化、人工智能、数学和物理、神经系统和统计力学 等。
◦ 这些算法和人工智能、计算机科学和运筹学相融合。
202与传统算法的局限 旅行商问题: 一个商人欲到n个城市推销商品,每两个城市i和j之
间的距离为dij,如何选择一条道路使得商人每个城 市走一遍后回到起点且所走路径最短。
◦ 对称距离 ◦ 非对称距离
2021/7/1
4
概述
采用枚举法来解决非对称旅行商问题
假定有n个城市,共需要(n-1)!次枚举,假定完成25 个城市的总距离的计算及比较需要1秒,则当城市 增加时,需要的时间如下表所示:
城市数 24 25 26 27 28 29
30
31
时间 1s 24s 10m 4.3h 4.9d 136.5d 10.8y 325y
物理符号系统和人工神经网络系统的差别
物理符号系统
处理方式 逻辑运算
执行方式 串行
动作
离散
存储
局部集中
人工神经网络 模拟运算 并行 连续 全局分布
2021/7/1
11
人工神经网络:概念的提出
两种人工智能技术的比较
传统的AI技术
基本实现 串行处理;由程序实
方式

现代优化方法

现代优化方法

动态规划问题的求解方法
逆向求解
从最后阶段开始,依次求出每 个阶段的最优解,最终得到初
始阶段的最优解。
正向求解
从初始阶段开始,逐步向前推导 出每个阶段的最优解。
分支定界法
将问题分解为若干个子问题,通过 设定参数和约束条件,将问题的求 解范围缩小到最优解所在的子问题 集合中。
动态规划的应用
最短路径问题
03
由确定型优化向不确 定型优化发展
考虑随机因素和不确定性因素的影响 ,进行概率优化或鲁棒优化。
THANK态规划算法求解最短路径问题,例如 Floyd-Warshall算法、Dijkstra算法等。
通过动态规划算法求解网络流中的最大流和 最小费用流问题。
背包问题
排程问题
通过动态规划算法求解多阶段决策过程中的 最优解,例如0/1背包问题、完全背包问题 等。
通过动态规划算法求解资源分配和任务调度 问题,例如作业排程、飞机调度等。
05
遗传算法优化方法
遗传算法的基本原理
遗传算法是一种基于生物进化理论的优化算法,通过模拟自 然选择、遗传和突变过程来寻求最优解。
遗传算法的基本原理是:在群体中选择出优秀的个体,通过 交叉、变异等操作产生更优秀的后代,迭代进化,最终得到 最优解。
遗传算法的求解过程
初始化种群
随机生成一定数量的个体作为初始种群。
2023
现代优化方法
contents
目录
• 优化方法概述 • 线性规划优化方法 • 非线性规划优化方法 • 动态规划优化方法 • 遗传算法优化方法 • 模拟退火算法优化方法 • 粒子群优化方法 • 现代优化方法比较分析
01
优化方法概述
定义与特点
定义

现代优化算法

现代优化算法
8
正交试验法
正交表的形式为( … ),简记为(),其中为试验数,为因素数, 为水平数。正交设计法能够确保决策变量具有最佳的散布性和代表性, 因此获得的最佳水平应该具有相当高的满意度。
实际上,正交试验法获得的最佳结果优于总体试验结果的(),劣于总 体试验结果的(),具有良好的全局最优性。该算法的另外一个最大优 势在于简单易学,一般文化水平的人(比如初中以上)经过几天时间 就可以掌握,因此该算法具有极其广泛的使用范围。其难点在于特定 正交表的构造,人们正深入研究各种特殊正交表的构造方法。
4
优化算法简介——局部优化、全局 优化
有文献将神经网络也列入现代优化算法的范畴,从全局优化的角度看, 这并不适宜,因为神经网络的优化算法本质上是局部优化算法和全局 优化算法的综合应用。
局部优化算法主要用于解决凸问题或单峰问题,通常使用确定性搜索 策略,比如单纯形法、梯度下降法、爬山法、贪心法等,其基本思想 是在状态转移过程中,只接受更好的状态,拒绝恶化的状态。
5
优化算法简介——二者需要结合
局部优化算法由于易于陷入局部极优解而无法用于解决多峰问题;同 时,全局性优化算法采用适当的状态转移规则和概率性状态接受规则, 能够避免过早地陷入局部极优解从而搜索到全局性最优解。
通常,局部优化算法能够快速地收敛到局部极优解,而全局性优化算 法通过概率搜索可以获得在概率意义上尽可能好的全局性最优解区域, 但是其局部极优点搜索能力较低。这是全局搜索算法和局部搜索算法 之间的固有矛盾。对此人们进行了多种研究。基本解决方法在于二者 的结合,即利用全局性优化算法在整个可行域中搜索最优区域,利用 局部搜索算法搜索最优区域中的最优解。
习惯上,将优化算法分为两类:局部优化算法和全局性优化算法。前 者可以称为经典优化算法,已经得到了人们广泛深入的研究。目前, 运筹学(确定论方法)主要包括这些方面的内容,线性规划、整数规 划、–规划、非线性规划、排队论、决策论。后者习惯上称为现代优 化算法,是世纪年代兴起的新型全局性优化算法,主要包括禁忌搜索、 模拟退火、遗传算法等,其主要应用对象是优化问题中的难解问题, 即–问题

现代优化计算方法

现代优化计算方法

决策变量
t = 1,",T
(1.12)
xit=1表示第t时段加工产品i 、T:时段数
组合优化问题的表示形式
• 组合优化问题通常可以用整数规划模型 的形式表示,如例1.1.1和1.1.2
• 有些组合优化问题用IP模型表示则比较 复杂且不易被理解,不如对问题采用直 接叙述更易理解,如例1.1.2,1.1.4和1.1.5
例1.1.2的非对称距离TSP问题耗时
• 可以用另一个方法来表示它的可行解: 用n个城市的—个排列表示商人按这个排 列序推销并返回起点
• 若固定一个城市为起终点,则需要 (n—1)!个枚举
• 设计算机1秒可以完成24个城市所有路径 枚举为单位
枚举时城市数与计算时间的关系
城市数 24 25 26 27 28 29 30 31 计算时间 1s 24 s 10m 4.3h 4.9d 136d 10a 325a
max cT x
s.t.Ax = b
x ≥ 0, x ∈ Z n
c为n维列向量,A为m×n矩阵、b为m 维列向量,x 为n维决策变量,Zn表示n 维整数向量的集合 系数A、b和c的元素都是整数
• 例1.1.2和1.1.3的数学模型都具有(IP) 的形式 •一些组合优化问题可以写成整数线 性规划问题 •IP与LP形式非常相似,不同之处是 前者的决策变量部分或全部取整数
(1.5) (1.6)
(1.7) (1.8)
共n×(n-1)个决策变量 D={0,1}n× (n-1)
一条回路是由k(1≤k ≤ n)个城市和k条弧 组成,因此,(1.7)约束旅行者在任何一 个城市真子集中不形成回路,其中|S|表 示集合S中元素个数
例1.1.3 整数线性规划 (integer linear programming)

现代优化算法--课件

现代优化算法--课件
全局最小点 (0,0)
数学建模竞赛常用算法(2) 数学建模竞赛常用算法(2)
2. 数据拟合、参数估计、插值等数据处理算法
比赛中通常会遇到大量的数据需要处理,而处理数 据的关键就在于这些算法,通常使用MATLAB 作为工 具。与图形处理有关的问题很多与拟合有关系。 98 年美国赛 题 生物组织切片的三维插值处理 年美国赛A 94 年A 题逢山开路 山体海拔高度的插值计算 此类问题在MATLAB中有很多函数可以调用,只有熟 悉MATLAB,这些方法才能用好。
现代优化算法
许志军 xuzhijun1998@ 2010-8-1
目录
Part 1 概论 Part 2 模拟退火算法 Part 3 遗传算法
2
Part 1
概论
主要是说明现代优化算 法的重要性。 法的重要性模拟退火算法 遗传算法 人工神经网络 蚁群算法 粒子群算法 混合算法
15
数学建模竞赛常用算法(5) 数学建模竞赛常用算法(5)
5. 计算机算法设计中的问题
计算机算法设计包括很多内容:动态规划、回溯搜 动态规划、 动态规划 分治算法、分枝定界等计算机算法. 索、分治算法、分枝定界 92 年B 题用分枝定界法 97 年B 题是典型的动态规划问题 98 年B 题体现了分治算法 这方面问题和ACM 程序设计竞赛中的问题类似, 可看一下与计算机算法有关的书。
19
数学建模竞赛常用算法(9) 数学建模竞赛常用算法(9)
9. 数值分析方法
数值分析研究各种求解数学问题的数值计算方法 求解数学问题的数值计算方法, 求解数学问题的数值计算方法 特别是适合于计算机实现方法与算法。 它的主要内容包括函数的数值逼近、数值微分与数 函数的数值逼近、 函数的数值逼近 值积分、非线性方程的数值解法、数值代数、 值积分、非线性方程的数值解法、数值代数、常微分方 程数值解等。数值分析是计算数学的一个重要分支,把 程数值解 理论与计算紧密结合,是现代科学计算的基础 。 MATLAB等数学软件中已经有很多数值分析的函 数可以直接调用。

现代优化方法综述(SA,GA,AC)_PPT课件

现代优化方法综述(SA,GA,AC)_PPT课件

复制后交
初始群体
实际计数
交叉位置
பைடு நூலகம்
串编号
(随机生 成 n=4)
X 值(无符 适应度函 选择概率 号整数) 数 f(x)=x2 Ps=fi/∑f
适应度期 望值 fi/f
(来自赌 轮)
配率(竖 线表示交
叉处)
配对(随 机选择)
(随机选 择)
新一代群 体
X值
1 01101 13
169 0.14 0.58
1 0110|1 2
平均适应度(f=∑fi/n) 最大适应度
293 0.25 1.00 1.0 576 0.49 1.97 2.0
f(x)=x2
144 625 729 256 1754 439 729
SGA的特点
采用赌轮选择方法 随机配对 采用一点交叉并生成两个子个体 群体内允许相同的个体存在
问题
5个关键环节及参数设定 TSP问题的遗传算法求解
一是透过问题背景告诉了我们什么已知信息; 二是要求我们做什么,解决什么问题。
然后紧密联系上面两个问题,实现两个量化:
一是对已知条件的符号化和量化; 二是对需解决问题的转化和量化。
最后,再联系自己对数学知识的把握、对数学建模方法 的领悟,借助一系列数学工具(方程、函数、矩阵、向 量等)把量化后的符号(变量)沟通起来建立数学模型。
4 01100 12
2 11000 24
576 0.49 1.97
2 1100|0 1
4 11001 25
3 01000 8
64 0.06 0.22
0 11|000 4
2 11011 27
4 10011 19
361 0.31 1.23

现代优化计算方法ppt课件-PPT精品文档

现代优化计算方法ppt课件-PPT精品文档

D { 0 , 1 }
n ( n 1 )
1.1 组合优化问题
例4 装箱问题(bin packing) 尺寸为1的箱子有若干个,怎样用最少的 箱子装下n个尺寸不超过1 的物品,物品 {a 集合为: 1, a 2,...a n} 。
1.1 组合优化问题
数 学 模 型 : m in B s .t . x i b 1 , i 1 , 2 ,
b 1 n B
,n,
每个物品都被装箱
装在每个箱子的物品 a i x i b 1 , b 1 , 2 , , B , 总尺寸不能超过箱子 i1 的容量 x ib 0 , 1 , i 1 , 2 , , n ; b 1 , 2 , , B ,
其 中 x ib B :装 下 全 部 物 品 需 要 的 箱 子 , 1, 第 i物 品 装 在 第 b 个 箱 子 , 0 ,第 i 物 品 不 装 在 第 b 个 箱 子 .
1.1 组合优化问题
数学模型: m in
d
i j nij源自x ij , n, , n,
(1 .4 ) 总 路 长 (1 .5 ) 只 从 城 市 i 出 来 一 次 (1 .6 ) 只 走 入 城 市 j 一 次 , n , (1 .7 ) 在 任 意 城 市 子 集 中 不 形 成 回 路 (1 .8 ) 决 策 变 量
1.1 组合优化问题
组合优化(combinatorial optimization):解决 离散问题的优化问题——运筹学分支。通过数学方 法的研究去寻找离散事件的最优编排、分组、次序 或筛选等,可以涉及信息技术、经济管理、工业工 程、交通运输和通信网络等许多方面。
数学模型: minf (x)
目标函数 约束函数 有限点集 ,决策变量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档