智能优化算法.ppt

合集下载

智能控制课件蚁群优化算法

智能控制课件蚁群优化算法

实验数据(算法复杂度)
摘自Ant Colony Optimization
4 实例:JSP
Job-shop Scheduling Problem
M:机器数量 J :任务数 ojm:工序 djm:工时
O ,o jm, :工序集合
JSP(Muth & Thompson 6x6)
m.t Job1 3.1 Job2 2.8 Job3 3.5 Job4 2.5 Job5 3.9 Job6 2.3
Update the shortest tour found
TSP蚁群算法(ant-cycle)
Step 4.2
For every edge (i,j) For k:=1 to m do
m
ij
k ij
k 1
k ij
Q Lk
0
if (i, j) tour described by tabuk otherwise
TSP蚁群算法(ant-cycle)
Step 6
If (NC < NCMAX) and (not stagnation behavior) then Empty all tabu lists Goto step 2 else Print shortest tour Stop
3 蚁群算法调整与参数设置
符合TSP规则; 完成一次旅行后,在经过的路径上释放信息
素; 无需按原路返回。
实例:TSP(参数与机制)
路径上的信息素浓度 ij (t) 信息素更新
ij (t n) ij (t) ij
信息素释放(ant-cycle)
m
ij
k ij
k 1
k ij
Q Lk
if k - th ant uses edge (i, j) in its tour (between time t and t n)

智能优化技术ppt

智能优化技术ppt
详细描述
总结词
高效、低成本、智能化
详细描述
智能优化技术在物流运输领域的应用,可以实现高效的运输计划和运输路径优化。例如,利用智能算法对运输计划进行优化,降低运输成本;通过物联网技术和实时监控系统,实现货物的实时跟踪和调整;在最后一公里配送中,智能优化技术可提高配送效率和质量,例如智能快递柜、无人机配送等。
智能优化技术是一种基于数学、计算机科学、人工智能等学科的技术,它利用各种算法和数学模型等工具,对特定的应用需求进行优化设计,以实现提高系统性能、减少能源消耗、降低成本等目标。
详细描述
智能优化技术的定义
总结词
广泛应用于各种领域,如生产制造、交通运输、能源消耗、金融投资等。
详细描述
智能优化技术在各个领域都有广泛的应用。在生产制造领域,智能优化技术可以用于生产计划、工艺流程优化等方面;在交通运输领域,智能优化技术可以用于交通流量优化、路线规划等方面;在能源消耗领域,智能优化技术可以用于能源管理、节能减排等方面;在金融投资领域,智能优化技术可以用于股票交易、风险管理等方面。
随着技术的不断发展,智能优化技术的应用领域将更加广泛,如在自然语言处理、计算机视觉、智能制造等领域都将有更广泛的应用。
技术发展与人工智能紧密结合
未来智能优化技术的发展将更加紧密地与人工智能结合,实现技术的无缝集成,进一步提高人工智能的应用效果和性能。
谢谢您的观看
THANKS
神经网络的结构
深度学习模型
深度学习模型包括卷积神经网络(CNN)、循环神经网络(RNN)等,适用于处理复杂的问题。
基础模型
基础模型包括单层感知器和多层感知器,适用于解决简单的问题。
自组织映射模型
自组织映射模型是一种特殊的神经网络模型,它能够自动对输入数据进行聚类和分类。

智能优化.ppt

智能优化.ppt
6
常用算法与程序设计
解空间 解空间S是遍访每个城市恰好一次的所 有回路,是{1,……,n}的所有循环排列的集合, S中的成员记为(w1,w2 ,……,wn),并记wn+1= w1。初始解可选为(1,……,n);
目标函数 此时的目标函数即为访问所有城市的 路径总长度或称为代价函数:
n
f (w1, w2 ,wn ) d(wj , wj1 ) j1
8
常用算法与程序设计
Procedure TSPSA:
begin
init-of-T; { T为初始温度}
S={1,……,n}; {S为初始值}
termination=false;
while termination=false
begin
for i=1 to L do
begin
generate(S′form S); { 从当前回路S产生新回路S′}
ห้องสมุดไป่ตู้
变为:
(wm, wm-1 ,…,w1 , wm+1 ,…,wk-1 ,wn , wn-
1 ,…,wk)
上述变换方法可简单说成是“逆转中间或者逆转两端”。
也可以采用其他的变换方法,有些变换有独特的优越性, 有时也将它们交替使用,得到一种更好方法。
代价函数差 设将(w1, w2 ,……,wn)变换为(u1, u2 ,……, un), 则代价函数差为:
Δt:=f(S′))-f(S);{f(S)为路径总长}
IF(Δt<0) OR (EXP(-Δt/T)>Random-of-[0,1])
S=S′;
IF the-halt-condition-is-TRUE THEN
termination=true;

智能优化算法优化问题

智能优化算法优化问题
其中,X为待求的配送方案,pi为第i个邮件的价值,wi为第 i个邮 件的重量,W(t)为在t时刻配送车辆的承重量。
多目标优化问题
多目标优化

目标优化问题中的各个目标并不是独立存在的,它们之间往往 是相互矛盾、相互冲突的,因此与单目标优化问题不同,多目 标优化问题通常不存在一个唯一的最优解,也就是说,要同时 使所有的目标均达到最优值是不可能的,而只能在它们之间进 行协调,找出问题的一组折中解。

约束优化问题实例-背包问题(1)
问题描述 背包问题(knapsack problem,KP)是一个关于从集合中选出 一个子集的问题,而选出的子集必须满足背包的容量限制并 使得总的价值最大。 通常描述为:给定m个物品,第i个物品的重量为ωi,价值为pi, 背包容量为C,问应选择哪些物品放入背包内可使背包中物品 总价值最大。
动态优化问题实例-邮件配送问题(2)
问题抽象 • 将邮件配送问题类比为背包问题并做以下假设: • 将报纸和信件以10,000份作为一个整体进行配送; • 10,000份信件和报纸中,除EMS外,其余各记5个重量单位,而 10,000 份EMS为10个重量单位,包裹为2个重量单位; • 报纸、EMS、包裹、挂号信和平信的优先度分别为1、2、3、4、5; • 报纸,EMS,包裹,挂号信和平信的价值分别为5、4、3、2、1; • 中国邮政拥有三种类型的配送车:摩托车,面包车和大卡车,其中 ,摩托车的载重量为6个重量单位,面包车的载重量为12个重量单位 ,大卡车的载重量为30个重量单位。
约束优化问题
定义: min f ( X ) s.t. X S { X | gi ( X ) 0, i 1,...,h}
可行空间
目标函数
不可行空间

2024年算法优化与应用成果展示 PPT模版

2024年算法优化与应用成果展示 PPT模版

算法应用于医疗诊断
在肿瘤识别领域,使用深度学习算 法优化诊断模型,准确率提升至 95%,减少漏诊率。
算法助力金融风控
金融公司利用机器学习算法进行信 贷风险评估,成功识别高风险借款 者,降低违约率20%。
--------->
影响与影响范围
1.算法优化推动产业变革
算法优化技术提升了生产效率,预计2024年将推动全球经济增长2.5%,涉 及行业众多。
4.算法优化的伦理和隐私问题
在算法优化过程中,需关注数据隐私保护,并考虑算法决策可能带来的伦理问题,确保技术的健康发展。
数据质量与多样性
数据质量影响算法效能
据研究表明,数据质量每提升10%,算法准 01
确率可提高5%,突显数据质量对算法优化 的关键作用。
数据多样性促进算法创新
02 实际案例表明,使用多样性数据集训练的算
法,其泛化能力提高30%,证明了数据多样 性对算法创新的积极推动作用。
算法适应性与灵活性
1.算法适应性提升效率
2024年研究显示,适应性强的算法在处理复杂任务时,相比传统算法效率提升30%。
2.算法灵活性增强适应性
灵活性强的算法能更好地适应不同场景,如自适应推荐算法在电商平台上点击率提升 20%。
多领域应用广泛
在医疗、金融、物流等领域,算法优 化技术广泛应用,提高决策准确性和 响应速度。
挑战与机遇并存
随着算法优化技术的不断发展,将面 临数据隐私、伦理等挑战,但也为创 新和发展带来新机遇。
算法优化技术路线图:潜在问题识别
1.优化算法的重要性
优化算法提升效率20%,减少资源浪费10%。
2.实际应用的挑战
Logo/Company
2024年算法优化 与应用成果展示

智能优化算法PPT

智能优化算法PPT
此方法不受维度高低限制,但收敛缺少方向性
第六章插值自学习粒子群算法(LILPSO)
插值法 拉格朗日插值的概念是,一般地,如果函数f有n+1个节点的函数值 已知,则函数可以近似写成多项式的形式。 插值自学习
其中, y0 = f itness(x0); y1 = f itness(x1); y2 = f itness(x2). 令I = (x0x1)(x1-x2)(x2-x0) , 经过计算,我们可以获得抛物线的形式。
计算后,得到系统的开环传递函数为:
PID控制离散方程 目标方程
液压AGC系统滑膜控制优化
滑膜面方程 控制信号
设极点位置为K1, K2+K3j, K2-K3j 目标方程
Thanks!
小结
多方法讨论比较适合处理中低维问题, 对高维问题,混沌搜索的方法略显笨重
第五章分类学习粒子群优ห้องสมุดไป่ตู้算法(PSO-CL)
分类学习策略
数值实验
受人类社会学习行为启发,作者提出了分类粒子群优化算法, 这种算法将学习群体分为三类,针对每一类分别采用不同的学习 策略和方向。数值实验及数据统计分析结果表明,相比一些改进 的PSO, 这种算法在处理含有单峰,多峰,离散,动态问题的函数 时,都具有良好的收敛特性,特别是不受维数限制。
智能优化算法
目录
1
绪论
2
相关理论
3
变区间分段混沌粒子群优化算法 (HVIPCPSO)
4
多方法讨论粒子群优化算法 (MMAPSO)
5
分类学习粒子群优化算法 (PSO-CL)
6
插值自学习粒子群算法 (LILPSO)
目录
7
局部极点拓补粒子群优化算法 (CLPSO-LOT)

现代优化算法简介PPT课件

现代优化算法简介PPT课件

混合优化算法
将传统优化算法与启发式 优化算法相结合,以提高 效率和精度。
02
常见优化算法介绍
梯度下降法
总结词
基本、直观、易实现
详细描述
梯度下降法是最基础的优化算法之一,它通过不断沿着函数梯度的反方向进行 搜索,以寻找最小值点。由于其简单直观且易于实现,梯度下降法在许多领域 都有广泛应用。
牛顿法
优化算法的重要性
优化算法是解决复杂问题的关键,能 够提高效率和精度,降低成本和风险 。
随着大数据和人工智能的快速发展, 优化算法在解决实际问题中扮演着越 来越重要的角色。
现代优化算法的发展历程
01
02
03
传统的优化算法
如梯度下降法、牛顿法等, 适用于简单问题。
启发式优化算法
如遗传算法、模拟退火算 法等,适用于复杂问题。
多目标优化问题
总结词
多目标优化问题是指同时追求多个目标函数 的优化问题,如多目标决策、多目标规划等 。
详细描述
多目标优化问题需要同时考虑多个相互冲突 的目标函数,找到一个平衡的解。现代优化 算法如遗传算法、粒子群算法等在多目标优 化问题中广泛应用,能够找到一组非支配解
,满足不同目标的权衡和折衷。
04
指算法在处理大规模数据集时的性能表现。
详细描述
随着数据规模的增大,算法的可扩展性变得越来越重 要。现代优化算法需要能够高效地处理大规模数据集 ,同时保持较高的计算效率和精度。这需要算法设计 时充分考虑计算资源的利用和优化。
算法的理论支撑
总结词
指算法的理论基础和数学证明。
详细描述
现代优化算法需要有坚实的理论基础 和数学证明,以确保其有效性和正确 性。这需要算法设计者具备深厚的数 学功底和理论素养,以确保算法的可 靠性和稳定性。

智能计算与现代优化方法ppt课件

智能计算与现代优化方法ppt课件

2024/3/12
智能计算与优化
34
3. 1983年Kirkpatrick提出成熟的 模拟退火方法
----模拟物理的退火过程 目标<=>能量函数, 在退火过程中达到最小
4. 80年代重新兴起的ANN,用于优化
2024/3/12
智能计算与优化
35
五。研究应用的前景与局限性:
1. 应用前景广阔 2. 研究的主要问题:
参考书籍
1. 汪定伟;王俊伟;王洪峤;张瑞友;郭哲 ,智能优 化方法,高等教育出版社,2007
2. 谢金星,邢文训,现代优化计算方法(第二 版)北京:清华大学出版社,2005
3. 王凌,智能优化算法及其应用 ,北京:清华 大学出版社,2005
2024/3/12
智能计算与优化
1
第一章 概论
➢ 引言
➢ 智能计算、现代优化算法的发展历史 ➢ 智能计算、现代优化算法与控制科学
4)最优化方法具有强烈的实践性和应用的广泛性。
2024/3/12
智能计算与优化
10
最优化问题的分类
1)函数优化:连续空间上的优化问题; 2)组合优化:离散点集的状态组合
2024/3/12
智能计算与优化
11
函数优化的标准测试函数
Spere Function:
N
F1 xi 2 , x [2,2] i 1
2024/3/12
智能计算与优化
32
模糊逻辑

A1 x
规则1 y 是 B1

y是
x
A2 x
规则2 B2

Ar x
规则r y 是 Br

集 结
模 糊
y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档