计算方法-论文
计算方法论文浅谈拉格朗日插值法

计算方法论文浅谈拉格朗日插值法拉格朗日插值法是一种常用的数值计算方法,用于构造一个多项式来逼近一些已知的离散数据点。
它被广泛应用于插值问题,如图像处理、物理实验数据处理、曲线拟合以及信号处理等领域。
本文将从原理、计算步骤以及优缺点三个方面,对拉格朗日插值法进行探讨。
拉格朗日插值法的基本原理是利用多项式的线性组合来逼近函数。
假设已知n+1个数据点:(x0, y0), (x1, y1), ... , (xn, yn),其中x0, x1, ... , xn是互不相同的。
我们的目标是通过已知的数据点构造一个多项式P(x),使得在这n+1个数据点上有P(xi) = yi。
根据插值定理,只要这些数据点满足一定的条件,存在唯一的插值多项式。
下面我们来具体讨论拉格朗日插值法的计算步骤。
首先,我们需要构造一个基于已知数据点的拉格朗日基函数。
对于每个数据点(xi, yi),我们定义一个拉格朗日基函数Li(x),它满足在xi处取值为1,而在其他数据点xj上取值为0。
拉格朗日基函数的定义如下:Li(x) = Π(j=0, j≠i, n)(x - xj) / Π(j=0, j≠i, n)(xi - xj)其中,Π表示一系列数的乘积符号。
接下来,我们需要将基函数与其对应的函数值进行线性组合,得到插值多项式P(x)。
插值多项式的表达式如下:P(x) = Σ(i=0, n)Li(x) * yi最后,我们可以利用插值多项式来计算任意点的函数值。
拉格朗日插值法的优点在于相对简单和容易理解,它能够精确地通过已知的n+1个数据点来构造一个次数不超过n的多项式,实现对函数的逼近。
然而,拉格朗日插值法也存在一些缺点。
首先,拉格朗日插值法对于数据点的选择非常敏感,如果数据点的密度不均匀或者存在较大误差,那么插值结果可能会出现较大的误差。
此外,拉格朗日插值法在计算多项式系数时需要进行大量的乘法和除法运算,这在数据规模较大时可能会导致计算效率降低。
论文二重极限计算方法

论文二重极限计算方法二重极限是函数在二元自变量趋于特定点$(a,b)$的过程中的极限。
在求解二重极限时,可以使用两种常用方法:路径法和极限法。
下面将详述这两种方法。
1.路径法路径法是通过沿着不同路径逼近极限点,观察函数极限的行为。
常见的路径有$x=a$和$y=b$,以及通过以$(a,b)$为中心的射线等。
路径法的基本思想是,如果函数在不同路径下极限都存在,并且极限值相等,那么二重极限存在,并且等于这个共同的极限值。
举例说明,假设要求函数$f(x, y)=\frac{x^2y}{x^2+y^2}$在点$(0, 0)$处的二重极限。
可以沿着不同路径逼近这个点。
对于路径$x=0$,有$f(0, y)=0$;对于路径$y=0$,有$f(x, 0)=0$。
所以根据路径法,得到$\lim_{(x, y) \to (0, 0)} f(x, y) = 0$。
2.极限法极限法通过使用不等式,将二重极限的计算转化为一重极限的计算。
具体步骤如下:(1)假设要求函数$f(x,y)$在点$(a,b)$处的二重极限。
(2)令$x=a+h$,$y=b+k$,其中$h$和$k$表示趋于0的变量。
(3)将$f(x,y)$转化为一个关于$h$和$k$的函数$F(h,k)$。
(4) 计算一重极限$\lim_{(h, k) \to (0, 0)} F(h, k)$。
举例说明,求$f(x, y)=\frac{x^2y}{x^2+y^2}$在点$(0, 0)$处的二重极限。
可以将$x$和$y$表示为$x = h$和$y = k$。
代入函数$f(x,y)$得到$F(h, k) = \frac{h^2k}{h^2+k^2}$。
接下来计算一重极限$\lim_{(h, k) \to (0, 0)} F(h, k)$。
由于这是一重极限,可以使用一元极限的计算方法,比如夹逼定理或洛必达法则。
以上就是求解二重极限的路径法和极限法的详细介绍。
学术界对于二重极限的计算方法还有很多探索,包括利用极坐标、球坐标等多种数学工具。
计算方法论文

1.编程解一元二次方程x^2 + bx + c =0 其中b =两位学号
c = (-1)^ b
程序:private sub command1_click()
Dim a as integer ,b as integer,c as integer
Dim p as integer ,x1 as integer,x2 as integer
end sub
2.编写程序计算 A =
程序:private sub form_click()
Dimi as integer ,n as integer,p as integer
Fori = 1 to 10000
P= p + 1/i
Next i
A= format(a,”0.000”)
Text1 = val(a)
舍入地方法比较多,有收尾法(只入不舍)、去尾法(只舍不入)和四舍五入法等,一般常用人们所熟知的四舍五入法。
当然在计算过程中,这类误差往往是有舍有入的,而且单从一次的舍入误差来看也许是微不足道的,但应当注意的是,在数值计算中,当计算机上完成了千百万次运算之后,舍入误差的积累却可能是十分惊人的,这些误差一经迭加或传递,对精度可能有较大的影响。所以,在做数值计算时,对舍入误差应予以足够的重视。
2 测量误差
在数学模型中往往包含一些由观测或实验得来的物理量,如电阻、电压、温度、长度等,由于测量工具精度和测量手段的限制,它们与实际量大小之间必然存在误差,这种误差称为测量误差。上面近似公式中地球半径是要经过测量得到,然而无论使用什么工具,其误差是无法避免的。
3 截断误差
由实际问题建立起来的数学模型,在很多情况下要得到准确解是困难的,通常要用数值方法求出它的近似解。例如常用有限过程逼近无限过程,用能计算的问题代替不能计算的问题。这种数学模型的精确解与由数值方法求出的近似解之间的误差称为截断误差,由于截断误差是数值计算方法固有的,故又称为方法误差。
计算方法论文

《计算方法》期末论文论文题目最小二乘法及其应用学院专业班级姓名学号指导教师日期目录摘要········…………………………………………………………………正文……………………………………………………………………………1、最小二乘法基本原理………………………………………………2、曲线拟合问题…………………………………………………………3、实际建模应用……………………………………………………………4、学习感想··················································最小二乘法及其应用摘要:最小二乘法,又称最小平方法,是一种数学技术。
它通过最小误差的平方和寻找数据函数的最佳匹配。
最小二乘法是提供“观测组合”的主要工具之一,它依据对某事件的大量观测而获得“最佳”结果或“最可能”表现形式。
如已知两变量为线性关系bxa=,对y+其进行)2n次观测而获得n对数据。
若将这n对数据代入方程求解n(>a,b之值则无确定解。
最小二乘法提供了一个求解方法,其基本思想就是寻找“最接近”这n个观测点的直线。
最小二乘法的数学依据是实际值(观察值)与理论值(趋势值)的离差平方和为最小。
据此来拟合回归方程或趋势方程。
论文--综合除法的计算方法及其应用

本科学生毕业论文(设计)题目综合除法的计算方法及其应用XX崤学号院系信息工程学院专业数学与应用数学指导教师马招丽职称副教授2017年12 月1 日师大学文理学院本科毕业论文(设计)任务书系别:信息工程学院专业:数学与应用数学班级:14数教a班学生:崤学号:论文题目:综合除法的计算方法及其应用一、毕业论文(设计)的目的(一)培养学生综合运用所学知识进行科学研究和独立分析问题、解决问题的能力,培养学生严谨的科学态度,实事和认真负责的工作作风。
(二)通过撰写毕业论文(设计),进一步深化所学知识,运用正确的研究方法,收集相关资料,进行调查研究,提高写作能力。
(三)进一步加深对基础理论的理解,扩大专业知识面,完成教学计划规定的基本理论、基本方法和基本技能的综合训练,力求在收集资料、查阅文献、调查研究、方案设计、外文应用、计算机处理、撰文论证、文字表达等方面加强训练,实现所学知识向能力的转化。
(四)鼓励学生勇于探索和大胆创新。
二、毕业论文(设计)的要求(一)毕业论文(设计)选题应符合本专业培养目标的要求,具有理论意义和实际价值。
(二)毕业论文(设计)有一定的深度和广度,份量适中。
(三)毕业论文(设计)的正文容文题相符,结构合理,层次分明,合乎逻辑;概念准确,语言流畅;论点鲜明,论据充分,自圆其说。
(四)毕业论文(设计)应当反映出学生查阅文献、获取信息的能力,综合运用所学知识分析问题与解决问题的能力,研究方案的设计能力,研究方法和手段的运用能力,外语和计算机的应用能力及团结协作能力。
(五)毕业论文(设计)书写格式规,符合《师大学文理学院全日制本科生毕业论文(设计)管理实施细则》的要求。
指导教师(签字):主管院、系领导(签字):2017年9月26日师大学文理学院本科毕业设计(论文)原创性声明本人重声明:所呈交的毕业设计(论文),是本人在指导教师的指导下独立研究、撰写的成果。
设计(论文)中引用他人的文献、数据、图件、资料,均已在设计(论文)中加以说明,除此之外,本设计(论文)不含任何其他个人或集体已经发表或撰写的成果作品。
定积分的计算方法研究毕业论文【范本模板】

编号2013110110 研究类型理论研究分类号O17学士学位论文Bachelor’s Thesis论文题目定积分的计算方法研究作者姓名施莉学号2009111010110所在院系数学与统计学院学科专业名称数学与应用数学导师及职称许绍元教授论文答辩时间2013年5月25日湖北师范学院学士学位论文诚信承诺书目录1。
定积分的产生背景及定义 (3)1。
1曲边梯形面积 (3)1。
2定义1 (3)1。
3定义2 (3)2.定积分的几种计算方法 (4)2。
1定义法 (4)2。
2换元法求定积分 (4)2。
3牛顿莱布尼兹公式 (8)2。
4利用对称原理求定积分 (10)2.5利用奇偶性求函数积分 (12)2。
6利用分部积分法计算定积分 (14)2.7欧拉积分在求解定积分中的应用 (15)3。
结论 (19)4。
参考文献 (19)定积分的计算技巧研究施莉(指导老师:许绍元)(湖北师范学院数学与统计学院中国黄石 435002)内容摘要:定积分在微积分中占有极为重要的位置,它与微分相比,难度大、方法灵活﹒如果单纯的按照积分的定义来计算定积分,那将是十分困难的﹒因此,我们要研究定积分的计算方法﹒常用的方法有定义法、莱布尼兹公式法、分步积分法、换元法以及其他的特殊方法﹒下面我们将探讨一下定积分的计算技巧﹒本文主要根据定积分的定义、性质、被积函数的奇偶性和对称性、以及某些具有特征的函数总结了牛顿莱布尼兹公式、换元法、分部积分、凑微分﹒目前,对于定积分的求法和应用的研究是比较全面和完善的﹒我们要学会总结归纳定积分的一般性求法以及具有特殊特征的函数的求法﹒同时,将定积分应用于数学问题的求解中以及物理学和经济学的实际问题中是非常必要的﹒关键词:定积分;求法;应用定积分的计算技巧研究1.定积分的产生背景及定义1.1曲边梯形面积设f 为闭区间上的连续函数,且由曲线直线以及轴所围成的平面图形,成为曲边梯形11()()i i i ni x x i i i S f x x ξ=-=≈∆∆=-∑变力做功:11()()i i i ni x x i i i W f x x ξ=-==∆∆=-∑定积分的意义:定义1:设闭区间上有1n -个点,依次为:0121n n a x x x x x b -=<<<<<=,它们把[],a b 分成n 个小区间i ∆=[]1,i i x x -,1,2,3,,i n =﹒这些分点或者这些闭子区间构成[],a b 的一个分割,记为:{}011,,,,n n T x x x x -=或者{}12,,,n ∆∆∆,小区间i ∆的长度记为i x ∆=i x -1i x -,并记:T =max {}i x ∆,称为T 的模﹒注:由于i x ∆≤T ,1,2,3,,i n =,因此T 可用来反映[],a b 被分割的细密程度﹒另外,分割一旦给出,T 就随之而确定;但是,具有同一细度的分割却有无限多﹒ 1.2定义1设f 是定义在[],a b 上的一个函数,对于[],a b 的一个分割{}12,,,n T =∆∆∆,任取i i ξ∈∆,1,2,3,,i n =,并作和式1()i i ni x i f ξ==∆∑,称此和式为f 在上的积分和,也是黎曼和﹒显然积分既和分割T 有关,又与所选的点集{}i ξ有关﹒ 1。
论文字数怎么算

论文字数怎么算
论文字数的计算方法是指计算一篇文章、论文或者其他文本内容中的字符总数。
文字数量的计算通常将字母、数字、标点符号和空格都算作一个字符。
以下是一个简单的计算文字数量的步骤:
1. 将文本内容复制到一个文本编辑器或者文字处理软件中。
2. 在文本编辑器中选择要计算数量的文本内容。
3. 查看文本编辑器或者文字处理软件的底部状态栏,一般会显示选定文本的字符总数。
4. 如果没有底部状态栏显示字符总数,可以使用文本编辑器的“查找和替换”功能,将特殊字符(如空格)替换成空字符串,并计算文本替换之前的总字符数。
定积分的计算方法研究毕业论文

定积分的计算方法研究毕业论文
一、研究背景
积分作为一种货币形式存在,可以用在零售、旅游、金融、教育等行
业领域,支持企业客户的关系管理和客户价值增长。
企业积分计算方法不
仅可以帮助企业构建客户的长期关系,还可以保持企业的竞争力,并赋予
客户价值。
近年来,各行各业均采用积分计算方法。
随着科技的发展和技
术的进步,企业的积分计算方法也发生了很大的变化,这也体现在企业积
分计算方法的实现上。
企业积分系统的研究有助于提高企业客户关系的管
理效率,提高客户满意度,实现客户管理的长期发展目标。
二、研究内容
1、确定企业积分计算方法的发展状况。
企业积分计算方法是根据客户实际情况确定的,一般包括客户的属性、行为、环境、关系等。
企业可以考虑采用多种计算方法,比如购买、贡献、参与、奖励等;也可以考虑采用多种客户定位方法,如投资能力、消费意
愿等来定位客户,从而确定客户的积分数量。
2、研究企业积分计算方法的实现过程。
企业积分计算方法的实现过程首先要确定企业计算积分的目的,然后
确定企业积分计算的方法,接着确定企业客户的数量和分级客户的积分标准,最后对企业积分计算方法进行评价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅论拉格朗日与牛顿插值法一、课程简介计算方法是一种以计算机为工具,研究和解决有精确解而计算公式无法用手工完成和理论上有解而没有计算公式的数学问题的数值近似解的方法。
在实际中,数学与科学技术一向有着密切关系并相互影响,科学技术各领域的问题通过建立数学模型和数学产生密切的联系,并以各种形式应用于科学与工程领域。
而所建立的这些数学模型,在许多情况下,要获得精确解是十分困难的,甚至是不可能的,这就使得研究各种数学问题的近似解变的非常重要了,计算方法就是这样一门课程,一门专门用来研究各种数学问题的近似解的一门课程。
计算方法的一般步骤四:实际问题抽象出实际问题的物理模型,再有物理模型具体出数学模型,根据相关的数值方法利用计算机计算出结果。
从一般的过程可以看出,计算方法应该具有数学类课程的抽象性和严谨性的理论特性和实验课程的实用性和实验性的技术特征等。
随着计算机的飞速发展,数值计算方法已深入到计算物理、计算力学、计算化学、计算生物学、计算机经济学等各个领域,并且在航天航空、地质勘探、桥梁设计、天气预报和字形字样设计等实际问题领域得到广泛的应用。
二、主要内容《计算方法》这门课程可以分为三大块:数值逼近,数值代数,常微分方程。
1.数值逼近模块这模块的知识点主要分布在第一章到第三章。
第一章:数值计算中的误差。
主要的知识点是绝对误差和绝对误差限、相对误差和相对误差限、有效数字等概念的引入和计算绝对误差和绝对误差限、相对误差和相对误差限及有效数字的方法。
第二章:插值法。
在这一章中,主要的就是拉格朗日插值法与牛顿插值法的讲述。
拉格朗日插值法中核心就是去求插值结点的插值基函数,牛顿插值法中核心就是计算插值结点的差商,还有就是截断误差的说明。
第三章:曲线拟合的最小二乘法。
重点是最小二乘法的法则和法方程组列写,如何利用法方程组去求一个多项式各项的系数。
最小二乘法是与插值方法是有区别的,它不要求过所有的结点,只要靠近这些点,尽可能的表现出这些点的趋势就行了。
2.数值代数模块这一部分内容主要在第四章至第七章。
第四章:数值积分。
主要说的是插值型的数值积分的公式和积分系数。
刚开始讲了牛顿-柯特斯插值求积公式,包括梯形公式、Simpson公式、Cotes公式-系数、代数精度和截断误差。
然后就是复合的牛顿-柯特斯求积公式,包括复合的梯形公式、复合的Simpson公式、各个复合公式的收敛阶和它们各自的截断误差。
最后讲的是龙贝格算法的计算思想和公式的讲述。
第五章:非线性方程的数值解法。
在这一章中主要就是向我们介绍了四种非线性方程求根的迭代法,即为二分法、牛顿切线法、牛顿下山法和正割法。
牛顿切线法、牛顿下山法和正割法种方法的迭代公式是怎样的,各自的收敛阶,及它们相互之间的比较。
第六章:方程组的数值解法。
本章的内容讲的都是求解方程组的值,可以分为两类:一类是求解方程组的精确值的方法,即高斯列主元消去法、LU分解法和高斯消去法;另一类是求解方程组的近似解的方法,即Jacobi迭代法、S-R迭代法和SOR迭代法。
用迭代法求解方程组要判断所用的方法是否收敛,引入了矩阵的范数,迭代法迭代矩阵谱半径的求解,条件数及病态方程等知识。
3.常微分方程这个是在第七章:常微分方程的数值解法。
在这一章中讲的就是欧拉方法的介绍,由初值,利用欧拉方法去计算微分方程的值。
主要的内容就是欧拉公式、向后欧拉公式和改进的欧拉公式。
三、重点与难点1.数值逼近这一部分的重点与难点就是两种插值方法(即拉格朗日插值法和牛顿插值法)和插值条件。
在拉格朗日插值法中要知道如何去求每个插值结点的基函数,计算基函数是拉格朗日插值法的核心部分,并且要理解基函数的定义和插值余项。
在牛顿插值法中,要知道怎么去求差商,求差商是牛顿插值法的核心。
在这块的知识点中主要是要掌握好这两种插值法,利用它们去解决实际中的一些问题,知道它们的优缺点,根据实际的问题去选择用哪种方法解决实际中的问题。
2.数值代数这部分主要的是求积分近似值;求解非线性方程的解主要的三种方法(牛顿切线法、牛顿下山法和正割法);求方程组解的五中方法(高斯消去法、LU分解法、雅可比迭代法、高斯—塞德尔迭代法和SOR迭代法)以及这几种方法的收敛性是怎么样的,如何判断用这几种方法解方程组的根就是收敛的。
3.常微分方程在最后一章中主要的是掌握欧拉公式和改进的欧拉公式,学会怎么用欧拉公式和改进的欧拉公式来常微分方程的值。
四、拉格朗日与牛顿插值法由于在生产和科研中出现的函数是多种多样的,所以常常会遇到这样的情况:在某个实际问题中,虽然可以断定所考虑的函数f(x)在区间[a,b]上存在且连续,但却难以找到它的解析表达式,只能通过实验和观测得到在有限个点的函数值(即一张函数表)。
显然,要利用这张函数表来分析函数f(x)的性态,甚至直接求出其他一些点上的函数值可能是非常地困难。
在有些情况下,虽然可以写出函数f(x)的解析表达式,但是由于结构相当复杂,使用起来很是不方便。
面对这些情况,总是希望根据所得的函数表(或结构复杂的解析表达式),构造某个简单函数P(x)作为f(x)的近似。
插值法就是为了解决此类问题的一种古老的确实目前常用的方法,它不仅直接广泛地应用于生产实际和科学研究中,而且也是进一步学习数值计算方法的基础。
拉格朗日插值法和牛顿插值法就是两种常用的简便的插值法。
在这里主要的就是说一说这两种插值法的理论和比较,它们是属于数值逼近模块的知识。
1. 拉格朗日插值法在求满足插值条件n 次插值多项式P n (x)之前,先考虑一个简单的插值问题:对结点x i (i=0,1,…,n)中任一点x k (0≤k ≤n),作一n 次多项式l k (x),使它在该点上取值为1,而在其余点x(i=0,1,…k-1,k+1…,n)上取值为零,即L 型插值多项式:2. 牛顿插值法由线性代数知,任何一个不高于n 次多项式,都可以表示成函数1,x-x 0,(x-x 0)(x-x 1),…,(x-x 0)(x-x 1)…(x-x n-1)的线性组合。
既可以把满足插值条件P(x i )=y i (i=0,1,…,n)的n 次插值多项式写成如下形式:a 0+ a 1(x-x 0)+ a 2(x-x 0)( x-x 1)+…+ a n ( x-x 0)( x-x 1)…(x-x n-1)其中,a k 为待定系数。
这种形式的插值多项式成为牛顿插值多项式,记为N n (x)。
对个n+1个互异节点:x 0, x 1,…,x n011011()()()()()()11()()()()k k k k n k k k k k i k i k n l x a x x x x x x x x l x a x x x x x x x x -+-+=----=⇒=---- 又:011,,)n x =两个互异的插值节点(x 01010110() , ()x x x x l x l x x x x x --==--插值基函数:10011()()()()()L x f x l x f x l x =+线性插值函数:0()()()()nn n kk k L x P x lx f x ===∑101(1)12()[,] ()[,]()()()()()()()(1)!n n n n n n n n f x C a b a x x x b P x x a b fR x f x P x f x L x x n ξω+++∈≤<<≤∀∈=-=-=+ 定理:若,且节点,则插值多项式对有:3. 两者的比较牛顿插值的误差不要求函数的高阶导数的存在,所以更具有一般性。
它对f(x)是由离散点给出的函数情形或f(x)的导数不存在的情形均适用。
拉格朗日插值法公式结构紧凑,在理论分析中方便,但是如果遇到结点的增减,所有的数据需要全部重算,没有承袭性。
而牛顿插值就避免了这一缺点,这样的话,在用计算机计算是就可以大量的节省乘除运算的次数,减少了计算的时间,所以可以说对于一些结构相当复杂的函数f(x),牛顿插值法比拉格朗日插值法要占有一定的优势。
五、心得与体会通过这学期对《计算方法》这门课程的学习对一些知识有了较清晰的认识和了解,印象也比较深刻。
计算方法中所提到的各种方法都有其自己所使用的范围和使用所需的注意事项,同样在相同问题的处理上,不同的处理方法的选择可能会造成两种截然不同的处理结果,也可能会造成误差的扩大化或者不是最有效的解决方法。
误差在数值计算中是不可避免的,误差的传播和积累直接影响到计算结果的精度。
在研究算法的同时,必须注重误差的分析,使建立起来的算法科学有效。
绝大多数情况下不存在绝对的严格和精确,在考虑数值算法时要能将误差限制在许可的范围之内,这种算法就是数值稳定的。
一般情况下除了选用较好的计算方法来防止误差传播和积累以外,还可以选用稳定性较好的计算公式、简化计算步骤和公式、合理安排运算顺序(避免大数“淹没”小数;多个数相加时,其绝对值小的先加;多个数相乘时,其有效位数多者先乘)、避免两相近数相减和绝对值太小的数作为除数等。
在这门课中,我觉得主要的是掌握解决实际问题的方法和思想,计算方法告诉了我们处理问题的方法,而我们在实际运用中就需要通过自己的判断和经验来选择实用性最好、使用最简单、误差最小的方法来解决实际问题。
10011012010122010100()()[,](,)(,)[,,][,,][,,][,,]n n n n f x f x f x x x x f x x f x x f x x x x x f x x f x x f x x x x --=--=--=- 称为n 阶差商称为1阶差商称为2阶差商)()()()( 10010---++-+=∴n n n x x x x a x x a a x N ⎪⎪⎩⎪⎪⎨⎧=--++-+==--+-+==-+===-)()()()()()())(()()()()()()()(1001021202202102101101000n n n n n n n n n n n x f x x x x a x x a a x N x f x x x x a x x a a x N x f x x a a x N x f a x N。