激光衍射测量金属细丝的直径
激光衍射法测量细丝直径的研究

h h
对于 He-Ne 激光器,
<
10- 6,
可以忽略不计。
f f
为系统误差, 在实际测量过程中,
可以通过引用标准细丝对系统进行校准, 从而消除该系统误差。总之, 对细丝直径进行
测量的误差,
最终取决于
h h
。h 的测量误差最大为 5 个光敏元,
即
h= 7
m×5=
35 m, K = 2, S0= 7 m, N = 756
·利用软件法 其原理和硬件法一致, 只不过 h 的测定是通过接口板上的 A / D
转换器将 CCD 输出衍射图象的模拟信号, 并用程序产生一个虚拟的切割电平来实现的。 本文研制的细丝测试系统采用软件法实现 h 值的测定。
2. 3 系统测量精度分析
根据误差理论, 对于式 ( 1) 有
d d
=
+
f f
+
笔者在 Win95 平台上, 利用 Visual C+ + Fo r Window s 软件的可视化、模块化、图
第4期
石文孝, 等: 激光衍射法测量细丝直径的研究
29
激
钢丝
光
器
透镜
激光光源
驱动电路 CC D
CCD输出信号 处理电路
数据长度输入
上下限预置 微
显 示器 机
声光报警器
模拟反馈口
光学系统
信号接收处理系统
1% 的测量。
2 激光衍射法测量系统
2. 1 激光衍射法测量细丝直径系统构成
系统由激光器、傅氏透镜、CCD 器件及 CCD 驱动电路、CCD 输出信号处理电路、微 型计算机系统构成, 如图 3 所示。其中激光器采用 He-Ne 激光器, 波长为 0. 632 8 m 。要 求光源强度变化量小于 5% , 发散角小于 1 mr ad。衍射图样接收器采用 4 096 线阵L M 701 对 波长为 0. 632 8 m 的光波有峰值响应, 对 He-Ne 激光恰好有理想的光谱响应灵敏度。微机 系统采用联想 586, 并在扩展槽上插有一块多功能卡, 该卡集 A/ D 转换器 AD574、并行接口 8255、定时/ 计数器 8253、串行接口 8251、D/ A 转换器 AD7526 于一体。
最新测量细丝直径

d
(2k+1)λ/2 (k=
±1,±2,±3,…) 中心条纹θ=0
互补法测量的计算
本实验一般采用暗条纹进行测量,考虑到一般情况下θ角较小,于是有
θ≈sinθ≈tanθ
故由式得暗条纹的衍射角由下式决定
a =mλ
仅供学习与交流,如有侵权请联系网站删除 谢谢2
精品好文档,推荐学习交流
a =nλ
令 L=Xm+Xn,( Xm,Xn 分别表示第 m 和第 n 级条纹到接收屏中心 的距离),即 L 为中心条 纹左侧第 m 条与中心条纹右侧第 n 条间的距离。
1.根据衍射原理,所选择的测量对象的直径不可过大. 2.选择细锐的暗条纹进行测量.
5 结语
用衍射法测量细丝直径是一种可达到较高精度的非接触测量技术,特别适合微小的细丝 直径测量。
参考文献
[1].赵凯华,钟锡华.光学.北京:北京大学出版社,1982. [2].董有尔.大学物理学教.北京:高等教育出版社,2002.
和 是与之对应的衍射角,由式可加得,
又因为
a( + )=(m+n)λ
+ ≈(Xm+Xn)/f
所以
a(Xm+Xn)/f=(m+n)λ,即 a L /f=(m+n)λ
于是就有 a= (m+n) λf/ L
实验测出了 f,L 值之后,就可根据上式计算出丝线的直径。
方法二:
将细丝插入两光学平玻璃板的一端,从而形成一空气劈尖。当用单色平行光垂直照射时, 在劈尖薄膜上下两表面反射的两束光发生干涉,且干涉条纹是一簇与接触棱平行且等间距的 平行直条纹.
八年级数学全等三角形辅助线添加之截长补短 (全等三角形)拔高练习
3.6光学衍射法测定细丝直径

(一)比较单缝衍射和圆孔衍射图样的异同点 相同点都是明暗相间的条纹。不同点是圆孔衍射条纹为圆环形状,而单缝衍射条纹是直 线形状。 (二)衍射图样的形状与障碍物的形状的关系 光源选用激光笔,缝和孔的具体制作过程简述如下: 用刀片、缝衣针等工具在不透光的塑料卡片(如电话卡)上,分别刻制出不同宽度的缝 和不同大小、不同形状的孔。如图 1 所示卡片上制作宽度约为 2 mm 的缝 a 和宽度约为 0.5 mm 的缝 b;如图 2 所示卡片上制作直径约为 2 mm 的圆孔 c 和直径约为 1 mm 的圆孔 d;如图 3 所示卡片上制作线度都约为 1 mm 的正三角形孔 e、正方形体正多边形孔 g。
些点,互补屏产生完全相同的光强分布. 2 单缝夫琅和费衍射光强分布规律 在讨论单丝衍射之前先来讨论夫琅和费单缝衍射
夫琅和费单缝衍射要求光源和观察屏离缝都是无限远,如图 1 装置能实现这一要求。
L1
A
L2
S f1
a
φ
O
B
Xk
Pφ
图一
L
P
图中将单色光源置于透镜 L1 的前焦平面上,光束经 L1 后变成平行光,垂直照射于宽度为 a 的狭缝 AB 上,根据惠更斯-菲涅尔原理,狭缝上各点可以看成是新的波源,由这些点向各方 向发出球面次波,这些次波经透镜 L2 后,在其后焦平面的观察屏上,可看到一组明暗相间,
实验数据记录及处理
(单位:mm)
测量方法 测量项目
测量次数
衍射法测量细丝直径实验报告

衍射法测量细丝直径实验报告
实验目的:学习使用衍射法测量细丝直径。
实验器材:激光、透镜、细丝、刻度尺、旋转台、屏幕,直尺。
实验过程:
1.将激光束垂直入射到透镜上,利用透镜成像原理,可以在屏幕上得到明亮而清晰的光斑。
2.将细丝放置于激光束与透镜之间,并将细丝与激光束垂直,调整细丝的位置,使其在光斑中心。
3.旋转台旋转细丝,使光斑在屏幕上呈现出一系列明暗环形,称为菲涅尔衍射图案。
4.用直尺测量屏幕上菲涅尔衍射图案中一组明暗环的直径d。
5.根据直径d和激光波长λ之间的关系,求得细丝直径。
实验结果:利用衍射法测量,可得细丝直径d=0.05mm。
实验结论:衍射法能够较为准确地测量细丝的直径,并且该方法便于使用,实验过程简单。
衍射法测量细丝直径的研究

衍射法测量细丝直径的研究
衍射法是一种精密测量物体尺寸的方法,也可用于测量细丝直径。
该方法的原理是利用高能光线通过细丝时发生的衍射现象,来计算出细丝的直径。
实验时,需要将细丝置于光源和光屏之间,通过调整光源和光屏的位置,找到最佳的衍射条件。
然后测量出两个相邻衍射条纹之间的距离,用此距离和已知参数计算出细丝直径。
衍射法测量细丝直径的优点是精度高、非破坏性,对细丝的材料和形状没有限制。
但是也存在一些限制,比如光线的干扰和偏差会影响测量结果,需要进行光线矫正和精确测量。
总之,衍射法是一种可靠的测量细丝直径的方法,具有广泛的应用前景和研究价值。
3.6光学衍射法测定细丝直径

些点,互补屏产生完全相同的光强分布. 2 单缝夫琅和费衍射光强分布规律 在讨论单丝衍射之前先来讨论夫琅和费单缝衍射
夫琅和费单缝衍射要求光源和观察屏离缝都是无限远,如图 1 装置能实现这一要求。
L1
A
L2
S f1
a
φ
O
B
Xk
Pφ
图一
L
P
图中将单色光源置于透镜 L1 的前焦平面上,光束经 L1 后变成平行光,垂直照射于宽度为 a 的狭缝 AB 上,根据惠更斯-菲涅尔原理,狭缝上各点可以看成是新的波源,由这些点向各方 向发出球面次波,这些次波经透镜 L2 后,在其后焦平面的观察屏上,可看到一组明暗相间,
3.6 光学衍射法测定细丝直径
测量诸如金属细丝直径这样的细度,可以使用游标卡尺、螺旋测微计等较精密的机械工 具,也可以使用读数显微镜、工具显微镜、阿贝比长仪等精密光学仪器,还可以利用光的干 涉或衍射原理,借助光学仪器,对微小细度进行测量。利用光的干涉与衍射原理对微小细度 进行测量,其方法简单,直观性强,测量结果精度高,在高精度测量中更显示出其独特的作 用。 一、实验目的 1. 学会用衍射法测量微小尺寸. 2. 加深对光的衍射理论的理解. 二、实验仪器 He-Ne 激光器、读数显微镜、可调狭缝、待测金属细丝、光屏、透镜、卷尺、探头、光电流 放大器。 三、实验原理 1 根据巴比涅原理:两个互补屏在衍射场中某点单独产生的复振幅之和等于光波自由传播时 该点的复振幅.(本实验中即细丝直径与单缝宽度一样时,成为一对互补屏,产生相同的光 强分布) 即
衍射法测量细丝直径

5 结论
用衍射法测量细丝直径是一种可达到较高精度的 非接触测量技术, 特别适合微小的细丝直径测量.但 在实际应用中由于细丝衍射图样信号存在信噪比低及 由于测量光学系统散射光形成的背景光及由此引起的 不规则干涉条纹干扰引起条纹轮廓畸变等因素使该法 应用受到一定的限制. 利用两次衍射装置抑制背景光, 运用软件编程数 字滤波技术代替硬件电路对原始波形进行滤波处理, 即可用简单的暗点识别及平均技术, 较好的解决以上
偏振片组2 可用来调节入射光束的强弱, 以保证
充分利用 c r光强测量的的动态范围, c. ) 以得到较多级 次的衍射信号. 由于激光具有相干性好的特性, 所以, 残留杂散光 之间或杂散光与衍射光之间常会发生一些杂乱的干涉 条纹, 迭加在衍射条纹上, 使测量信号受到严重干扰, 因此, 在测试装置和数据处理中, 必须设法消除这些干 扰, 才能取出有用的不失真衍射条纹信号, 否则, 得不 到正确的测量结果.采用 两个狭缝 5 和6 组成二次衍 射系统. 大大减少 了杂散光的干扰.若用扩束平行光 直接照射细丝, 图样的中心为较强的圆光斑, 干扰很 大, 即使使用遮光条8 将其挡去, 其在光学元件和遮光 条上的漫射光形成的杂散光相互之间, 杂散光与衍射 光之间仍能形成较强的干涉, 将严重干扰衍射条纹, 使 图样严重扭曲, 已无法使用, 而二次衍射系统, 在很大 程度上抑制了杂散光, 提高了条纹信号的信噪比, 可得 到较干净的条纹图样, 基本保证测量信息不受畸变. 为减小随机误差和杂散干涉条纹对衍射条纹间距测量 的影响, 取多个条纹间距平均计算, 故应使 C D多接 C 收一些条纹, 但接受的条纹数太多, 条纹间距变小, 也 会影响测量 精度, 合考虑, 们对 有效 长度为 综 我 2 .7 m 862 m的 49 个像元 C D线阵, 06 C 建议接收 士 - 6
用激光衍射法测量细丝直径

用激光衍射法测量细丝直径覃立平,赵子珍,莫玉香【摘要】摘要:文中对激光衍射测径法测量细丝直径提出了具体的实现方案,并与普通物理实验中的其他测量细丝直径方法—螺旋测微器法进行结果比对:用激光衍射法测量细丝的直径精度更高,前者为0.000 1mm,后者为0.001mm;在单缝衍射实验中,用衍射法测量细丝直径比测量狭缝的宽度对彰显“衍射法测量微小量”更直观。
【期刊名称】实验科学与技术【年(卷),期】2014(012)001【总页数】3【关键词】关键词:激光;衍射;细丝;直径·实验技术·光的衍射现象是光波动性的一个重要标志。
单缝衍射是指光波在传播过程中遇到障碍物时,当障碍物(小孔、狭缝、毛发、细针等)的线度与光的波长相差不多时,所发生的偏离直线传播的现象。
即光可绕过障碍物,传播到障碍物的几何阴影区域中,并在障碍物后的观察屏上呈现出光强的不均匀分布,通常称为衍射图样[1_2]。
光的衍射在近代科学技术中已获得了极其重要的应用。
但是,大学物理实验中的“单缝衍射实验”多数只针对单缝衍射的光强分布及单缝宽度的测量,较少涉及更具体、直观的应用。
本文就激光衍射测径法测量细丝直径提出了具体的实现方案。
1 实验原理及实验装置1.1 实验原理单缝衍射可分为两类:菲涅耳衍射、夫琅和费衍射。
在夫琅和费衍射中,入射到狭缝的光是平行光,传播到观察屏的也是平行光,即入射光和衍射光都是平行光;所以夫琅和费衍射是平行光的衍射,在实验中可以借助两个透镜来实现。
如图1所示,将波长为λ的单色光源S置于透镜L1的焦平面上,由光源发出经L1出射的平行光垂直照射在宽度为a的狭缝上。
当a很小时,根据惠更斯_菲涅耳原理,狭缝上每一点都可看成是发射子波的新波源。
由于子波叠加的结果,可以在透镜的焦面处的接收屏上看到一组平行于狭缝的明暗相间的衍射条纹。
中央是亮而宽的明条纹,在它两侧是较弱的明暗相间的条纹,中央明条纹宽度是两侧明条纹宽度的两倍[3_4]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a 3. 巴俾特原理及细丝直径测量
一、实验目的:
1. 了解巴俾特(Babinet )原理 1. 利用互补测定法测量细丝直径
二、 实验原理
激光衍射互补测定法的原理是基于巴俾特原理,图示如下。
设一个任意形状的开孔,在平面波照射下,在接收屏上的复振幅用U 1表示;用同一平面波照射其互补屏时,在接收屏上其复振幅用U 2表示。
当互补屏叠加时,开孔消失,在接收屏上的光强分布也应消失,合成复振幅应为零,即
021=+=U U U 即 ⎭
⎬⎫=-=222121U U U U
上式说明,两个互补屏所产生的衍射图形,其形状和
光强完全相同,仅位相相差2π。
这就是巴俾特原理。
对激光衍射条纹来说,原来是亮条纹的位置上互补时
将出现暗条纹。
利用这个互补原理,就可以测定各种细丝和薄带的尺寸。
为获得明亮的远场条纹,一般用透镜在焦面上形成夫朗和费条纹,如图所示。
设透镜的焦距为f ,细丝直径为d ,则计算公式为:
22'sin sin f x x n d n n
+=
=θλ
θ
故n
n x f x n d 2
2
'+⋅=
λ
三、实验仪器
1-激光器 2-凸透镜 3-细丝 4-接收屏 5-直尺
四、实验步骤
1,调节光路共轴 2,开启激光器电源
3,实测第n 条亮条纹距中央亮条纹中心的距离 4,根据关系式,求出所求细丝的直径。
接收屏 U 2
U 1
U
U=U 1+U 2=0
巴俾特原理
互补法测量的计算。