51单片机教程:单片机逻辑与或异或指令详解
51单片机逻辑运算类指令

51单片机逻辑运算类指令
51单片机逻辑运算类指令
对累加器A 的逻辑操作:
CLR A ;将A 中的值清0,单周期单字节指令,与MOV A,#00H 效果相同。
CPL A ;将A 中的值按位取反
RL A ;将A 中的值逻辑左移
RLC A ;将A 中的值加上进位位进行逻辑左移
RR A ;将A 中的值进行逻辑右移
RRC A ;将A 中的值加上进位位进行逻辑右移
SWAP A ;将A 中的值高、低4 位交换。
例:(A)=73H,则执行CPL A,这样进行:
73H 化为二进制为01110011,
逐位取反即为10001100,也就是8CH。
RL A 是将(A)中的值的第7 位送到第0 位,第0 位送1 位,依次类推。
例:A 中的值为68H,执行RL A。
68H 化为二进制为01101000,按上图进行移动。
01101000 化为11010000,即D0H。
RLC A,是将(A)中的值带上进位位(C)进行移位。
例:A 中的值为68H,C 中的值为1,则执行RLC A
1 01101000 后,结果是0 11010001,也就是C 进位位的值变成了0,而(A)则变成了D1H。
RR A 和RRC A 就不多谈了,请大家参考上面两个例子自行练习吧。
SWAP A,是将A 中的值的高、低4 位进行交换。
例:(A)=39H,则执行SWAP A 之后,A 中的值就是93H。
怎么正好是这么。
51单片机指令

51单片机指令单片机,这个在电子世界中扮演着重要角色的小家伙,其功能的实现离不开各种指令的指挥。
51 单片机作为经典的单片机类型,拥有丰富的指令集,这些指令就像是单片机的“语言”,告诉它该如何完成各种任务。
51 单片机的指令可以分为数据传送指令、算术运算指令、逻辑运算指令、控制转移指令和位操作指令等几大类。
数据传送指令是单片机中最常用的指令之一。
比如说“MOV A,50H”,这条指令的作用就是把十六进制数 50H 传送到累加器 A 中。
再比如“MOV R0, A”,它把累加器 A 的内容传送到寄存器 R0 中。
通过这些数据传送指令,我们可以在单片机内部的各个存储单元之间轻松地搬移数据,为后续的运算和操作做好准备。
算术运算指令则负责完成加、减、乘、除等基本的数学运算。
以加法指令“ADD A, R1”为例,它将累加器 A 的值和寄存器 R1 的值相加,结果存放在累加器 A 中。
减法指令“SUBB A, 10H”则是从累加器 A 的值中减去十六进制数 10H,并考虑借位情况。
这些算术运算指令在处理数值计算、数据调整等方面发挥着重要作用。
逻辑运算指令用于对数据进行与、或、异或等逻辑操作。
像“ANL A, R2”就是将累加器 A 的值和寄存器 R2 的值进行按位与运算,结果存放在累加器 A 中。
“ORL A, 80H”则是将累加器 A 的值和十六进制数80H 进行按位或运算。
逻辑运算指令在数据处理、条件判断等场景中常常被用到。
控制转移指令是改变程序执行流程的关键。
比如“JZ label”,如果累加器 A 的值为 0,则程序跳转到指定的 label 处执行;“CJNE A, 50H, label”,如果累加器A 的值不等于十六进制数50H,就跳转到label 处。
通过这些控制转移指令,我们可以根据不同的条件让程序有选择地执行不同的代码段,实现复杂的逻辑控制。
位操作指令是 51 单片机的一大特色。
“SETB bit”可以将指定的位设置为 1,“CLR bit”则将其清零。
51单片机汇编指令及伪指令小结

51单片机汇编指令及伪指令小结51单片机汇编指令及伪指令小结51单片机是一种广泛应用的基于汇编语言的微控制器。
它的汇编指令集非常丰富,包括了基本的数据处理、逻辑运算、分支跳转、数据存储和输入输出等指令。
汇编指令的灵活运用可以实现各种复杂的功能,因此掌握51单片机的汇编指令是开发嵌入式系统的重要基础。
1. 基本数据处理指令51单片机汇编指令集包括了一系列基本的数据处理指令,如加法(add)、减法(sub)、乘法(mul)、除法(div)等。
这些指令用于实现对数据的基本运算操作。
2. 逻辑运算指令逻辑运算指令用于实现各种逻辑运算,如与(and)、或(or)、非(not)、异或(xor)等。
这些指令通常用于处理数据的开关控制、状态判断等功能。
3. 分支跳转指令分支跳转指令用于实现程序的流程控制。
常用的分支跳转指令包括无条件跳转(jmp)、条件跳转(jz、jnz、jc、jnc等)、循环跳转(loop)等。
这些指令可以根据条件和需求设置程序的执行流程,实现各种循环、分支等功能。
4. 数据存储指令数据存储指令用于实现数据的存储和加载操作。
常用的存储指令包括将数据存储到寄存器或内存中(mov)、将数据从寄存器或内存中加载(ld)等。
这些指令通过对数据的存储和加载,实现对数据的读写操作。
5. 输入输出指令输入输出指令用于实现与外设的数据通信。
常用的输入输出指令包括从端口输入(instr)、输出到端口(outstr)等。
这些指令通过与外部设备的数据交互,实现嵌入式系统与外设的连接。
除了以上的基本指令外,51单片机还提供了一些伪指令,用于程序的组织和调试。
这些伪指令包括宏指令、条件编译指令、调试指令等。
1. 宏指令宏指令是一种通过宏展开的方式来扩展汇编代码的指令。
它通过提前定义一些宏,并在代码中使用这些宏来生成更复杂的汇编代码。
宏指令的好处是可以简化代码的书写,使得程序的逻辑更清晰。
2. 条件编译指令条件编译指令用于根据编译时的条件来选择性地编译代码。
51单片机指令总结

51单片机指令总结51单片机是一种经典的单片机型号,由英特尔公司推出。
它是一种基于哈佛结构的8位单片机,具有强大的功能与广泛的应用领域,包括嵌入式系统、自动控制、仪器仪表、通信等等。
51单片机的指令集是其核心功能之一,本文将对51单片机的指令进行详细总结。
1.数据传送指令:用于数据在寄存器之间的传递,包括MOV、XCH、PUSH、POP等指令。
MOV指令用于将数据从一个寄存器传送到另一个寄存器,XCH指令用于交换两个寄存器的值,PUSH和POP指令用于将数据从寄存器压入堆栈或从堆栈弹出。
2.算术指令:用于进行算数运算,包括ADD、SUB、MUL、DIV等指令。
ADD指令用于两个操作数相加,SUB指令用于两个操作数相减,MUL指令用于两个操作数相乘,DIV指令用于两个操作数相除。
3.逻辑指令:用于进行逻辑运算,包括AND、OR、XOR、NOT等指令。
AND指令用于进行按位与运算,OR指令用于进行按位或运算,XOR指令用于进行按位异或运算,NOT指令用于进行按位非运算。
4.跳转指令:用于控制程序的跳转,包括JMP、JZ、JC、DJNZ等指令。
JMP指令用于无条件跳转到指定地址,JZ指令用于如果结果为零则跳转,JC指令用于如果进位标志位为1则跳转,DJNZ指令用于如果结果不为零则跳转。
5.输入输出指令:用于与外部设备进行数据的输入与输出,包括IN、OUT指令。
IN指令用于从指定的端口读取一个字节数据,OUT指令用于向指定的端口写入一个字节数据。
6.中断指令:用于处理中断事件,包括EI、DI、INT等指令。
EI指令用于使能中断,DI指令用于禁止中断,INT指令用于产生软件中断。
7.位操作指令:用于对特定位进行操作,包括SETB、CLR、CPL、RL、RR等指令。
SETB指令用于将指定位设置为1,CLR指令用于将指定位清零,CPL指令用于对指定位进行取反操作,RL指令用于循环左移操作,RR指令用于循环右移操作。
51单片机汇编语言指令教程(校对版)

03
02
01
00
返回前一次
2.2.3立即寻址
指令本身直接含有所需要的8位或16位的操作数。
将此数称为“立即数”(使用#标明)。如:
MOV A,#30H
;将(8位)立即数送累加器A
MOV DPTR,#2000H ;16位立即数送DPTR积存器
【注意】:MOV A,#30H MOV A,30H 两者的区别。 立即数寻址的指令长度为2或3个字节。
5,位操作指令:位传送、位置位、位运算和位控制转移等 操作。 【 特点】:按位操作而不是按字节的操作。位控转移的判 断不是检测某一个字节而是对某一个位进行检测并决定是 否进行程序转移。 这类指令基本不影响PSW的内容。
2.2 寻址方式
在指令的操作数位置上,用于表征、寻找操作数的方式定义 为“寻址方式”。
3,间址方式的指令不能访问SFR中的单元。如下面的程序 是错误的: MOV R1,#80H MOV A,@R1 (因为80H为SFR的物理地址)
MCS-51 片内 、片外 数据存储器示意图
FFH 特殊功能 寄存器 SFR
80H 7FH
通用数据 存储器
00H
片内数据存储器 256B个字节
FFFFH
注意:
片外数据 存储器 64KB
1,访问片内RAM20H存储单元; MOV A,20H
2,访问片外RAM存储单元; MOV R0,#20H MOVX A,@R0
0000H
3,尽管片内与片外的RAM单元 的00H-FFH地址相重叠但由 于指令的不同不会发生地址
混乱。
片外数据存储器 64KB个字节
2.2.5 变址寻址
操作码 OP
操作数或操作数地址 DATA 或 ADDRESS
单片机指令的逻辑运算与位操作技巧

单片机指令的逻辑运算与位操作技巧在单片机编程中,逻辑运算和位操作是非常常见的操作。
通过逻辑运算和位操作,我们可以对数据进行逻辑判断、位取反和位移等操作,极大地提高了程序的效率和灵活性。
本文将介绍一些常用的单片机指令的逻辑运算与位操作技巧。
一、逻辑运算技巧1. 与运算与运算是指将两个二进制数的对应位进行逻辑与运算,结果为1则输出1,否则输出0。
与运算常用于屏蔽和提取二进制数的某些位,可以通过逻辑与运算将不需要的位屏蔽掉。
例如,要将一个8位二进制数的低4位置零保留高4位,可以使用与运算。
2. 或运算或运算是指将两个二进制数的对应位进行逻辑或运算,结果为1则输出1,否则输出0。
或运算常用于将某些位设置为1,可以通过逻辑或运算将需要的位设为1。
例如,要将一个8位二进制数的低4位置1保留高4位,可以使用或运算。
3. 非运算非运算是指将一个二进制数的每一位取反,即1变为0,0变为1。
非运算常用于位的取反操作。
例如,要将一个8位二进制数的低4位取反,可以使用非运算。
4. 异或运算异或运算是指将两个二进制数的对应位进行逻辑异或运算,结果为1则输出1,否则输出0。
异或运算常用于判断两个二进制数的对应位是否相同。
例如,可以通过异或运算判断一个8位二进制数的低4位是否全为0。
二、位操作技巧1. 位取反位取反是指将一个二进制数的某些位取反,可以使用逻辑非运算实现。
位取反常用于将某些位翻转,即1变为0,0变为1。
例如,要将一个8位二进制数的低4位取反,可以使用位取反操作。
2. 位与操作位与操作是指将两个二进制数的对应位进行逻辑与运算,结果为1则输出1,否则输出0。
位与操作常用于屏蔽和提取二进制数的某些位。
例如,要提取一个8位二进制数的低4位,可以使用位与操作。
3. 位或操作位或操作是指将两个二进制数的对应位进行逻辑或运算,结果为1则输出1,否则输出0。
位或操作常用于将某些位设置为1。
例如,要将一个8位二进制数的低4位设置为1,可以使用位或操作。
keil c51中的异或运算

Keil C51中的异或运算1. 引言在Keil C51开发环境中,异或运算是一种常见的位运算,它在嵌入式系统开发中具有重要的应用。
本文将从基础概念、实际应用和个人观点等方面全面评估Keil C51中的异或运算,并撰写一篇有价值的文章,以便读者能全面、深刻地理解这一主题。
2. 基础概念1) 异或运算的定义异或运算,也称为“异或操作”,是一种逻辑运算符,通常用符号“^”表示。
它的基本原理是:两个操作数的对应位相同则结果为0,不同则结果为1。
a ^ b的结果是c,其中a、b、c均为二进制数。
2) 异或运算的特性在计算机系统中,异或运算具有以下特性:- 交换律:a ^ b = b ^ a- 结合律:(a ^ b) ^ c = a ^ (b ^ c)- 对称性:a ^ b ^ b = a3) Keil C51中的异或运算符在Keil C51中,异或运算符“^”用于执行异或运算,可用于位操作和条件判断。
它与其他位运算符(如与“&”和或“|”)具有相似的语法和优先级。
3. 实际应用1) 位操作在嵌入式系统开发中,异或运算常用于对某些位进行修改或切换。
可以使用异或运算清除某个特定位的值,或者将某个特定位的值置为1。
2) 条件判断异或运算还可用于条件判断,例如判定两个变量的值是否相等。
通过a ^ b == 0来实现,若结果为真,则a与b相等;若结果为假,则a与b不等。
4. 个人观点和理解在实际开发中,我发现异或运算在嵌入式系统中有着广泛的应用。
它不仅可以简化位操作的步骤,还可以提高代码的可读性和效率。
我认为在Keil C51开发中,熟练掌握异或运算是非常重要的。
5. 总结和回顾通过对Keil C51中的异或运算进行全面评估,我们了解了其基础概念、实际应用和个人观点等内容。
异或运算作为一种重要的位运算,在嵌入式系统开发中具有广泛的应用,对于提高代码的效率和可读性具有重要意义。
总体而言,异或运算作为一种重要的逻辑运算符,在Keil C51开发中具有非常重要的地位。
常见51单片机指令及详解

常见51单片机指令及详解1. 简介单片机是一种集成电路,具备处理和控制功能。
51单片机是指Intel公司推出的一系列8位单片机,常用于嵌入式系统和物联网设备。
本文将介绍一些常见的51单片机指令,并对其进行详解。
2. 数据传送指令2.1 MOV指令MOV指令用于将数据从一个寄存器或内存位置传送到另一个寄存器或内存位置。
例如:MOV A, #10 ;将立即数10传送给累加器AMOV R0, R1 ;将寄存器R1的值传送给R02.2 XCH指令XCH指令用于交换两个寄存器或内存位置中的数据。
例如:XCH A, B ;交换累加器A和B的值3. 算术运算指令3.1 ADD指令ADD指令用于将两个操作数相加,并将结果保存在累加器中。
例如:ADD A, B ;将累加器A和寄存器B的值相加,结果存储在A中3.2 SUBB指令SUBB指令用于将第二个操作数的补码与累加器的值相减,并将结果存储在累加器中。
例如:SUBB A, B ;将B的补码与累加器A的值相减,结果存储在A中4. 逻辑运算指令4.1 ANL指令ANL指令用于对两个操作数进行按位与运算,并将结果存储在目的操作数中。
例如:ANL A, B ;将累加器A和寄存器B的值按位与,结果存储在A 中4.2 ORL指令ORL指令用于对两个操作数进行按位或运算,并将结果存储在目的操作数中。
例如:ORL A, B ;将累加器A和寄存器B的值按位或,结果存储在A 中5. 跳转指令5.1 JMP指令JMP指令用于无条件跳转至指定的目标地址。
例如:JMP 2000H ;跳转至内存地址2000H处执行指令5.2 JZ指令JZ指令用于在累加器为零时跳转至指定的目标地址。
例如:JZ 3000H ;当累加器为零时,跳转至内存地址3000H处执行指令6. 输入输出指令6.1 IN指令IN指令用于将外部设备的数据输入到累加器或指定的寄存器中。
例如:IN A, P1 ;将P1端口的数据输入到累加器A中6.2 OUT指令OUT指令用于将累加器或指定的寄存器中的数据输出到外部设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
51单片机教程:单片机逻辑与或异或指令详解
ANL A,Rn ;A 与Rn 中的值按位’与’,结果送入A 中
ANL A,direct;A 与direct 中的值按位’与’,结果送入A 中
ANL A,@Ri;A 与间址寻址单元@Ri 中的值按位’与’,结果送入A 中
ANL A,#data;A 与立即数data 按位’与’,结果送入A 中
ANL direct,A;direct 中值与A 中的值按位’与’,结果送入direct 中
ANL direct,#data;direct 中的值与立即数data 按位’与’,结果送入direct 中。
这几条指令的关键是知道什么是逻辑与。
这里的逻辑与是指按位与
例:71H 和56H 相与则将两数写成二进制形式:
(71H)01110001
(56H)00100110
结果00100000 即20H,从上面的式子可以看出,两个参与运算的值只要其
中有一个位上是0,则这位的结果就是0,两个同是1,结果才是1。
理解了逻辑与的运算规则,结果自然就出来了。
看每条指令后面的注释
下面再举一些例子来看。
MOV A,#45H;(A)=45H
MOV R1,#25H;(R1)=25H
MOV 25H,#79H;(25H)=79H
ANL A,@R1;45H 与79H 按位与,结果送入A 中为41H (A)=41H
ANL 25H,#15H;25H 中的值(79H)与15H 相与结果为(25H)=11H)
ANL 25H,A;25H 中的值(11H)与A 中的值(41H)相与,结果为(25H)=11H
在知道了逻辑与指令的功能后,逻辑或和逻辑异或的功能就很简单了。
逻辑或是按位或,即有1 为1,全0 为0。
例:。