11第十九章量子力学基础2作业答案.doc

合集下载

量子力学教程(二版)习题答案

量子力学教程(二版)习题答案

第一章 绪论1.1.由黑体辐射公式导出维恩位移定律:C m b b T m 03109.2 ,⋅⨯==-λ。

证明:由普朗克黑体辐射公式:ννπνρννd e ch d kT h 11833-=, 及λνc =、λλνd cd 2-=得1185-=kThc ehc λλλπρ,令kT hcx λ=,再由0=λρλd d ,得λ.所满足的超越方程为 15-=x xe xe用图解法求得97.4=x ,即得97.4=kThcm λ,将数据代入求得C m 109.2 ,03⋅⨯==-b b T m λ 1.2.在0K 附近,钠的价电子能量约为3eV,求de Broglie 波长.解:010A 7.09m 1009.72=⨯≈==-mEh p h λ #1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。

解:010A 63.12m 1063.1232=⨯≈===-mkTh mE h p h λ 其中kg 1066.1003.427-⨯⨯=m ,123K J 1038.1--⋅⨯=k #1.4利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。

(2)在均匀磁场中作圆周运动的电子的轨道半径。

已知外磁场T 10=B ,玻尔磁子123T J 10923.0--⋅⨯=B μ,求动能的量子化间隔E ∆,并与K 4=T 及K 100=T 的热运动能量相比较。

解:(1)方法1:谐振子的能量222212q p E μωμ+=可以化为()12222222=⎪⎪⎭⎫ ⎝⎛+μωμE q Ep的平面运动,轨道为椭圆,两半轴分别为22,2μωμEb E a ==,相空间面积为,2,1,0,2=====⎰n nh EEab pdq νωππ所以,能量 ,2,1,0,==n nh E ν方法2:一维谐振子的运动方程为02=+''q q ω,其解为()ϕω+=t A q sin速度为 ()ϕωω+='t A q c o s ,动量为()ϕωμωμ+='=t A q p cos ,则相积分为 ()()nh TA dt t A dt t A pdq T T==++=+=⎰⎰⎰2)cos 1(2cos 220220222μωϕωμωϕωμω, ,2,1,0=nνμωnh Tnh A E ===222, ,2,1,0=n(2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。

量子力学课后答案

量子力学课后答案

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫ ⎝⎛-⋅+--⋅=-kThc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学课后习题答案

量子力学课后习题答案

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学作业及参考答案

量子力学作业及参考答案

15-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的m 35.0m μλ=,天狼星的m 29.0m μλ=,试求这些星球的表面温度.解:将这些星球看成绝对黑体,则按维恩位移定律:K m 10897.2,3⋅⨯==-b b T m λ对太阳: K 103.51055.010897.236311⨯=⨯⨯==--mbT λ对北极星:K 103.81035.010897.236322⨯=⨯⨯==--mbT λ对天狼星:K 100.11029.010897.246333⨯=⨯⨯==--mbT λ15-3 从铝中移出一个电子需要4.2 eV 的能量,今有波长为2000οA 的光投射到铝表面.试问:(1)由此发射出来的光电子的最大动能是多少?(2)遏止电势差为多大?(3)铝的截止(红限)波长有多大?解:(1)已知逸出功eV 2.4=A 据光电效应公式221m mv hv =A +则光电子最大动能:A hcA h mv E m -=-==λυ2max k 21eV0.2J 1023.3106.12.41020001031063.6191910834=⨯=⨯⨯-⨯⨯⨯⨯=----m2max k 21)2(mvE eUa==∴遏止电势差 V 0.2106.11023.31919=⨯⨯=--a U(3)红限频率0υ,∴000,λυυcA h ==又∴截止波长 1983401060.12.41031063.6--⨯⨯⨯⨯⨯==Ahc λm 0.296m 1096.27μ=⨯=-15-4 在一定条件下,人眼视网膜能够对5个蓝绿光光子(m 105.0-7⨯=λ)产生光的感觉.此时视网膜上接收到光的能量为多少?如果每秒钟都能吸收5个这样的光子,则到 达眼睛的功率为多大? 解:5个兰绿光子的能量J1099.1100.51031063.65187834---⨯=⨯⨯⨯⨯⨯===λυhcn nh E功率 W 1099.118-⨯==tE15-5 设太阳照射到地球上光的强度为8 J ·s -1·m -2,如果平均波长为5000οA ,则每秒钟落到地面上1m 2的光子数量是多少?若人眼瞳孔直径为3mm ,每秒钟进入人眼的光子数是多少? 解:一个光子能量 λυhch E ==1秒钟落到2m 1地面上的光子数为21198347ms1001.21031063.6105888----⋅⨯=⨯⨯⨯⨯⨯===hcEn λ每秒进入人眼的光子数为11462192s1042.14/10314.31001.24--⨯=⨯⨯⨯⨯==dnN π15-6若一个光子的能量等于一个电子的静能,试求该光子的频率、波长、动量.解:电子的静止质量S J 1063.6,kg 1011.934310⋅⨯=⨯=--h m 当 20c m h =υ时,则Hz10236.11063.6)103(1011.92034283120⨯=⨯⨯⨯⨯==--hc m υο12A 02.0m 104271.2=⨯==-υλc122831020122sm kg 1073.21031011.9sm kg 1073.2-----⋅⋅⨯=⨯⨯⨯=====⋅⋅⨯==c m cc m c E p cpE hp 或λ15-7 光电效应和康普顿效应都包含了电子和光子的相互作用,试问这两个过程有什么不同? 答:光电效应是指金属中的电子吸收了光子的全部能量而逸出金属表面,是电子处于原子中束缚态时所发生的现象.遵守能量守恒定律.而康普顿效应则是光子与自由电子(或准自由电子)的弹性碰撞,同时遵守能量与动量守恒定律.15-8 在康普顿效应的实验中,若散射光波长是入射光波长的1.2倍,则散射光子的能量ε与反冲电子的动能k E 之比k E /ε等于多少? 解:由 2200mc h c m hv +=+υ)(00202υυυυ-=-=-=h h h cm mcE kυεh =∴5)(00=-=-=υυυυυυεh h E k已知2.10=λλ由2.10=∴=υυλυc2.11=υυ则52.0112.110==-=-υυυ15-10 已知X 光光子的能量为0.60 MeV ,在康普顿散射之后波长变化了20%,求反冲电子的能量.解:已知X 射线的初能量,MeV 6.00=ε又有00,ελλεhchc =∴=经散射后 000020.1020.0λλλλ∆λλ=+=+= 此时能量为 002.112.1ελλε===hc hc反冲电子能量 MeV 10.060.0)2.111(0=⨯-=-=εεE15-11 在康普顿散射中,入射光子的波长为0.030 οA ,反冲电子的速度为0.60c ,求散射光子的波长及散射角. 解:反冲电子的能量增量为202022020225.06.01c m cm cm cm mcE =--=-=∆由能量守恒定律,电子增加的能量等于光子损失的能量, 故有 20025.0c m hchc=-λλ散射光子波长ο121083134103400A043.0m 103.410030.0103101.925.01063.610030.01063.625.0=⨯=⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯=-=------λλλc m h h由康普顿散射公式2sin0243.022sin22200ϕϕλλλ∆⨯==-=cm h可得 2675.00243.02030.0043.02sin2=⨯-=ϕ散射角为 7162'=οϕ15-12 实验发现基态氢原子可吸收能量为12.75eV 的光子. (1)试问氢原子吸收光子后将被激发到哪个能级?(2)受激发的氢原子向低能级跃迁时,可发出哪几条谱线?请将这些跃迁画在能级图上. 解:(1)2eV 6.13eV 85.0eV 75.12eV 6.13n -=-=+-解得 4=n 或者 )111(22n Rhc E -=∆75.12)11.(1362=-=n解出 4=n题15-12图 题15-13图(2)可发出谱线赖曼系3条,巴尔末系2条,帕邢系1条,共计6条.15-13 以动能12.5eV 的电子通过碰撞使氢原子激发时,最高能激发到哪一能级?当回到基态时能产生哪些谱线?解:设氢原子全部吸收eV 5.12能量后,最高能激发到第n 个能级,则]11[6.135.12,eV 6.13],111[2221nRhc nRhc E E n -==-=-即得5.3=n ,只能取整数,∴ 最高激发到3=n ,当然也能激发到2=n 的能级.于是ο322ο222ο771221A 6563536,3653121~:23A 121634,432111~:12A1026m 10026.110097.18989,983111~:13===⎥⎦⎤⎢⎣⎡-=→===⎥⎦⎤⎢⎣⎡-=→=⨯=⨯⨯===⎥⎦⎤⎢⎣⎡-=→-R R R n R R R n RR R n λυλυλυ从从从可以发出以上三条谱线.题15-14图15-14 处于基态的氢原子被外来单色光激发后发出巴尔末线系中只有两条谱线,试求这两 条谱线的波长及外来光的频率.解:巴尔末系是由2>n 的高能级跃迁到2=n 的能级发出的谱线.只有二条谱线说明激发后最高能级是4=n 的激发态.ο1983424ο101983423222324A4872106.1)85.04.3(1031063.6A6573m 1065731060.1)51.14.3(10331063.6e 4.326.13e 51.136.13e 85.046.13=⨯⨯-⨯⨯⨯=-==⨯=⨯⨯-⨯⨯⨯⨯=-=∴-=∴-==-=-=-=-=-=-=-----E E hc E E hcE E hc E E hch VE V E V E a mn mn βλλλλυ基态氢原子吸收一个光子υh 被激发到4=n 的能态 ∴ λυhcE E h =-=14Hz 1008.310626.6106.1)85.06.13(15341914⨯=⨯⨯⨯-=-=--hE E υ15-15 当基态氢原子被12.09eV 的光子激发后,其电子的轨道半径将增加多少倍? 解: eV 09.12]11[6.1321=-=-nE E n 26.1309.126.13n =-51.16.1309.12.1366.132=-=n , 3=n12r n r n =,92=n,19r r n =轨道半径增加到9倍.15-16德布罗意波的波函数与经典波的波函数的本质区别是什么?答:德布罗意波是概率波,波函数不表示实在的物理量在空间的波动,其振幅无实在的物理意义,2φ仅表示粒子某时刻在空间的概率密度.15-17 为使电子的德布罗意波长为1οA ,需要多大的加速电压? 解: ooA 1A 25.12==uλ 25.12=U∴ 加速电压 150=U 伏15-18 具有能量15eV 的光子,被氢原子中处于第一玻尔轨道的电子所吸收,形成一个 光电子.问此光电子远离质子时的速度为多大?它的德布罗意波长是多少?解:使处于基态的电子电离所需能量为eV 6.13,因此,该电子远离质子时的动能为eV 4.16.13152112=-=+==E E mvE k φ它的速度为31191011.9106.14.122--⨯⨯⨯⨯==mE v k -15s m 100.7⋅⨯=其德布罗意波长为:o953134A 10.4m 1004.1100.71011.91063.6=⨯=⨯⨯⨯⨯==---mvh λ15-19 光子与电子的波长都是2.0οA ,它们的动量和总能量各为多少? 解:由德布罗意关系:2mc E =,λhmv p ==波长相同它们的动量相等.1-241034s m kg 103.3100.21063.6⋅⋅⨯=⨯⨯==---λhp光子的能量eV 102.6J 109.9103103.3316824⨯=⨯=⨯⨯⨯====--pc hch λυε电子的总能量 2202)()(c m cp E +=,eV 102.63⨯=cp而 eV 100.51MeV 51.0620⨯==c m∴ cp c m >>2∴ MeV 51.0)()(202202==+=c m c m cp E15-20 已知中子的质量kg 1067.127n -⨯=m ,当中子的动能等于温度300K 的热平衡中子气体的平均动能时,其德布罗意波长为多少? 解:kg 1067.127n -⨯=m ,S J 1063.634⋅⨯=-h ,-123K J 1038.1⋅⨯=-k中子的平均动能 mpKT E k 2232==德布罗意波长 oA 456.13===mkTh phλ15-21 一个质量为m 的粒子,约束在长度为L 的一维线段上.试根据测不准关系估算这个粒子所具有的最小能量的值.解:按测不准关系,h p x x ≥∆∆,x x v m p ∆=∆,则h v x m x ≥∆∆,xm h v x ∆≥∆这粒子最小动能应满足222222min 22)(21)(21mLhxm hxm h m v m E x =∆=∆≥∆=15-22 从某激发能级向基态跃迁而产生的谱线波长为4000οA ,测得谱线宽度为10-4οA ,求该激发能级的平均寿命. 解:光子的能量 λυhch E ==由于激发能级有一定的宽度E ∆,造成谱线也有一定宽度λ∆,两者之间的关系为: λλ∆=∆2hcE由测不准关系,h t E ≥∆⋅∆,平均寿命t ∆=τ,则λλτ∆=∆=∆=c Eh t 2s 103.51010103)104000(81048210----⨯=⨯⨯⨯⨯=15-23 一波长为3000οA 的光子,假定其波长的测量精度为百万分之一,求该光子位置的测不准量.解: 光子λhp =,λλλλ∆=∆-=∆22hhp由测不准关系,光子位置的不准确量为cm 30A 103103000o962=⨯=====-λλ∆λλ∆λ∆∆p h x。

量子力学教程课后习题答案(doc)

量子力学教程课后习题答案(doc)

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dvλλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫ ⎝⎛-⋅+--⋅=-kThc kThce kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThc λ ,则上述方程为x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=h v ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学课后习题答案

量子力学课后习题答案

量子力学课后习题详解 第二章波 函数和薛定谔方程2.1证明在定态中,几率流与时间无关。

证:对于定态,可令)]r ()r ()r ()r ([m 2i ]e )r (e )r (e )r (e )r ([m2i )(m2i J e )r ( )t (f )r ()t r (**Et iEt i **Et i Et i **Eti)()(, 可见t J 与无关。

2.2 由下列定态波函数计算几率流密度:ikr ikr e re r1)2( 1)1(21 从所得结果说明1 表示向外传播的球面波,2 表示向内(即向原点) 传播的球面波。

解:分量只有和r J J 21在球坐标中sin r 1e r 1e r r 0r mrk r mr k r r ik r r r ik r r m i r e rr e r e r r e r m i mi J ikr ikr ikr ikr30202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(r J 1与同向。

表示向外传播的球面波。

rmrk r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r1(r e r 1)e r 1(r e r 1[m 2i )(m2i J )2(3020220ik r ik r ik r ik r *2*222可见,r J与2反向。

表示向内(即向原点) 传播的球面波。

补充:设ikx e x )( ,粒子的位置几率分布如何?这个波函数能否归一化?dx dx *∴波函数不能按1)(2dx x 方式归一化。

其相对位置几率分布函数为12表示粒子在空间各处出现的几率相同。

2.3 一粒子在一维势场a x a x x x U ,,,0 00)( 中运动,求粒子的能级和对应的波函数。

解:t x U 与)(无关,是定态问题。

其定态S —方程)()()()(2222x E x x U x dx d m 在各区域的具体形式为Ⅰ: )()()()(2 0111222x E x x U x dx d m x ①Ⅱ: )()(2 0 22222x E x dx d m a x②Ⅲ: )()()()(2 333222x E x x U x dxd m a x ③由于(1)、(3)方程中,由于 )(x U ,要等式成立,必须0)(1 x 0)(2 x即粒子不能运动到势阱以外的地方去。

量子力学习题答案9页word

量子力学习题答案9页word

2.1 如图所示右设粒子的能量为,下面就和两种情况来讨论(一)的情形此时,粒子的波函数所满足的定态薛定谔方程为其中其解分别为(1)粒子从左向右运动右边只有透射波无反射波,所以为零由波函数的连续性得得解得由概率流密度公式入射反射系数透射系数(2)粒子从右向左运动左边只有透射波无反射波,所以为零同理可得两个方程解反射系数透射系数(二)的情形令,不变此时,粒子的波函数所满足的定态薛定谔方程为其解分别为由在右边波函数的有界性得为零(1)粒子从左向右运动得得解得入射反射系数透射系数(2) 粒子从右向左运动左边只有透射波无反射波,所以为零 同理可得方程由于全部透射过去,所以反射系数 透射系数2.2如图所示在有隧穿效应,粒子穿过垒厚为的方势垒的透射系数为总透射系数2.3以势阱底为零势能参考点,如图所示 (1)左 中 0 a x时只有中间有值在中间区域所满足的定态薛定谔方程为其解是由波函数连续性条件得∴∴ 相应的因为正负号不影响其幅度特性可直接写成由波函数归一化条件得所以波函数(2) ∞∞左 中 右0 x显然时只有中间有值在中间区域所满足的定态薛定谔方程为其解是由波函数连续性条件得当,为任意整数,则当,为任意整数,则综合得∴当时,,波函数归一化后当时,,波函数归一化后2.4如图所示左中0 a 显然其中其解为由在右边波函数的有界性得为零∴再由连续性条件,即由得则得得除以得再由公式 ,注意到令,其中,不同n对应不同曲线, 图中只画出了在的取值范围之内的部分65n=0只能取限定的离散的几个值,则E 也取限定的离散的几个值,对每个E ,确定归一化条件得2.5则该一维谐振子的波函数的定态薛定谔方程为令则上式可化成令则只有当有解2.6由 和已知条件可得第三章3.1能量本征值方程为即分离变量法,令则有令则同理令则式中能级简并度为3.2角动量算符在极坐标系下则由能量本征值方程令其解为由周期性得归一化条件则3.4由能量本征值方程令当令 此时 满足的方程为时时只考虑时令其解分别为由波函数有界性得由波函数连续性得再由公式,注意到令,其中 , 不同n 对应不同曲线,图中只画出了在的取值范围之内的部分65只能取限定的离散的几个值,则E也取限定的离散的几个值,对每个E,确定归一化条件得 1 可求得3.5同理方差算符则由测不准关系代入,验证该式是成立的第四章4.1在动量表象中,则代入得令得则归一化后的4.5本征方程的矩阵形式上式存在非零解的条件是即解得当再由得当,同样第六章6.3解:在z S ˆ 表象,nS ˆ的矩阵元为 其相应的久期方程为 即所以nS ˆ的本征值为2±。

量子力学课后习题答案

量子力学课后习题答案

量子力学课后习题答案量子力学是物理学中一门重要的学科,它描述了微观粒子的行为和性质。

在学习量子力学的过程中,习题是不可或缺的一部分,通过解答习题可以巩固对该学科的理解和应用。

本文将为大家提供一些量子力学课后习题的答案,希望能对大家的学习有所帮助。

1. 请解释什么是量子力学中的“叠加态”?在量子力学中,叠加态是指一个量子系统处于多个可能状态的线性组合。

这意味着在特定的测量之前,量子系统可以同时处于多个不同的状态。

例如,一个电子可以处于自旋向上和自旋向下的叠加态。

只有在进行测量时,才会决定电子的自旋是向上还是向下。

2. 什么是量子力学中的“测量”?在量子力学中,测量是指对量子系统进行观察并获取其性质或状态的过程。

量子力学的基本原理之一是测量会导致量子系统的状态塌缩到一个确定的状态。

例如,在测量一个电子的自旋时,我们只能观察到它的自旋向上或自旋向下,而不是同时观察到两个状态。

3. 请解释什么是量子力学中的“不确定性原理”?不确定性原理是量子力学的一个基本原理,由海森堡提出。

它指出,在某些物理量(如位置和动量、能量和时间等)之间存在一种固有的不确定性关系,无法同时准确测量这些物理量的值。

换句话说,我们无法同时精确地知道一个粒子的位置和动量,或者一个系统的能量和时间。

4. 请解释什么是量子力学中的“波粒二象性”?波粒二象性是指微观粒子既可以表现出粒子性质,又可以表现出波动性质。

根据波动性,微观粒子可以像波一样传播,并且存在干涉和衍射现象。

根据粒子性,微观粒子具有离散的能量和动量,并且在测量时表现出局部性。

5. 请解释什么是量子力学中的“量子纠缠”?量子纠缠是指两个或多个量子系统之间存在一种特殊的关联关系,使得它们的状态无法独立描述。

当两个量子系统纠缠在一起时,它们的状态会相互依赖,无论它们之间的距离有多远。

这种纠缠关系在量子通信和量子计算中具有重要的应用。

以上是对一些量子力学课后习题的简要答案。

通过解答这些习题,我们可以更好地理解和应用量子力学的概念和原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.(自 提高16)有一种原子,在基态时
=1和〃 =2的主壳层都填满电子, 3s 次壳层也 作业+—(第十九章 量子力学简介(II))
(薛定谱方程、一维无限深势阱、隧道效应、能量和角动量量子化、电子自旋、多电子原子)
电子组态
[C ]1.(基础训练10)氢原子中处于2p 状态的电子,描述其量子态的四个量子数(〃,I, 可能
取的值为 (A ) (2, 2, 1, ")• (B )
(2, 0, 0,
O (C ) (2, 1,
-1,

(D
)
(2, 0, 1, 1
【提示】P 电子:Z=b 对应的叫可取一1、0、1,风可取上或一
2 2
2.(基础训练17)在主量子数// =2,自旋磁量子数=上的量子态中,能够填充的最大电 2
子数是 4 .
【提示】主量子数〃 =2的L 克层上最多可容纳2^=8个电子(电子组态为2$22p6),如
仅考虑自旋磁量子数=-的量子态,则能够填充的电子数为上述值的一半。

2
填满电子,而3p 壳层只填充一半.这种原子的原子序数是_15 ,它在基态的电子组态为 “2 2s? 2I )6 3S 2 31)3 .
4.(自测提高17)在下列各组量子数的空格上,填上适当的数值,以便使它们可以描述原子 中电子的状态:
1 I
(1) n =2, / = 1 ,如=一1, in.=—.
2 n 1
(2) (2) n =2, / =0, nil = 0 , in,=—.
------ 2 If 1
(3) 〃 =2, / =1» mi — m s =—或-—.
2 2
【提示】/的取值:0,1,2,……(〃-1); 叫的取值:0,±1,±2,……±/; 的取值:±1
激光
[C ]5,(基础训练11)在激光器中利用光学谐振腔
(A) 可提高激光束的方向性,而不能提高激光束的单色性.
(B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性.
(D)既不能提高激光束的方向性也不能提高其单色性.
解:〃 =1时,粒子在一维无限深方势阱中运动(势阱宽度为。

)的波函数为
,、 [2 . 7CV
= J — sin — (。

vx v 。

), V a a
则:在x\ - a/4 一工2=3〃/4区间找到粒子的概率为:3d 2 . TIX —sin — a a 3。

2 7T.X dx= l 4-sin 2
(—)Jx = 0.8187 a
a
6.(基础训练20)在下列给出的各种条件中,哪些是产生激光的条件,将其标号列下:(2)、
(3)、(4)、(5).
(1)0发辐射.(2)受激辐射.(3)粒子数反转.(4)三能极系统.(5)谐振腔.
电子自旋
[D ]7, (0测提高7)直接证实了电子自旋存在的最早的实验之一是
(A )康普顿实验. (B )卢瑟福实验. (C )戴维孙一革末实验.
(D )斯特恩一革拉赫实验.
隧道效应
[C ]8.(自测提高9)粒子在外力场中沿X 轴运动,如果它在力场中的势能分布如附图 所示,对于能量为E v 从左向右运动的粒子,若用p\、p?、pa 分别表示在x < 0, Ovxvs
三个区域发现粒子的概率,则有 (A ) p\ 0, p2 = p 3 = 0. 木"⑴ (B )
Qi 尹 0, #2 尹 °,么=°・
°
(C ) Q]乏 0,「2 乏 0,
小 乂 0. ° (D ) p\ = 0, fb 0, P% 手 0. _Q _
a 拦
【提示】隧道效应,三个区域找到粒子的概率都不为零。

三.计算题
【一维无限深势阱】9.(自测提高22)已知粒子处于宽度为。

的一维无限深方势阱中运动的 波函数为
/、 2 . mix , - c i//n (x ) = -sin —— , 〃:=1,2, 3,…
V a a
试计算n = 1时,在Xi =a/4 一松=3〃/4区间找到粒子的概率。

【氢原子径向概率分布】10.(自测提高24) 2知氢原子的核外电子在Is 态时其定态波函数 为
—(X) = I——r e,,a
\Tt 6Z ?
式中。

=上、.试求沿径向找到电子的概率为最大时的位置坐标值.

解:质原子Is态的定态波函数为球对称的,在径向r^r + dr |x间找到电子的概率为:
沿径向对W求极大值, 令:得:
可=帆00「4行由尸
2r
即:w oc r2e a
dw d , 2 ,c 2尸2 --八
——=——(厂e ") = (2厂----------)e " =0
dr dr a
r=a == 0.529 xlO-,o(m)
Tim。

相关文档
最新文档