【精品】2020版中考数学真题分类试卷:不等式(含答案)

合集下载

专题07不等式(组)(共50题)-2020年中考数学真题分项汇编【全国通用】

专题07不等式(组)(共50题)-2020年中考数学真题分项汇编【全国通用】

2020年中考数学真题分项汇编(全国通用)专题7不等式(组)(共50题)一.选择题(共14小题)1.(2020•贵阳)已知a <b ,下列式子不一定成立的是( )A .a ﹣1<b ﹣1B .﹣2a >﹣2bC .12a +1<12b +1 D .ma >mb 2.(2020•衢州)不等式组{3(x −2)≤x −43x >2x −1的解集在数轴上表示正确的是() A .B .C .D .3.(2020•嘉兴)不等式3(1﹣x )>2﹣4x 的解在数轴上表示正确的是( )A .B .C .D .4.(2020•苏州)不等式2x ﹣1≤3的解集在数轴上表示正确的是( )A .B .C .D .5.(2020•连云港)不等式组{2x −1≤3,x +1>2的解集在数轴上表示为( )A .B .C .D .6.(2020•株洲)下列哪个数是不等式2(x ﹣1)+3<0的一个解?( )A .﹣3B .−12C .13D .2 7.(2020•衡阳)不等式组{x −1≤0,①x+23−x 2<1②的解集在数轴上表示正确的是( ) A .B .C .D . 8.(2020•株洲)在平面直角坐标系中,点A (a ,2)在第二象限内,则a 的取值可以是( )A .1B .−32C .43D .4或﹣49.(2020•广元)关于x 的不等式{x −m >07−2x >1的整数解只有4个,则m 的取值范围是( ) A .﹣2<m ≤﹣1 B .﹣2≤m ≤﹣1 C .﹣2≤m <﹣1 D .﹣3<m ≤﹣210.(2020•天水)若关于x 的不等式3x +a ≤2只有2个正整数解,则a 的取值范围为( )A .﹣7<a <﹣4B .﹣7≤a ≤﹣4C .﹣7≤a <﹣4D .﹣7<a ≤﹣411.(2020•广东)不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( ) A .无解 B .x ≤1 C .x ≥﹣1 D .﹣1≤x ≤112.(2020•重庆)小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为( )A .5B .4C .3D .213.(2020•杭州)若a >b ,则( )A .a ﹣1≥bB .b +1≥aC .a +1>b ﹣1D .a ﹣1>b +114.(2020•新疆)不等式组{2(x −2)≤2−x ,x+22>x+33的解集是( )A .0<x ≤2B .0<x ≤6C .x >0D .x ≤2二.填空题(共13小题)15.(2020•鄂州)关于x 的不等式组{2x >4x −5≤0的解集是 . 16.(2020•攀枝花)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有 人进公园,买40张门票反而合算. 17.(2020•岳阳)不等式组{x +3≥0,x −1<0的解集是 . 18.(2020•黑龙江)若关于x 的一元一次不等式组{x −1>02x −a <0有2个整数解,则a 的取值范围是 . 19.(2020•凉山州)若不等式组{2x <3(x −3)+13x+24>x +a 恰有四个整数解,则a 的取值范围是 .20.(2020•河南)已知关于x 的不等式组{x >a ,x >b ,其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为 .21.(2020•滨州)若关于x 的不等式组{12x −a >0,4−2x ≥0无解,则a 的取值范围为 . 22.(2020•黑龙江)若关于x 的一元一次不等式组{x −1>02x −a >0的解是x >1,则a 的取值范围是 . 23.(2020•哈尔滨)不等式组{x 3≤−1,3x +5<2的解集是 . 24.(2020•黔东南州)不等式组{5x −1>3(x +1)12x −1≤4−13x 的解集为 . 25.(2020•遂宁)若关于x 的不等式组{x−24<x−132x −m ≤2−x 有且只有三个整数解,则m 的取值范围是 .26.(2020•温州)不等式组{x −3<0,x+42≥1的解集为 . 27.(2020•黔西南州)不等式组{2x −6<3x ,x+25−x−14≥0的解集为 . 三.解答题(共23小题)28.(2020•福建)解不等式组:{2x ≤6−x ,①3x +1>2(x −1).②29.(2020•武威)解不等式组:{3x −5<x +12(2x −1)≥3x −4,并把它的解集在数轴上表示出来.30.(2020•河北)已知两个有理数:﹣9和5.(1)计算:(−9)+52;(2)若再添一个负整数m ,且﹣9,5与m 这三个数的平均数仍小于m ,求m 的值.31.(2020•咸宁)(1)计算:|1−√2|﹣2sin45°+(﹣2020)0;(2)解不等式组:{−(x −1)>3,2x +9>3.32.(2020•陕西)解不等式组:{3x >6,2(5−x)>4.33.(2020•上海)解不等式组:{10x >7x +6,x −1<x+73. 34.(2020•北京)解不等式组:{5x −3>2x ,2x−13<x 2.35.(2020•扬州)解不等式组{x +5≤0,3x−12≥2x +1,并写出它的最大负整数解. 36.(2020•江西)(1)计算:(1−√3)0﹣|﹣2|+(12)﹣2; (2)解不等式组:{3x −2≥1,5−x >2.37.(2020•淮安)解不等式2x ﹣1>3x−12. 解:去分母,得2(2x ﹣1)>3x ﹣1.…(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 (填“A ”或“B ”).A .不等式两边都乘(或除以)同一个正数,不等号的方向不变;B .不等式两边都乘(或除以)同一个负数,不等号的方向改变.38.(2020•泰州)(1)计算:(﹣π)0+(12)﹣1−√3sin60°; (2)解不等式组:{3x −1≥x +1,x +4<4x −2.39.(2020•枣庄)解不等式组{4(x +1)≤7x +13,x −4<x−83,并求它的所有整数解的和. 40.(2020•安徽)解不等式:2x−12>1.41.(2020•甘孜州)(1)计算:√12−4sin60°+(2020﹣π)0.(2)解不等式组:{x+2>−1,2x−13≤3.42.(2020•黑龙江)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n 元,售价每千克18元.(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克,求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的利润率不低于20%,求a的最大值.43.(2020•哈尔滨)昌云中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少元;(2)昌云中学决定购买以上两种地球仪共30个,总费用不超过960元,那么昌云中学最多可以购买多少个大地球仪?44.(2020•苏州)如图,“开心”农场准备用50m的护栏围成一块靠墙的矩形花园,设矩形花园的长为a(m),宽为b(m).(1)当a=20时,求b的值;(2)受场地条件的限制,a的取值范围为18≤a≤26,求b的取值范围.45.(2020•辽阳)某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.(1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?46.(2020•长沙)今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响.“一方有难,八方支援”,某市筹集了大量的生活物资,用A,B两种型号的货车,分两批运往受灾严重的地区.具体运输情况如下:第一批第二批A型货车的辆数(单位:辆)12B型货车的辆数(单位:辆)35累计运输物资的吨数(单位:吨)2850备注:第一批、第二批每辆货车均满载(1)求A、B两种型号货车每辆满载分别能运多少吨生活物资?(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A种型号货车.试问至少还需联系多少辆B 种型号货车才能一次性将这批生活物资运往目的地?47.(2020•黑龙江)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n 元,售价每千克18元.(1)该超市购进甲种蔬菜15千克和乙种蔬菜20千克需要430元;购进甲种蔬菜10千克和乙种蔬菜8千克需要212元,求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克(x为正整数),求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的利润率不低于20%,求a的最大值.48.(2020•菏泽)今年史上最长的寒假结束后,学生复学,某学校为了增强学生体质,鼓励学生在不聚集的情况下加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买2根跳绳和5个毽子共需32元;购买4根跳绳和3个毽子共需36元.(1)求购买一根跳绳和一个毽子分别需要多少元?(2)某班需要购买跳绳和毽子的总数量是54,且购买的总费用不能超过260元;若要求购买跳绳的数量多于20根,通过计算说明共有哪几种购买跳绳的方案.49.(2020•济宁)为加快复工复产,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?50.(2020•自贡)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式|x﹣2|的几何意义是数轴上x所对应的点与2所对应的点之间的距离:因为|x+1|=|x﹣(﹣1)|,所以|x+1|的几何意义就是数轴上x所对应的点与﹣1所对应的点之间的距离.(1)发现问题:代数式|x+1|+|x﹣2|的最小值是多少?(2)探究问题:如图,点A、B、P分别表示数﹣1、2、x,AB=3.∵|x+1|+|x﹣2|的几何意义是线段P A与PB的长度之和,∴当点P在线段AB上时,P A+PB=3,当点P在点A的左侧或点B的右侧时,P A+PB>3.∴|x+1|+|x﹣2|的最小值是3.(3)解决问题:①|x﹣4|+|x+2|的最小值是;②利用上述思想方法解不等式:|x+3|+|x﹣1|>4;③当a为何值时,代数式|x+a|+|x﹣3|的最小值是2.。

2020年中考数学方程与不等式真题汇编(带答案)

2020年中考数学方程与不等式真题汇编(带答案)

2020年中考数学方程与不等式真题汇编(名师总结历年真题,值得下载练习)一.选择题1.不等式组的解集在数轴上表示正确的是()A.B.C.D.2.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A.1,11 B.7,53 C.7,61 D.6,503.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为()A.10 B.9 C.8 D.74.分式方程的解为()A.x=0 B.x=1 C.x=﹣1 D.x=25.解方程+时,去分母后得到的方程是()A.3(x﹣5)+2(x﹣1)=1 B.3(x﹣5)+2x﹣1=1C.3(x﹣5)+2(x﹣1)=6 D.3(x﹣5)+2x﹣1=66.若方程x2+(2a﹣1)x+a2=0与方程2x2﹣(4a+1)x+2a﹣1=0中至多有一个方程有实数根,则a的取值范围是()A.a>B.a<﹣C.﹣≤a≤D.a<﹣或a>7.如图,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲按顺时针方向环形,乙按逆时针方向环行,若乙的速度是甲的3倍,那么它们第一次相遇在AD边上,请问它们第2015次相遇在()边上.A.AD B.DC C.BC D.AB8.关于x的分式方程﹣=0的解为()A.﹣3 B.﹣2 C.2 D.39.不等式x﹣1≤2的非负整数解有()A.1个B.2个C.3个D.4个10.已知是方程组的解,则a+b的值是()A.﹣1 B.1 C.﹣5 D.511.已知a,b是方程x2+x﹣3=0的两个实数根,则a2﹣b+2019的值是()A.2023 B.2021 C.2020 D.201912.小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x元,根据题意可列出的方程为()A.=B.=C.=D.=二.填空题13.a是方程2x2=x+4的一个根,则代数式4a2﹣2a的值是.14.若a+2b=8,3a+4b=18,则a+b的值为.15.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A﹣B﹣C横穿双向行驶车道,其中AB=BC=6米,在绿灯亮时,小明共用11秒通过AC,其中通过BC的速度是通过AB速度的1.2倍,求小明通过AB时的速度.设小明通过AB时的速度是x米/秒,根据题意列方程得:.16.下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为.17.不等式组的解集是.18.一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了道题.19.我们规定一种新运算,对于实数a,b,c,d,有=ad﹣bc.若正整数x满足≥﹣18,则满足条件的x的值为.20.关于x的分式方程+=1的解为正数,则a的取值范围是.21.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.22.小卖部从批发市场购进一批李子,在销售了部分李子之后,余下的每千克降价3元,直至全部售完.销售金额(元)与李子销售量(千克)之间的关系如图所示.若销售这批李子一共赢利220元,那么这批李子的进价是元.三.解答题23.(1)计算:4sin60°+(π﹣2)0﹣(﹣)﹣2﹣.(2)x 为何值时,两个代数式x 2+1,4x +1的值相等?24.已知a 、b (a >b )是方程x 2﹣5x +4=0的两个不相等的实数根,求﹣的值.25.已知关于x 的一元二次方程x 2﹣2(m +1)x +m 2+m =0有实数根, (1)求m 的取值范围.(2)若此方程的两实数根为x 1,x 2满足且+=4,求m 的值.26.解不等式组请结合题意填空,完成本题的解答 (Ⅰ)解不等式①,得 ; (Ⅱ)解不等式②,得 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 .27.某小区为“创建文明城市,构建和谐社会”.更好的提高业主垃圾分类的意识,业主委员会决定在小区内安装垃圾分类的温馨提示牌和垃圾箱.若购买3个温馨提示牌和4个垃圾箱共需580元,且每个温馨提示牌比垃圾箱便宜40元. (1)问:购买1个温馨提示牌和1个垃圾箱各需多少元?(2)如果需要购买温馨提示牌和垃圾箱共10个,费用不超过800元,问:最多购买垃圾箱多少个?28.列方程(组)解应用题:德上高速公路巨野至单县段正在加速建设,预计2019年8月竣工.届时,如果汽车行驶高速公路上的平均速度比在普通公路上的平均速度提高80%,那么行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟,求该汽车在高速公路上的平均速度.29.某商场的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:(1)问A,B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?30.某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?参考答案一.选择题1.解:,解①得:x>﹣6,解②得:x≤13,故不等式组的解集为:﹣6<x≤13,在数轴上表示为:.故选:B.2.解:设有x人,物价为y,可得:,解得:,故选:B.3.解:设原计划n天完成,开工x天后3人外出培训,则15an=2160,得到an=144.所以15ax+12(a+2)(n﹣x)<2160.整理,得4x+4an+8n﹣8x<720.∵an=144.∴将其代入化简,得ax+8n﹣8x<144,即ax+8n﹣8x<an,整理,得8(n﹣x)<a(n﹣x).∵n>x,∴n﹣x>0,∴a>8.∴a至少为9.故选:B.4.解:去分母得:3x﹣6=﹣x﹣2,解得:x=1,经检验x=1是分式方程的解,故选:B.5.解:等式两边同时乘以6可得:3(x﹣5)+2(x﹣1)=6,故选:C.6.解:在方程2x2﹣(4a+1)+2a﹣1=0有实数根中,△=[﹣(4a+1)]2﹣4×2×(2a﹣1)=(4a﹣1)2+8,∵(4a﹣1)2≥0,∴(4a﹣1)2+8>0,∴△>0,∴无论a为何值,方程2x2﹣(4a+1)x+2a﹣1=0总有两个不相等的实数根.又∵方程x2+(2a﹣1)x+a2=0与方程2x2﹣(4a+1)x+2a﹣1=0中至多有一个方程有实数根,∴方程x2+(2a﹣1)x+a2=0没有实数根,∴△=(2a﹣1)2﹣4a2<0,∴a>.故选:A.7.解:设正方形的边长为a,因为甲的速度是乙的速度的3倍,时间相同,甲乙所行的路程比为3:1,把正方形的每一条边平均分成2份,由题意知:①第一次相遇甲乙行的路程和为2a,甲行的路程为2a×=,乙行的路程为2a×=a,在CD边的中点相遇;②第二次相遇甲乙行的路程和为4a,甲行的路程为4a×=3a,乙行的路程为4a×=a,在AD边的中点相遇;③第三次相遇甲乙行的路程和为4a,甲行的路程为4a×=3a,乙行的路程为4a×=a,在AB边的中点相遇;④第四次相遇甲乙行的路程和为4a,甲行的路程为4a×=3a,乙行的路程为4a×=a,在BC边的中点相遇;⑤第五次相遇甲乙行的路程和为4a,甲行的路程为4a×=3a,乙行的路程为4a×=a,在CD边的中点相遇;…四次一个循环,因为2015=503×4+3,所以它们第2015次相遇在边AB上.故选:D.8.解:去分母得:2x﹣6﹣5x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解,故选:B.9.解:x﹣1≤2,解得:x≤3,则不等式x﹣1≤2的非负整数解有:0,1,2,3共4个.故选:D.10.解:将代入,可得:,两式相加:a+b=﹣1,故选:A.11.解:a,b是方程x2+x﹣3=0的两个实数根,∴b=3﹣b2,a+b=﹣1,ab﹣3,∴a2﹣b+2019=a2﹣3+b2+2019=(a+b)2﹣2ab+2016=1+6+2016=2023;故选:A.12.解:设软面笔记本每本售价为x元,根据题意可列出的方程为:=.故选:A.二.填空题(共10小题)13.解:∵a是方程2x2=x+4的一个根,∴2a2﹣a=4,∴4a2﹣2a=2(2a2﹣a)=2×4=8.故答案为:8.14.解:∵a+2b=8,3a+4b=18,则a=8﹣2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.故答案为:5.15.解:设小明通过AB时的速度是x米/秒,可得:,故答案为:,16.【解答】解:设“△”的质量为x,“□”的质量为y,由题意得:,解得:,∴第三个天平右盘中砝码的质量=2x+y=2×4+2=10;故答案为:10.17.解:解不等式﹣x<0得x>0,解不等式3x+5>0得x>﹣,所以不等式组的解集为x>0,故答案为:x>0.18.解:设他做对了x道题,则他做错了(25﹣x)道题,根据题意得:4x﹣(25﹣x)=70,解得:x=19.故答案为:19.19.解:由题意可得:﹣3(x+2)﹣2(2x﹣1)≥﹣18,解得:x≤2,满足条件的x的值为:1,2.故答案为:1,2.20.解:去分母得:1﹣a+2=x﹣2,解得:x=5﹣a,5﹣a>0,解得:a<5,当x=5﹣a=2时,a=3不合题意,故a<5且a≠3.故答案为:a<5且a≠3.21.解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.22.解:李子的原价为600÷40=15(元/千克),降价后销售的数量为(720﹣600)÷(15﹣3)=10(千克).设这批李子的进价是x元/千克,依题意,得:720﹣(40+10)x=220,解得:x=10.故答案为:10.三.解答题(共8小题)23.解:(1)原式=4×+1﹣4﹣2=﹣3;(2)x2+1=4x+1,x2﹣4x=0,x(x﹣4)=0,x 1=0,x2=4.24.解:﹣=,=,=a+b.∵a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,∴a+b=5,∴原式=a+b=5.25.解:(1)∵关于x的一元二次方程x2﹣2(m+1)x+m2+m=0有实数根,∴△=[﹣2(m+1)]﹣4×1×(m2+m)≥0,解得:m≥﹣1.(2)∵x1,x2是方程x2﹣2(m+1)x+m2+m=0的解,∴x1+x2=2(m+1),x1x2=m2+m,∴+====4,解得:m=,经检验,m=是原方程的解,且符合题意,∴当+=4时,m=.26.解:(Ⅰ)解不等式①,得x>﹣3;(Ⅱ)解不等式②,得x≤;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣3<x≤,故答案为:x>﹣3,x≤,﹣3<x≤.27.解:(1)设购买1个温馨提示牌需要x元,购买1个垃圾箱需要y元,依题意,得,解得,,答:购买1个温馨提示牌需要60元,购买1个垃圾箱需要100元.(2)设购买垃圾箱m个,则购买温馨提示牌(10﹣m)个,依题意得,60(10﹣m )+100m ≤800,解得m ≤5.答:最多购买垃圾箱5个.28.解:设汽车行驶在普通公路上的平均速度是x 千米/分钟,则汽车行驶在高速公路上的平均速度是1.8x 千米/分钟,由题意,得+36=.解得x =1.经检验,x =1是所列方程的根,且符合题意.所以1.8x =1.8(千米/分钟).答:汽车行驶在高速公路上的平均速度是1.8千米/分钟.29.解:(1)设A ,B 两种品牌运动服的进货单价各是x 元和y 元,根据题意可得:,解得:, 答:A ,B 两种品牌运动服的进货单价各是240元和180元;(2)设购进A 品牌运动服m 件,购进B 品牌运动服(m +5)件,则240m +180(m +5)≤21300,解得:m ≤40,经检验,不等式的解符合题意,∴m +5≤×40+5=65,答:最多能购进65件B 品牌运动服.30.解:设扩充后广场的长为3xm ,宽为2xm ,依题意得:3x •2x •100+30(3x •2x ﹣50×40)=642000解得x 1=30,x 2=﹣30(舍去).所以3x =90,2x =60,答:扩充后广场的长为90m ,宽为60m .。

中考数学 真题精选 专题试卷 不等式(含答案解析) (含答案解析)

中考数学 真题精选 专题试卷  不等式(含答案解析) (含答案解析)

不等式一.选择题(共15小题)1.(•怀化)下列不等式变形正确的是()2.(•乐山)下列说法不一定成立的是()3.(•黄石)当1≤x≤2时,ax+2>0,则a的取值范围是()4.(•南充)若m>n,下列不等式不一定成立的是()>5.(•扬州)已知x=2是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是()6.(•绥化)关于x的不等式组的解集为x>1,则a的取值范围是()解:因为不等式组7.(•桂林)下列数值中不是不等式5x≥2x+9的解的是()8.(•嘉兴)一元一次不等式2(x+1)≥4的解在数轴上表示为()B9.(•丽水)如图,数轴上所表示关于x的不等式组的解集是()10.(•长沙)在数轴上表示不等式组的解集,正确的是()B,再分别表示在数轴上即可得11.(•临沂)不等式组的解集,在数轴上表示正确的是()....,由①得,12.(•湖北)在数轴上表示不等式2(1﹣x)<4的解集,正确的是()B13.(•娄底)一元一次不等式组的解集在数轴上表示出来,正确的是()....14.(•南宁)不等式2x﹣3<1的解集在数轴上表示为()..C..15.(•河南)不等式的解集在数轴上表示为()..解:∴不等式的解集在数轴上表示为:二.填空题(共12小题)16.(•衢州)写出一个解集为x>1的一元一次不等式:x﹣1>0.17.(•茂名)不等式x﹣4<0的解集是x<4.18.(•吉林)不等式3+2x>5的解集是x>1.19.(•南充)不等式>1的解集是x>3.20.(•南昌)不等式组的解集是﹣3<x≤2.21.(•湖州)解不等式组.22.(•黑龙江)不等式组的解集是2≤x<4.,解①得23.(•乌鲁木齐)不等式组的解集为﹣2<x<1.解:,24.(•营口)不等式组的所有正整数解的和为6.﹣≤1不等式组不等式组25.(•安顺)不等式组的最小整数解是x=﹣3.>﹣,<,26.(•广安)不等式组的所有整数解的积为0.x,解不等式②得:27.(•天水)不等式组的所有整数解是0.,解不等式①得,,解不等式②得,x三.解答题(共3小题)28.(•南京)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.29.(•安徽)解不等式:>1﹣.30.(•自贡)解不等式:﹣x>1,并把解集在数轴上表示出来.。

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解

2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解(试题部分)一、单选题1.(2024·河北·中考真题)下列数中,能使不等式516x −<成立的x 的值为( ) A .1B .2C .3D .42.(2024·湖北·中考真题)不等式12x +≥的解集在数轴上表示为( ) A . B . C .D .3.(2024·广东广州·中考真题)若a b <,则( ) A .33a b +>+B .22a b −>−C .a b −<−D .22a b <4.(2024·四川乐山·中考真题)不等式20x −<的解集是( ) A .2x <B .2x >C .<2x −D .2x >−5.(2024·内蒙古赤峰·中考真题)解不等式组()322211x x x x −<⎧⎪⎨+≥−⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A .B .C .D .6.(2024·四川南充·中考真题)若关于x 的不等式组2151x x m −<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤7.(2024·内蒙古包头·中考真题)若21m −,m ,4m −这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是( ) A .2m <B .1m <C .12m <<D .513m <<8.(2024·上海·中考真题)如果x y >,那么下列正确的是( ) A .55x y +<+B .55x y −<−C .55x y >D .55x y −>−9.(2024·四川内江·中考真题)不等式34x x ≥−的解集是( ) A .2x ≥−B .2x ≤−C .2x >−D .2x <−10.(2024·山东烟台·中考真题)实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c −<C .a c >D .22a b −<−11.(2024·江苏苏州·中考真题)若1a b >−,则下列结论一定正确的是( )A .1a b +<B .1a b −<C .a b >D .1a b +>12.(2024·四川眉山·中考真题)不等式组212321x x x x +>+⎧⎨+≥−⎩的解集是( )A .1x >B .4x ≤C .1x >或4x ≤D .14x <≤13.(2024·贵州·中考真题)不等式1x <的解集在数轴上的表示,正确的是( )A .B .C .D .14.(2024·河南·中考真题)下列不等式中,与1x −>组成的不等式组无解的是( )A .2x >B .0x <C .<2x −D .3x >−15.(2024·陕西·中考真题)不等式()216x −≥的解集是( )A .2x ≤B .2x ≥C .4x ≤D .4x ≥16.(2024·浙江·中考真题)不等式组()211326x x −≥⎧⎨−>−⎩的解集在数轴上表示为( )A .B .C .D .17.(2024·山东·中考真题)根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ; ②1班学生的最低身高小于150cm ;③2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③18.(2024·安徽·中考真题)已知实数a ,b 满足10a b −+=,011a b <++<,则下列判断正确的是( )A .102a −<< B .112b << C .2241a b −<+< D .1420a b −<+<二、填空题19.(2024·山东·中考真题)写出满足不等式组21215x x +≥⎧⎨−<⎩的一个整数解 .20.(2024·广西·中考真题)不等式7551x x +<+的解集为 .21.(2024·黑龙江大兴安岭地·中考真题)关于x 的不等式组420102x x a −≥⎧⎪⎨−>⎪⎩恰有3个整数解,则a 的取值范围是 .22.(2024·吉林·中考真题)不等式组2030x x −>⎧⎨−<⎩的解集为 .23.(2024·上海·中考真题)一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有 个绿球.24.(2024·福建·21x −<的解集是 .25.(2024·广东·中考真题)关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是 .26.(2024·四川内江·中考真题)一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m 为“极数”,且33m是完全平方数,则m = ; 27.(2024·山东烟台·中考真题)关于x 的不等式12xm x −≤−有正数解,m 的值可以是 (写出一个即可). 三、解答题28.(2024·江苏盐城·中考真题)求不等式113xx +≥−的正整数解. 29.(2024·四川凉山·中考真题)求不等式3479x −<−≤的整数解.30.(2024·江苏连云港·中考真题)解不等式112x x −<+,并把解集在数轴上表示出来. 31.(2024·甘肃·中考真题)解不等式组:()223122x x x x ⎧−<+⎪⎨+<⎪⎩ 32.(2024·四川眉山·中考真题)解不等式:12132x x+−−≤,把它的解集表示在数轴上.33.(2024·天津·中考真题)解不等式组213317x x x +≤⎧⎨−≥−⎩①② 请结合题意填空,完成本题的解答. (1)解不等式①,得______; (2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.34.(2024·北京·中考真题)解不等式组:()3142,92.5x x x x ⎧−<+⎪⎨−<⎪⎩35.(2024·湖北武汉·中考真题)求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解.36.(2024·江西·中考真题)如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本; (2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?37.(2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的50%以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a(a为正整数)折售出,最终获利1577元,请直接写出商店的进货方案.38.(2024·江苏扬州·中考真题)解不等式组260412xxx−≤⎧⎪⎨−<⎪⎩,并求出它的所有整数解的和.39.(2024·山东威海·中考真题)定义我们把数轴上表示数a的点与原点的距离叫做数a的绝对值.数轴上表示数a,b的点A,B之间的距离()AB a b a b=−≥.特别的,当0a≥时,表示数a的点与原点的距离等于0a−.当a<0时,表示数a的点与原点的距离等于0a−.应用如图,在数轴上,动点A从表示3−的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A,B之间的距离等于3个单位长度?(2)求点A,B40.(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?41.(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?2024年中考数学真题汇编专题10 不等式(组)及其应用+答案详解(答案详解)一、单选题1.(2024·河北·中考真题)下列数中,能使不等式516x −<成立的x 的值为( ) A .1 B .2 C .3 D .42.(2024·湖北·中考真题)不等式12x +≥的解集在数轴上表示为( ) A . B . C .D .【答案】A【分析】本题考查了一元一次不等式的解法及在数轴上表示不等式的解集.根据一元一次不等式的性质解出未知数的取值范围,在数轴上表示即可求出答案. 【详解】解:12x +≥,1x ∴≥.∴在数轴上表示如图所示:故选:A .3.(2024·广东广州·中考真题)若a b <,则( ) A .33a b +>+ B .22a b −>− C .a b −<− D .22a b <【答案】D【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意; B .∵a b <,∴22a b −<−,则此项错误,不符题意; C .∵a b <,∴a b −>−,则此项错误,不符合题意; D .∵a b <,∴22a b <,则此项正确,符合题意; 故选:D .4.(2024·四川乐山·中考真题)不等式20x −<的解集是( ) A .2x < B .2x > C .<2x − D .2x >−【答案】A【分析】本题考查了解一元一次不等式.熟练掌握解一元一次不等式是解题的关键. 移项可得一元一次不等式的解集. 【详解】解:20x −<, 解得,2x <, 故选:A .5.(2024·内蒙古赤峰·中考真题)解不等式组()322211x x x x −<⎧⎪⎨+≥−⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是( ) A .B .C .D .【答案】C【分析】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,先求出不等式组的解集,再在数轴上表示出不等式组的解集即可. 【详解】解:()322211x x x x −<⎧⎪⎨+≥−⎪⎩①② 解不等式①得,2x <, 解不等式②得,3x ≥−,所以,不等式组的解集为:32x −≤<,在数轴上表示为:故选:C .6.(2024·四川南充·中考真题)若关于x 的不等式组2151x x m −<⎧⎨<+⎩的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m ≤【答案】B【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m −<⎧⎨<+⎩,得:31x x m <⎧⎨<+⎩,∵不等式组的解集为:3x <, ∴13m +≥, ∴2m ≥; 故选B .7.(2024·内蒙古包头·中考真题)若21m −,m ,4m −这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是( ) A .2m < B .1m < C .12m <<D .513m <<【答案】B【分析】本题考查实数与数轴,求不等式组的解集,根据数轴上的数右边的比左边的大,列出不等式组,进行求解即可.【详解】解:由题意,得:214m m m −<<−, 解得:1m <; 故选B .8.(2024·上海·中考真题)如果x y >,那么下列正确的是( ) A .55x y +<+ B .55x y −<− C .55x y > D .55x y −>−【答案】C【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意; B .两边都加上5−,不等号的方向不改变,故错误,不符合题意; C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意; D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意; 故选:C .9.(2024·四川内江·中考真题)不等式34x x ≥−的解集是( ) A .2x ≥− B .2x ≤− C .2x >− D .2x <−【答案】A【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键. 【详解】解:移项得,34x x −≥−, 合并同类项得,24x ≥−, 系数化为1得,2x ≥−, 故选:A .10.(2024·山东烟台·中考真题)实数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .3b c +>B .0a c −<C .a c >D .22a b −<−11.(2024·江苏苏州·中考真题)若1a b >−,则下列结论一定正确的是( )A .1a b +<B .1a b −<C .a b >D .1a b +>【答案】D【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变. 直接利用不等式的性质逐一判断即可. 【详解】解:1a b >−,A 、1a b +>,故错误,该选项不合题意;B 、12a b −>−,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意; 故选:D .12.(2024·四川眉山·中考真题)不等式组212321x x x x +>+⎧⎨+≥−⎩的解集是( )A .1x >B .4x ≤C .1x >或4x ≤D .14x <≤【答案】D【分析】本题考查的是解一元一次不等式组,分别求出各不等式的解集,再求出其公共解集即可.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【详解】解:212321x x x x +>+⎧⎨+≥−⎩①②,解不等式①,得1x >, 解不等式②,得4x ≤, 故不等式组的解集为14x <≤. 故选:D .13.(2024·贵州·中考真题)不等式1x <的解集在数轴上的表示,正确的是( )A .B .C .D .【答案】C【分析】根据小于向左,无等号为空心圆圈,即可得出答案.本题考查在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解题的关键. 【详解】不等式1x <的解集在数轴上的表示如下:.故选:C .14.(2024·河南·中考真题)下列不等式中,与1x −>组成的不等式组无解的是( )A .2x >B .0x <C .<2x −D .3x >−【答案】A【分析】本题考查的是解一元一次不等式组,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.根据此原则对选项一一进行判断即可. 【详解】根据题意1x −>,可得1x <−, A 、此不等式组无解,符合题意;B 、此不等式组解集为1x <−,不符合题意;C 、此不等式组解集为<2x −,不符合题意;D 、此不等式组解集为31x −<<−,不符合题意; 故选:A15.(2024·陕西·中考真题)不等式()216x −≥的解集是( )A .2x ≤B .2x ≥C .4x ≤D .4x ≥16.(2024·浙江·中考真题)不等式组()211326x x −≥⎧⎨−>−⎩的解集在数轴上表示为( )A .B .C .D .【答案】A【分析】本题考查解一元一次不等式组和在数轴上表示不等式的解集,先分别求出每一个不等式的解集,再根据不等式的解集在数轴上表示方法画出图示是解题的关键.【详解】解:()211326x x −≥⎧⎪⎨−>−⎪⎩①②,解不等式①,得:1x ≥, 解不等式②,得:4x <, ∴不等式组的解集为14x ≤<. 在数轴上表示如下: .故选:A .17.(2024·山东·中考真题)根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ; ②1班学生的最低身高小于150cm ; ③2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③【答案】C【分析】本题考查了二元一次方程、不等式的应用,设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b ,根据1班班长的对话,得180x ≤,350x a +=,然后利用不等式性质可求出170a ≥,即可判断①,③;根据2班班长的对话,得140b >,290y b +=,然后利用不等式性质可求出150y <,即可判断②.【详解】解:设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b , 根据1班班长的对话,得180x ≤,350x a +=, ∴350x a =− ∴350180a −≤, 解得170a ≥, 故①错误,③正确;根据2班班长的对话,得140b >,290y b +=,∴290b y =−, ∴290140y −>, ∴150y <, 故②正确, 故选:C .18.(2024·安徽·中考真题)已知实数a ,b 满足10a b −+=,011a b <++<,则下列判断正确的是( )A .102a −<< B .112b << C .2241a b −<+< D .1420a b −<+<二、填空题19.(2024·山东·中考真题)写出满足不等式组21215x x +≥⎧⎨−<⎩的一个整数解 .【答案】1−(答案不唯一)【分析】本题考查一元一次不等式组的解法,解题的关键是正确掌握解一元一次不等式组的步骤.先解出一元一次不等式组的解集为13x −≤<,然后即可得出整数解.【详解】解:21215x x +≥⎧⎨−<⎩①②,由①得:1x ≥−, 由②得:3x <,∴不等式组的解集为:13x −≤<, ∴不等式组的一个整数解为:1−; 故答案为:1−(答案不唯一).20.(2024·广西·中考真题)不等式7551x x +<+的解集为 . 【答案】<2x −【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键.【详解】解:移项得,7515x x −<−, 合并同类项得,24x <−, 系数化为1得,<2x −, 故答案为:<2x −.21.(2024·黑龙江大兴安岭地·中考真题)关于x 的不等式组420102x x a −≥⎧⎪⎨−>⎪⎩恰有3个整数解,则a 的取值范围是 .不等式组22.(2024·吉林·中考真题)不等式组230x x −>⎧⎨−<⎩的解集为 .23.(2024·上海·中考真题)一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有 个绿球.∴0x >,且x 为正整数, ∴x 的最小值为1,∴绿球的个数的最小值为3, ∴袋子中至少有3个绿球, 故答案为:3.24.(2024·福建·中考真题)不等式321x −<的解集是 . 【答案】1x <【分析】本题考查的是解一元一次不等式,通过移项,未知数系数化为1,求解即可解. 【详解】解:321x −<,33x <, 1x <,故答案为:1x <.25.(2024·广东·中考真题)关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是 .【答案】3x ≥/3x ≤【分析】本题主要考查了求不等式组的解集,在数轴上表示不等式组的解集,根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可. 【详解】解:由数轴可知,两个不等式的解集分别为3x ≥,2x >, ∴不等式组的解集为3x ≥, 故答案为:3x ≥.26.(2024·四川内江·中考真题)一个四位数,如果它的千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称该数为“极数”.若偶数m 为“极数”,且33m是完全平方数,则m = ;27.(2024·山东烟台·中考真题)关于x 的不等式12xm x −≤−有正数解,m 的值可以是 (写出一个即可).三、解答题28.(2024·江苏盐城·中考真题)求不等式113xx +≥−的正整数解.【答案】1,2.【分析】本题考查了求一元一次不等式的解集以及正整数解,先求出不等式的解集,进而可得到不等式的正整数解,正确求出一元一次不等式的解集是解题的关键. 【详解】解:去分母得,()131x x +≥−, 去括号得,133x x +≥−, 移项得,331x x −≥−−, 合并同类项得,24x −≥−, 系数化为1得,2x ≤, ∴不等式的正整数解为1,2.29.(2024·四川凉山·中考真题)求不等式3479x −<−≤的整数解. 【答案】2,3,4【分析】本题考查了解一元一次不等式组,熟练掌握知识点是解题的关键.先将3479x −<−≤变形为347479x x −<−⎧⎨−≤⎩,再解每一个不等式,取解集的公共部分作为不等式组的解集,再找出其中的整数解即可.【详解】解:由题意得347479x x −<−⎧⎨−≤⎩①②,解①得:1x >, 解②得:4x ≤,∴该不等式组的解集为:14x <≤, ∴整数解为:2,3,430.(2024·江苏连云港·中考真题)解不等式112x x −<+,并把解集在数轴上表示出来.这个不等式的解集在数轴上表示如下:31.(2024·甘肃·中考真题)解不等式组:()223122x x x x ⎧−<+⎪⎨+<⎪⎩ 32.(2024·四川眉山·中考真题)解不等式:12132x x+−−≤,把它的解集表示在数轴上.33.(2024·天津·中考真题)解不等式组213317x x x +≤⎧⎨−≥−⎩①②请结合题意填空,完成本题的解答. (1)解不等式①,得______; (2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______. 【答案】(1)1x ≤ (2)3x ≥− (3)见解析 (4)31x −≤≤【分析】本题考查的是解一元一次不等式,解一元一次不等式组;(1)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案; (2)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案; (3)根据前两问的结果,在数轴上表示不等式的解集; (4)根据数轴上的解集取公共部分即可. 【详解】(1)解:解不等式①得1x ≤,故答案为:1x ≤;(2)解:解不等式②得3x ≥−, 故答案为:3x ≥−;(3)解:在数轴上表示如下:(4)解:由数轴可得原不等式组的解集为31x −≤≤, 故答案为:31x −≤≤.34.(2024·北京·中考真题)解不等式组:()3142,92.5x x x x ⎧−<+⎪⎨−<⎪⎩ 【答案】17x −<<【分析】先求出每一个不等式的解集,再根据不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解”确定不等式组的解集.本题考查了一元一次不等式组的解法,熟练进行不等式求解是解题的关键.35.(2024·湖北武汉·中考真题)求不等式组3121x x x +>⎧⎨−≤⎩①②的整数解. 【答案】整数解为:1,0,1−【分析】本题考查了解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而求得整数解.【详解】解:3121x x x +>⎧⎨−≤⎩①②解不等式①得:2x >−解不等式②得:1x ≤∴不等式组的解集为:21x −<≤,∴整数解为:1,0,1−36.(2024·江西·中考真题)如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?【答案】(1)书架上有数学书60本,语文书30本.(2)数学书最多还可以摆90本【分析】本题主要考查了一元一次方程及不等式的应用,解题的关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.(1)首先设这层书架上数学书有x 本,则语文书有(90)x −本,根据题意可得等量关系:x 本数学书的厚度(90)x +−本语文书的厚度84=,根据等量关系列出方程求解即可;(2)设数学书还可以摆m 本,根据题意列出不等式求解即可.【详解】(1)解:设书架上数学书有x 本,由题意得:0.8 1.2(90)84x x +−=,解得:60x =,9030x −=.∴书架上有数学书60本,语文书30本.(2)设数学书还可以摆m 本,根据题意得:1.2100.884m ⨯+≤,解得:90m ≤,∴数学书最多还可以摆90本.37.(2024·黑龙江牡丹江·中考真题)牡丹江某县市作为猴头菇生产的“黄金地带”,年总产量占全国总产量的50%以上,黑龙江省发布的“九珍十八品”名录将猴头菇列为首位.某商店准备在该地购进特级鲜品、特级干品两种猴头菇,购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元.请解答下列问题:(1)特级鲜品猴头菇和特级干品猴头菇每箱的进价各是多少元?(2)某商店计划同时购进特级鲜品猴头菇和特级干品猴头菇共80箱,特级鲜品猴头菇每箱售价定为50元,特级干品猴头菇每箱售价定为180元,全部销售后,获利不少于1560元,其中干品猴头菇不多于40箱,该商店有哪几种进货方案?(3)在(2)的条件下,购进猴头菇全部售出,其中两种猴头菇各有1箱样品打a (a 为正整数)折售出,最终获利1577元,请直接写出商店的进货方案. 【答案】(1)特级鲜品猴头菇每箱进价为40元,特级干品猴头菇每箱进价为150元(2)有3种方案,详见解析(3)特级干品猴头菇40箱,特级鲜品猴头菇40箱【分析】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)正确计算求解.(1)设特级鲜品猴头菇和特级干品猴头菇每箱的进价分别是x 元和y 元,根据“购进鲜品猴头菇3箱、干品猴头菇2箱需420元,购进鲜品猴头菇4箱、干品猴头菇5箱需910元”,列出方程组求解即可; (2)设商店计划购进特级鲜品猴头菇m 箱,则购进特级干品猴头菇()80m −箱,根据“获利不少于1560元,其中干品猴头菇不多于40箱,”列出不等式组求解即可;(3)根据(2)中三种方案分别求解即可;元和38.(2024·江苏扬州·中考真题)解不等式组260412x x x −≤⎧⎪⎨−<⎪⎩,并求出它的所有整数解的和.39.(2024·山东威海·中考真题)定义我们把数轴上表示数a 的点与原点的距离叫做数a 的绝对值.数轴上表示数a ,b 的点A ,B 之间的距离()AB a b a b =−≥.特别的,当0a ≥时,表示数a 的点与原点的距离等于0a −.当a<0时,表示数a 的点与原点的距离等于0a −.应用如图,在数轴上,动点A 从表示3−的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B 从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A ,B 之间的距离等于3个单位长度?(2)求点A ,B 到原点距离之和的最小值.【答案】(1)过4秒或6秒(2)3【分析】本题考查了一元一次方程的应用,不等式的性质,绝对值的意义等知识,解题的关键是:(1)设经过x 秒,则A 表示的数为3x −+,B 表示的数为122x −,根据“点A ,B 之间的距离等于3个单位长度”列方程求解即可;≤40.(2024·湖南·中考真题)某村决定种植脐橙和黄金贡柚,助推村民增收致富,已知购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元.(1)求脐橙树苗和黄金贡柚树苗的单价;(2)该村计划购买脐橙树苗和黄金贡柚树苗共1000棵,总费用不超过38000元,问最多可以购买脐橙树苗多少棵?【答案】(1)50元、30元(2)400棵【分析】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:(1)设脐橙树苗和黄金贡柚树苗的单价分别为x元/棵,y元/棵,根据“购买1棵脐橙树苗和2棵黄金贡柚树苗共需110元;购买2棵脐橙树苗和3棵黄金贡柚树苗共需190元”列方程组求解即可;(2)购买脐橙树苗a棵,根据“总费用不超过38000元”列不等式求解即可.【详解】(1)解:设脐橙树苗和黄金贡柚树苗的单价分别为x元/棵,y元/棵,根据题意,得211023190x y x y +=⎧⎨+=⎩, 解得5030x y =⎧⎨=⎩, 答:脐橙树苗和黄金贡柚树苗的单价分别为50元/棵,30元/棵;(2)解:设购买脐橙树苗a 棵,则购买黄金贡柚树苗()1000a −棵,根据题意,得()5030100038000a a +−≤,解得400a ≤,答:最多可以购买脐橙树苗400棵.41.(2024·贵州·中考真题)为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩? 【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,(1)设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据“种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名”列方程组求解即可;(2)设种植甲作物a 亩,则种植乙作物()10a −亩,根据“所需学生人数不超过55人”列不等式求解即可.【详解】(1)解:设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据题意,得32272222x y x y +=⎧⎨+=⎩, 解得56x y =⎧⎨=⎩, 答:种植1亩甲作物和1亩乙作物分别需要5、6名学生;(2)解:设种植甲作物a 亩,则种植乙作物()10a −亩,。

2020中考数学试题含答案 (36)

2020中考数学试题含答案 (36)

2020中考数学试卷一、填空题(每题3分,满分30分)1.(3分)2018年1月18日,国家统计局对外公布,我国经济总量首次站上80万亿的历史新台阶,将80万亿用科学记数法表示亿元.2.(3分)在函数y=中,自变量x的取值范围是.3.(3分)如图,在平行四边形ABCD中,添加一个条件,使平行四边形ABCD是矩形.4.(3分)在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是.5.(3分)不等式组有3个整数解,则a的取值范围是.6.(3分)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=.7.(3分)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.8.(3分)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为.9.(3分)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是.10.(3分)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…….记△B1CB2面积为S1,△B2C1B3面积为S2,△B3C2B4面积为S3,则S n=.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a212.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.(3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.614.(3分)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是2015.(3分)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.716.(3分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠217.(3分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.πC.π﹣3 D.+π18.(3分)如图,∠AOB=90°,且OA、OB分别与反比例函数y=(x>0)、y=﹣(x<0)的图象交于A、B两点,则tan∠OAB的值是()A .B .C .1D .19.(3分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A .4种B .3种C .2种D .1种20.(3分)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC=60°,AB=BC=1,则下列结论: ①∠CAD=30°②BD=③S 平行四边形ABCD =AB•AC ④OE=AD ⑤S △APO =,正确的个数是( )A .2B .3C .4D .5三、解答题(满分60分)21.(5分)先化简,再求值:(a ﹣)÷,其中a=,b=1.22.(6分)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC 的三个顶点坐标分别为A (1,4),B (1,1),C (3,1).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1.(2)画出△ABC 绕点O 逆时针旋转90°后得到的△A 2B 2C 2.(3)在(2)的条件下,求点A 所经过的路径长(结果保留π).23.(6分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.24.(7分)为弘扬中华优秀传统文化,某校开展了“经典雅韵”诵读比赛活动,现随机抽取部分同学的成绩进行统计,并绘制如下两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?.25.(8分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为件,图中d值为.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?26.(8分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.(1)当点E在线段BD上移动时,如图(1)所示,求证:AE=EF;(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段AE与EF又有怎样的数量关系?请直接写出你的猜想,不需证明.27.(10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?28.(10分)如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B 坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.中考数学试卷参考答案与试题解析一、填空题(每题3分,满分30分)1.(3分)2018年1月18日,国家统计局对外公布,我国经济总量首次站上80万亿的历史新台阶,将80万亿用科学记数法表示8×105亿元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将80万亿用科学记数法表示为:8×105亿.故答案为:8×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)在函数y=中,自变量x的取值范围是x≥0且x≠1.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0,解得:x≥0且x≠1.故答案为:x≥0且x≠1.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)如图,在平行四边形ABCD中,添加一个条件AC=BD或∠ABC=90°,使平行四边形ABCD是矩形.【分析】根据矩形的判定方法即可解决问题;【解答】解:若使▱ABCD变为矩形,可添加的条件是:AC=BD;(对角线相等的平行四边形是矩形),∠ABC=90°等(有一个角是直角的平行四边形是矩形),故答案为:任意写出一个正确答案即可,如:AC=BD或∠ABC=90°.故答案为AC=BD或∠ABC=90°【点评】本题主要考查了平行四边形的性质与矩形的判定,熟练掌握矩形是特殊的平行四边形是解题关键.4.(3分)在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是.【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,用白球的个数除以总个数,求出恰好摸到白球的概率是多少即可.【解答】解:∵袋子中共有10个球,其中白球有3个,∴任意摸出一球,摸到白球的概率是,故答案为:.【点评】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5.(3分)不等式组有3个整数解,则a的取值范围是﹣2≤a<﹣1.【分析】先解x的不等式组,然后根据整数解的个数确定a的取值范围.【解答】解:解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、0、1,则﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.【点评】本题考查了一元一次不等式组的整数解,难度适中,关键是根据整数解确定关于a的不等式组.6.(3分)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=60°.【分析】连接DC,得出∠BDC的度数,进而得出∠A的度数,利用互余解答即可.【解答】解:连接DC,∵AC为⊙O的直径,OD⊥AC,∴∠DOC=90°,∠ABC=90°,∵OD=OC,∴∠ODC=45°,∵∠BDO=15°,∴∠BDC=30°,∴∠A=30°,∴∠ACB=60°,故答案为:60°.【点评】此题考查圆周角定理,关键是根据直径和垂直得出∠BDC的度数.7.(3分)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.【分析】设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后求出r后利用勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以此圆锥的高==.故答案为.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8.(3分)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为2.【分析】作DC关于AB的对称点D′C′,以BC中的O为圆心作半圆O,连D′O分别交AB及半圆O于P、G.将PD+PG转化为D′G找到最小值.【解答】解:如图:取点D关于直线AB的对称点D′.以BC中点O为圆心,OB为半径画半圆.连接OD′交AB于点P,交半圆O于点G,连BG.连CG并延长交AB于点E.由以上作图可知,BG⊥EC于G.PD+PG=PD′+PG=D′G由两点之间线段最短可知,此时PD+PG最小.∵D′C=4,OC′=6∴D′O=∴D′G=2∴PD+PG的最小值为2故答案为:2【点评】本题考查线段和的最小值问题,通常思想是将线段之和转化为固定两点之间的线段和最短.9.(3分)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是 3.6或4.32或4.8.=6,找出所有可【分析】在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC能的剪法,并求出剪出的等腰三角形的面积即可.【解答】解:在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AC==5,S=AB•BC=6.△ABC沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=S△ABC=×6=3.6;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD===2.4,∴AD=DP==1.8,∴AP=2AD=3.6,∴S等腰△ABP =S△ABC=×6=4.32;④当CB=CP=4时,如图3所示,S等腰△BCP=S△ABC=×6=4.8.综上所述:等腰三角形的面积可能为3.6或4.32或4.8.故答案为3.6或4.32或4.8.【点评】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的剪法,并求出剪出的等腰三角形的面积是解题的关键.10.(3分)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…….记△B1CB2面积为S1,△B2C1B3面积为S2,△B3C2B4面积为S3,则S n=•()n﹣1.【分析】先计算出S1=,再根据阴影三角形都相似,后面的三角形面积是前面面积的.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=B1C=1,∠ACB=60°,∴B1B2=B1C=,B2C=,∴S1=××=依题意得,图中阴影部分的三角形都是相似图形,且相似比为,故S n=•()n﹣1.故答案为:•()n﹣1.【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a9,不符合题意;B、原式=27a6,不符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=6a2,符合题意.故选:D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,是中心对称图形,不合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不合题意.故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.(3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.6【分析】左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底面最少有2个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.【解答】解:左视图与主视图相同,可判断出底面最少有2个,最多有4个小正方体.而第二层则只有1个小正方体.则这个几何体的小立方块可能有3或4或5个.故选:D.【点评】本题考查了由三视图判断几何体,难度不大,主要考查了考生的空间想象能力以及三视图的相关知识.14.(3分)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是20【分析】直接利用平均数、中位数、众数以及极差的定义分别分析得出答案.【解答】解:A、平均分为:(94+98+90+94+74)=90(分),故此选项错误;B、五名同学成绩按大小顺序排序为:74,90,94,94,98,故中位数是94分,故此选项错误;C、94分、98分、90分、94分、74分中,众数是94分.故此选项正确;D、极差是98﹣74=24,故此选项错误.故选:C.【点评】此题主要考查了平均数、中位数、众数以及极差的定义,正确把握相关定义是解题关键.15.(3分)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.【点评】此题考查了一元二次方程的应用,关键是准确找到描述语,根据等量关系准确的列出方程.此题还要判断所求的解是否符合题意,舍去不合题意的解.16.(3分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2【分析】直接解方程得出分式的分母为零,再利用x≠﹣1求出答案.【解答】解:=1解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2.故选:D.【点评】此题主要考查了分式方程的解,正确得出分母不为零是解题关键.17.(3分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.πC.π﹣3 D.+π【分析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB 的面积,根据扇形面积公式计算即可.【解答】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积﹣△ABC的面积,∴阴影部分的面积=扇形ADB的面积==π,故选:B.【点评】本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.18.(3分)如图,∠AOB=90°,且OA、OB分别与反比例函数y=(x>0)、y=﹣(x<0)的图象交于A、B两点,则tan∠OAB的值是()A.B.C.1 D.【分析】首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A在反比例函数y=的图象上,点B在反比例函数y=﹣的图象上,即可得S△AOC =2,S△OBD=,然后根据相似三角形面积的比等于相似比的平方,即可得=,然后由正切函数的定义求得答案.【解答】解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,∴∠ACO=∠ODB=90°,∴∠OBD+∠BOD=90°,∵∠AOB=90°,∴∠BOD +∠AOC=90°,∴∠OBD=∠AOC ,∴△OBD ∽△AOC , ∴=()2,∵点A 在反比例函数y=的图象上,点B 在反比例函数y=﹣的图象上, ∴S △OBD =,S △AOC =2, ∴=,∴tan ∠OAB==. 故选:A .【点评】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.注意掌握数形结合思想的应用,注意掌握辅助线的作法.19.(3分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A .4种B .3种C .2种D .1种【分析】设购买篮球x 个,排球y 个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x 、y 的方程,由x 、y 均为正整数即可得.【解答】解:设购买篮球x 个,排球y 个,根据题意可得120x +90y=1200,则y=,∵x 、y 均为正整数,∴x=1、y=12;x=4、y=8;x=7、y=4;所以购买资金恰好用尽的情况下,购买方案有3种,故选:B .【点评】本题主要考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.20.(3分)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC=60°,AB=BC=1,则下列结论: ①∠CAD=30°②BD=③S 平行四边形ABCD =AB•AC ④OE=AD ⑤S △APO =,正确的个数是( )A .2B .3C .4D .5【分析】①先根据角平分线和平行得:∠BAE=∠BEA ,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE 是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=AB=,OE ∥AB ,根据勾股定理计算OC==和OD 的长,可得BD 的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;⑤根据同高三角形面积的比等于对应底边的比可得:S △AOE =S △EOC =OE•OC=,=,代入可得结论.【解答】解:①∵AE 平分∠BAD ,∴∠BAE=∠DAE ,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC==,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD==,∴BD=2OD=,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,∴OE=AB,∵AB=BC,∴OE=BC=AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=,∴S△AOE =S△EOC=OE•OC==,∵OE∥AB,∴,∴=,∴S△AOP===;故⑤正确;本题正确的有:①②③④⑤,5个,故选:D.【点评】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.三、解答题(满分60分)21.(5分)先化简,再求值:(a﹣)÷,其中a=,b=1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:(a﹣)÷===a﹣b,当a=,b=1时,原式==﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.(6分)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1.(2)画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.(3)在(2)的条件下,求点A所经过的路径长(结果保留π).【分析】(1)直接利用关于x轴对称的性质得出对应点位置进而得出答案;(2)利用旋转的性质得出对应点位置进而得出答案;(3)直接利用弧长公式计算得出答案.【解答】解:(1)如图:△A1B1C1,即为所求;(2)如图:△A2B2C2,即为所求;(3)r==,A经过的路径长:×2×π×=π.【点评】此题主要考查了旋转变换以及轴对称变换和弧长公式应用,正确得出对应点位置是解题关键.23.(6分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.【分析】(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.【解答】解:(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴=,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P (﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).【点评】此题考查了待定系数法求二次函数解析式,二次函数性质,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.24.(7分)为弘扬中华优秀传统文化,某校开展了“经典雅韵”诵读比赛活动,现随机抽取部分同学的成绩进行统计,并绘制如下两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=30,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?.【分析】(1)先根据E等级人数及其占总人数的比例可得总人数,再用D等级人数除以总人数可得a的值,用总人数减去其他各等级人数求得C等级人数可补全图形;(2)用360°乘以A等级人数所占比例可得;(3)用总人数乘以样本中E等级人数所占比例.【解答】解:(1)∵被调查的总人数为10÷=50(人),∴D等级人数所占百分比a%=×100%=30%,即a=30,C等级人数为50﹣(5+7+15+10)=13人,补全图形如下:故答案为:30;(2)扇形B的圆心角度数为360°×=50.4°;(3)估计获得优秀奖的学生有2000×=400人.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(8分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为80件,图中d值为770.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?【分析】(1)由图象的信息解答即可;(2)利用待定系数法确定解析式即可;(3)根据题意列出方程解答即可.【解答】解:(1)由图象甲车间每小时加工零件个数为720÷9=80个,d=770,故答案为:80,770(2)b=80×2﹣40=120,a=(200﹣40)÷80+2=4,∴B(4,120),C(9,770)设y BC=kx+b,过B、C,∴,解得,∴y=130x﹣400(4≤x≤9)(3)由题意得:80x+130x﹣400=1000,解得:x=答:甲车间加工天时,两车间加工零件总数为1000件【点评】本题为一次函数实际应用问题,关键是根据一次函数图象的实际意义和根据图象确定一次函数关系式解答.26.(8分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点。

2020年中考数学试题分类汇编之四 不等式组 含解析

2020年中考数学试题分类汇编之四  不等式组  含解析

2020年中考数学试题分类汇编之四不等式(不等式组)一、选择题1.(2020杭州)(3分)若a >b ,则( ) A .a ﹣1≥bB .b +1≥aC .a +1>b ﹣1D .a ﹣1>b +1解:考查不等式的基本性质.A 、a =0.5,b =0.4,a >b ,但是a ﹣1<b ,不符合题意; B 、a =3,b =1,a >b ,但是b +1<a ,不符合题意;C 、∵a >b ,∴a +1>b +1,∵b +1>b ﹣1,∴a +1>b ﹣1,符合题意;D 、a =0.5,b =0.4,a >b ,但是a ﹣1<b +1,不符合题意. 故选:C .2.(2020苏州)不等式213x -≤的解集在数轴上表示正确的是( ) A.B. C.D.【答案】C【详解】解:移项得,2x≤3+1, 合并同类项得,2x≤4, 系数化为1得,x≤2, 在数轴上表示为:故选:C .3.(2020贵阳)已知a b <,下列式子不一定成立的是( ) A. 11a b -<-B. 22a b ->-C.111122a b +<+ D.ma mb >【答案】D【详解】解:A 、不等式a <b 的两边同时减去1,不等式仍成立,即a−1<b−1,故本选项不符合题意;B 、不等式a <b 的两边同时乘以-2,不等号方向改变,即22a b ->-,故本选项不符合题意;C 、不等式a <b 的两边同时乘以12,不等式仍成立,即:1122a b <,再在两边同时加上1,不等式仍成立,即111122a b +<+,故本选项不符合题意; D 、不等式a <b 的两边同时乘以m ,当m>0,不等式仍成立,即ma mb <;当m<0,不等号方向改变,即ma mb >;当m=0时,ma mb =;故ma mb >不一定成立,故本选项符合题意, 故选:D .4.(2020长沙)不等式组1112x x +≥-⎧⎪⎨<⎪⎩的解集在数轴上表示正确的是( )A.B.C. D.【答案】D5.(2020重庆A 卷)若关于x 的一元一次不等式结3132x x x a-⎧≤+⎪⎨⎪≤⎩的解集为x a ≤;且关于y的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( ) A. 7 B. -14 C. 28 D. -56解:解不等式3132x x -≤+,解得x≤7, ∴不等式组整理的7x x a ≤⎧⎨≤⎩,由解集为x≤a ,得到a≤7,分式方程去分母得:y−a +3y−4=y−2,即3y−2=a , 解得:y =+23a , 由y 为正整数解且y≠2,得到a =1,7, 1×7=7,故选:A .6.(2020重庆B 卷)小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元.小明买了7支签字笔,他最多还可以买的作业个数为( ) A.5 B.4 C.3 D.2 答案B.7.(2020重庆B 卷)若关于x 的一元一次不等式组{2x −1≤3(x −2)x−a 2>1 的解集为x ≥5,且关于y 的分式方程yy−2+a2−y =−1有非负整数解,则符合条件的所有整数a 的和为( ) A.-1 B.-2 C.-3 D.0 答案B.8.(2020新疆生产建设兵团)(5分)不等式组{2(x −2)≤2−x ,x+22>x+33的解集是( )A .0<x ≤2B .0<x ≤6C .x >0D .x ≤2解:{2(x −2)≤2−x①x+22>x+33②,解不等式①,得:x ≤2, 解不等式②,得:x >0, 则不等式组的解集为0<x ≤2, 故选:A .9.(2020江苏连云港)(3分)不等式组213,12x x -⎧⎨+>⎩的解集在数轴上表示为( )A .B .C .D .解:解不等式213x -,得:2x , 解不等式12x +>,得:1x >,∴不等式组的解集为12x <,表示在数轴上如下:选:C .10.(2020山西)(3分)不等式组的解集是( ) A .x >5 B .3<x <5C .x <5D .x >﹣5选:A .11.(2020东莞)下列四个不等式的解集在数轴上表示如图的是( )A. 12x +≤B.12x +<C.12x +>D.12x +≥答案:A12.(2020四川眉山)(4分)不等式组的整数解有( )A .1个B .2个C .3个D .4个解:解不等式x +1≥2x ﹣1,得:x ≤2, 解不等式4x +5>2(x +1),得:x >﹣1.5, 则不等式组的解集为﹣1.5<x ≤2,所以不等式组的整数解为﹣1,0,1,2,一共4个. 选:D .13.(2020云南)(4分)若整数a 使关于x 的不等式组,有且只有45个整数解,且使关于y 的方程+=1的解为非正数,则a 的值为( )A .﹣61或﹣58B .﹣61或﹣59C .﹣60或﹣59D .﹣61或﹣60或﹣59解:解不等式组,得<x ≤25,∵不等式组有且只有45个整数解, ∴﹣20≤<﹣19,解得﹣61≤a <﹣58,因为关于y 的方程+=1的解为:y =﹣a ﹣61,y ≤0,∴﹣a ﹣61≤0,解得a ≥﹣61,∵y +1≠0,∴y ≠﹣1,∴a ≠﹣60则a 的值为:﹣61或﹣59. 选:B .14.(2020海南)(3分)不等式x ﹣2<1的解集为( ) A .x <3 B .x <﹣1 C .x >3 D .x >2选:A .15.(4分)(2020•株洲)下列哪个数是不等式2(x ﹣1)+3<0的一个解?( ) A .﹣3 B .−12C .13D .2选:A .16.(4分)(2020•株洲)下列不等式错误的是( ) A .﹣2<﹣1 B .π<√17C .52>√10D .13>0.3选:C .二、填空题17.(2020哈尔滨)(3分)不等式组1,3352xx ⎧-⎪⎨⎪+<⎩的解集是 3x - .【解答】解:13352xx ⎧-⎪⎨⎪+<⎩①②,由①得,3x -; 由②得,1x <-,故此不等式组的解集为:3x -. 故答案为:3x -.18.(2020河南)已知关于x 的不等式组x ax b >⎧⎨>⎩,其中,a b 在数轴上的对应点如图所示,则这个不等式组的解集为__________.【答案】x >a .【详解】∵由数轴可知,a >b ,∴关于x 的不等式组x ax b >⎧⎨>⎩的解集为x >a ,故答案为:x >a .19..(2020四川绵阳)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩。

2018—2020年江苏省数学中考试题分类(7)——分式方程与不等式(含解析)

2018—2020年江苏省数学中考试题分类(7)——分式方程与不等式(含解析)

2018—2020年江苏省数学中考试题分类(7)——分式方程与不等式一.选择题(共10小题) 1.(2020•宿迁)若a b >,则下列不等式一定成立的是( ) A .2a b >+ B .11a b +>+ C .a b ->- D .||||a b > 2.(2020•常州)如果x y <,那么下列不等式正确的是( ) A .22x y <B .22x y -<-C .11x y ->-D .11x y +>+3.(2020•连云港)不等式组213,12x x -⎧⎨+>⎩的解集在数轴上表示为( )A .B .C .D .4.(2020•苏州)不等式213x -的解集在数轴上表示正确的是( ) A . B .C .D .5.(2019•镇江)下列各数轴上表示的x 的取值范围可以是不等式组2(21)60x aa x +>⎧⎨--<⎩的解集的是( )A .B .C .D .6.(2019•无锡)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为( ) A .10 B .9 C .8 D .7 7.(2019•宿迁)不等式12x -的非负整数解有( ) A .1个 B .2个 C .3个 D .4个 8.(2018•无锡)若关于x 的不等式30x m +有且仅有两个负整数解,则m 的取值范围是( )A .69mB .69m <<C .69m <D .69m < 9.(2018•宿迁)若a b <,则下列结论不一定成立的是( )A .11a b -<-B .22a b <C .33a b->- D .22a b <10.(2019•苏州)小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为( )A .15243x x=+B.15243x x=-C.15243x x=+D.15243x x=-二.填空题(共9小题)11.(2020•宿迁)不等式组120xx>⎧⎨+>⎩的解集是.12.(2019•泰州)不等式组13xx<⎧⎨<-⎩的解集为.13.(2018•扬州)不等式组315122x xx+⎧⎪⎨->-⎪⎩的解集为.14.(2020•徐州)方程981x x=-的解为.15.(2020•盐城)分式方程1xx-=的解为x=.16.(2020•淮安)方程3101x+=-的解为.17.(2020•南京)方程112x xx x-=-+的解是.18.(2019•宿迁)关于x的分式方程12122ax x-+=--的解为正数,则a的取值范围是.19.(2019•淮安)方程112x=+的解是.三.解答题(共26小题)20.(2020•常州)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?21.(2020•盐城)解不等式组:32134532xx x-⎧⎪⎨⎪-<+⎩.22.(2020•扬州)解不等式组50,3121,2xxx+⎧⎪⎨-+⎪⎩并写出它的最大负整数解.23.(2020•苏州)如图,“开心”农场准备用50m的护栏围成一块靠墙的矩形花园,设矩形花园的长为()a m,宽为()b m.(1)当20a=时,求b的值;(2)受场地条件的限制,a的取值范围为1826a,求b的取值范围.24.(2020•泰州)(1)计算:011()()3sin602π--+︒;(2)解不等式组:311,442x x x x -+⎧⎨+<-⎩25.(2019•南通)解不等式4113x x -->,并在数轴上表示解集.26.(2019•常州)解不等式组10,38,x x x +>⎧⎨--⎩并把解集在数轴上表示出来.27.(2019•苏州)解不等式组:152(4)37x x x +<⎧⎨+>+⎩28.(2019•扬州)解不等式组4(1)713843x x x x ++⎧⎪-⎨-<⎪⎩,并写出它的所有负整数解. 29.(2019•盐城)解不等式组:12,123.2x x x +>⎧⎪⎨+⎪⎩30.(2019•连云港)解不等式组24,12(3)1x x x >-⎧⎨-->+⎩31.(2018•无锡)A 商场从某厂以75元/件的价格采购一种商品,售价是100元/件.厂家与商场约定:若商场一次性采购达到或超过400件,厂家按每件5元返利给A 商场.商场没有售完的,可以以65元/件退还给厂家.设A 商场售出该商品x 件,问:A 商场对这种商品的销量至少要多少时,他们的获利能达到9600元? 32.(2018•常州)解方程组和不等式组:(1)23731x y x y -=⎧⎨+=-⎩(2)2602x x x ->⎧⎨+-⎩33.(2018•苏州)某学校准备购买若干台A 型电脑和B 型打印机.如果购买1台A 型电脑,2台B 型打印机,一共需要花费5900元;如果购买2台A 型电脑,2台B 型打印机,一共需要花费9400元. (1)求每台A 型电脑和每台B 型打印机的价格分别是多少元? (2)如果学校购买A 型电脑和B 型打印机的预算费用不超过20000元,并且购买B 型打印机的台数要比购买A 型电脑的台数多1台,那么该学校至多能购买多少台B 型打印机?34.(2018•苏州)解不等式组:3242(21)x x x x +⎧⎨+<-⎩35.(2018•无锡)(1)分解因式:3327x x -(2)解不等式组:()21111213x x x x +>-⋯⎧⎪⎨--⋯⎪⎩①② 36.(2018•南京)如图,在数轴上,点A 、B 分别表示数1、23x -+. (1)求x 的取值范围;(2)数轴上表示数2x -+的点应落在 .A .点A 的左边B .线段AB 上C .点B 的右边37.(2018•淮安)(1)计算:02sin 45(1)18|22π︒+-+-;(2)解不等式组:35131212x x x x -<+⎧⎪⎨--⎪⎩38.(2018•盐城)解不等式:312(1)x x --,并把它的解集在数轴上表示出来.39.(2018•连云港)解不等式组:3242(1)31x x x -<⎧⎨-+⎩40.(2020•镇江)(1)解方程:21133x x x =+++; (2)解不等式组:427,3(2)4x x x x +>-⎧⎨-<+⎩41.(2020•常州)解方程和不等式组:(1)2211x x x +=--;(2)26036x x -<⎧⎨-⎩.42.(2020•泰州)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A 为全程25km 的普通道路,路线B 包含快速通道,全程30km ,走路线B 比走路线A 平均速度提高50%,时间节省6min ,求走路线B 的平均速度.43.(2019•徐州)(1)解方程:22133x x x-+=-- (2)解不等式组:3222155x x x x >-⎧⎨+-⎩44.(2019•镇江)(1)解方程:23122x x x =+--; (2)解不等式:14(1)2x x --< 45.(2019•常州)甲、乙两人每小时共做30个零件,甲做180个零件所用的时间与乙做120个零件所用的时间相等.甲、乙两人每小时各做多少个零件?2018—2020年江苏省数学中考试题分类(7)——分式方程与不等式一.选择题(共10小题) 1.(2020•宿迁)若a b >,则下列不等式一定成立的是( )A .2a b >+B .11a b +>+C .a b ->-D .||||a b > 【解答】解:A .由a b >不一定能得出2a b >+,故本选项不合题意; B .若a b >,则11a b +>+,故本选项符合题意; ..C 若a b >,则a b -<-,故本选项不合题意;D .由a b >不一定能得出||||a b >,故本选项不合题意. 故选:B . 2.(2020•常州)如果x y <,那么下列不等式正确的是( ) A .22x y < B .22x y -<- C .11x y ->-D .11x y +>+【解答】解:A 、x y <, 22x y ∴<,故本选项符合题意; B 、x y <,22x y ∴->-,故本选项不符合题意;C 、x y <,11x y ∴-<-,故本选项不符合题意; D 、x y <,11x y ∴+<+,故本选项不符合题意; 故选:A .3.(2020•连云港)不等式组213,12x x -⎧⎨+>⎩的解集在数轴上表示为( )A .B .C .D .【解答】解:解不等式213x -,得:2x , 解不等式12x +>,得:1x >, ∴不等式组的解集为12x <, 表示在数轴上如下:故选:C . 4.(2020•苏州)不等式213x -的解集在数轴上表示正确的是( ) A .B .C .D .【解答】解:移项得,231x +, 合并同类项得,24x , x 的系数化为1得,2x .在数轴上表示为:.故选:C .5.(2019•镇江)下列各数轴上表示的x 的取值范围可以是不等式组2(21)60x aa x +>⎧⎨--<⎩的解集的是( )A .B .C .D .【解答】解:由2x a +>得2x a >-,A .由数轴知3x >-,则1a =-,360x ∴--<,解得2x >-,与数轴不符;B .由数轴知0x >,则2a =,360x ∴-<,解得2x <,与数轴相符合;C .由数轴知2x >,则4a =,760x ∴-<,解得67x <,与数轴不符;D .由数轴知2x >-,则0a =,60x ∴--<,解得6x >-,与数轴不符; 故选:B . 6.(2019•无锡)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为( ) A .10 B .9 C .8D .7【解答】解:设原计划n 天完成,开工x 天后3人外出培训, 则152160an =, 得到144an =.所以1512(2)()2160ax a n x ++-<. 整理,得488720ax an n x ++-<. 144an =.∴将其代入化简,得88144ax n x +-<,即88ax n x an +-<, 整理,得8()()n x a n x -<-. n x >, 0n x ∴->, 8a ∴>.a ∴至少为9. 故选:B . 7.(2019•宿迁)不等式12x -的非负整数解有( ) A .1个 B .2个 C .3个 D .4个【解答】解:12x -, 解得:3x ,则不等式12x -的非负整数解有:0,1,2,3共4个. 故选:D . 8.(2018•无锡)若关于x 的不等式30x m +有且仅有两个负整数解,则m 的取值范围是( ) A .69mB .69m <<C .69m <D .69m <【解答】解:30x m +,3mx ∴-,不等式30x m +有且仅有两个负整数解,323m∴-<--.69m ∴<, 故选:D . 9.(2018•宿迁)若a b <,则下列结论不一定成立的是( )A .11a b -<-B .22a b <C .33a b->- D .22a b <【解答】解:A 、在不等式a b <的两边同时减去1,不等式仍成立,即11a b -<-,故本选项错误; B 、在不等式a b <的两边同时乘以2,不等式仍成立,即22a b <,故本选项错误;C 、在不等式a b <的两边同时乘以13-,不等号的方向改变,即33a b->-,故本选项错误;D 、当5a =-,1b =时,不等式22a b <不成立,故本选项正确; 故选:D . 10.(2019•苏州)小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为( )A .15243x x =+B .15243x x =-C .15243x x =+D .15243x x=- 【解答】解:设软面笔记本每本售价为x 元,根据题意可列出的方程为:15243x x =+.故选:A .二.填空题(共9小题)11.(2020•宿迁)不等式组120x x >⎧⎨+>⎩的解集是 1x > .【解答】解:解不等式20x +>,得:2x >-,又1x >,∴不等式组的解集为1x >, 故答案为:1x >.12.(2019•泰州)不等式组13x x <⎧⎨<-⎩的解集为 3x <-. .【解答】解:等式组13x x <⎧⎨<-⎩的解集为3x <-,故答案为:3x <-.13.(2018•扬州)不等式组315122x xx +⎧⎪⎨->-⎪⎩的解集为 132x -< .【解答】解:解不等式315x x +,得:12x , 解不等式122x ->-,得:3x >-, 则不等式组的解集为132x -<,故答案为:132x -<.14.(2020•徐州)方程981x x =-的解为 9x = .【解答】解:去分母得: 9(1)8x x -= 998x x -= 9x =检验:把9x =代入(1)0x x -≠, 所以9x =是原方程的解. 故答案为:9x =.15.(2020•盐城)分式方程10x x -=的解为x = 1 .【解答】解:分式方程10x x-=,去分母得:10x -=, 解得:1x =,经检验1x =是分式方程的解. 故答案为:1.16.(2020•淮安)方程3101x +=-的解为 2x =- .【解答】解:方程3101x +=-,去分母得:310x +-=, 解得:2x =-,经检验2x =-是分式方程的解. 故答案为:2x =-.17.(2020•南京)方程112x x x x -=-+的解是 14x = . 【解答】解:方程112x x x x -=-+, 去分母得:22221x x x x +=-+,解得:14x =,经检验14x =是分式方程的解.故答案为:14x =.18.(2019•宿迁)关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是 5a <且3a ≠ .【解答】解:去分母得:122a x -+=-, 解得:5x a =-, 50a ->, 解得:5a <, 2x ≠, 3a ∴≠,故5a <且3a ≠.故答案为:5a <且3a ≠.19.(2019•淮安)方程112x =+的解是 1x =- .【解答】解:方程两边都乘以(2)x +,得12x =+, 解得,1x =-,经检验,1x =-是原方程的解, 故答案为:1x =-.三.解答题(共26小题) 20.(2020•常州)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果? 【解答】解:(1)设每千克苹果的售价为x 元,每千克梨的售价为y 元,依题意,得:326222x y x y +=⎧⎨+=⎩,解得:86x y =⎧⎨=⎩.答:每千克苹果的售价为8元,每千克梨的售价为6元.(2)设购买m 千克苹果,则购买(15)m -千克梨, 依题意,得:86(15)100m m +-, 解得:5m .答:最多购买5千克苹果.21.(2020•盐城)解不等式组:32134532x x x -⎧⎪⎨⎪-<+⎩.【解答】解:解不等式3213x -,得:53x, 解不等式4532x x -<+,得:7x <,则不等式组的解集为573x <.22.(2020•扬州)解不等式组50,3121,2x x x +⎧⎪⎨-+⎪⎩并写出它的最大负整数解.【解答】解:解不等式50x +,得5x -,解不等式31212x x -+,得:3x -,则不等式组的解集为5x -,所以不等式组的最大负整数解为5-. 23.(2020•苏州)如图,“开心”农场准备用50m 的护栏围成一块靠墙的矩形花园,设矩形花园的长为()a m ,宽为()b m .(1)当20a =时,求b 的值;(2)受场地条件的限制,a 的取值范围为1826a ,求b 的取值范围.【解答】解:(1)依题意,得:20250b +=, 解得:15b =.(2)1826a ,502a b =-,∴5021850226b b -⎧⎨-⎩, 解得:1216b .答:b 的取值范围为1216b .24.(2020•泰州)(1)计算:011()()3sin 602π--+-︒;(2)解不等式组:311,442x x x x -+⎧⎨+<-⎩【解答】解:(1)原式3123=+-⨯3122=+- 32=;(2)解不等式311x x -+,得:1x , 解不等式442x x +<-,得:2x >, 则不等式组的解集为2x >.25.(2019•南通)解不等式4113x x -->,并在数轴上表示解集.【解答】解:4133x x -->, 4331x x ->+, 4x >,将不等式的解集表示在数轴上如下:26.(2019•常州)解不等式组10,38,x x x +>⎧⎨--⎩并把解集在数轴上表示出来.【解答】解:解不等式10x +>,得:1x >-, 解不等式38x x --,得:2x ,∴不等式组的解集为12x-<,将解集表示在数轴上如下:27.(2019•苏州)解不等式组:152(4)37x x x +<⎧⎨+>+⎩【解答】解:解不等式15x +<,得:4x <, 解不等式2(4)37x x +>+,得:1x <, 则不等式组的解集为1x <.28.(2019•扬州)解不等式组4(1)713843x x x x ++⎧⎪-⎨-<⎪⎩,并写出它的所有负整数解. 【解答】解:解不等式4(1)713x x ++,得:3x -,解不等式843x x --<,得:2x <, 则不等式组的解集为32x -<,所以不等式组的所有负整数解为3-、2-、1-.29.(2019•盐城)解不等式组:12,123.2x x x +>⎧⎪⎨+⎪⎩ 【解答】解:121232x x x +>⎧⎪⎨+⎪⎩①② 解不等式①,得1x >,解不等式②,得2x -,∴不等式组的解集是1x >.30.(2019•连云港)解不等式组24,12(3)1x x x >-⎧⎨-->+⎩【解答】解:()241231x x x >-⎧⎪⎨-->+⎪⎩①②, 由①得,2x >-,由②得,2x <,所以,不等式组的解集是22x -<<.31.(2018•无锡)A 商场从某厂以75元/件的价格采购一种商品,售价是100元/件.厂家与商场约定:若商场一次性采购达到或超过400件,厂家按每件5元返利给A 商场.商场没有售完的,可以以65元/件退还给厂家.设A 商场售出该商品x 件,问:A 商场对这种商品的销量至少要多少时,他们的获利能达到9600元? 【解答】解:设A 商场售出该商品x 件.①当A 商城的采购量小于400件且完全销售完时,有(10075)9600x -,解得:384x , ∴当购进的商品完全销售完时,商城对这种商品的销量至少要384件;②当A 商城的采购量小于400件且没有销售完时,有100399759600x -⨯,解得:395.25x ,x 为正整数,396x ∴.∴当购进的商品少于400件且未全部销售完时,商城对这种商品的销量至少要396件;③当A 商城的采购量等于400件时,有1004007565(400)40059600x x -⨯+-+⨯, 解得:33317x , x 为正整数,332x ∴,∴当A 商城的采购量等于400件时,商城对这种商品的销量至少要332件;④当A 商城的采购量大于400件时,销售量必须大于332件,才能保证获利达到9600元.答:当A 商场购进这种商品400件且销量至少是332件时,他们的获利能达到9600元.32.(2018•常州)解方程组和不等式组:(1)23731x y x y -=⎧⎨+=-⎩(2)2602x x x ->⎧⎨+-⎩【解答】解:(1)23731x y x y -=⎧⎨+=-⎩①②, ①+②得:2x =,把2x =代入②得:1y =-,所以方程组的解为:21x y =⎧⎨=-⎩; (2)2602x x x ->⎧⎨+-⎩①②, 解不等式①得:3x >;解不等式②得:1x -,所以不等式组的解集为:3x >.33.(2018•苏州)某学校准备购买若干台A 型电脑和B 型打印机.如果购买1台A 型电脑,2台B 型打印机,一共需要花费5900元;如果购买2台A 型电脑,2台B 型打印机,一共需要花费9400元.(1)求每台A 型电脑和每台B 型打印机的价格分别是多少元?(2)如果学校购买A 型电脑和B 型打印机的预算费用不超过20000元,并且购买B 型打印机的台数要比购买A 型电脑的台数多1台,那么该学校至多能购买多少台B 型打印机?【解答】解:(1)设每台A 型电脑的价格为x 元,每台B 型打印机的价格为y 元,根据题意,得:25900229400x y x y +=⎧⎨+=⎩, 解得:35001200x y =⎧⎨=⎩, 答:每台A 型电脑的价格为3500元,每台B 型打印机的价格为1200元;(2)设学校购买a 台B 型打印机,则购买A 型电脑为(1)a -台,根据题意,得:3500(1)120020000a a -+,解得:5a ,答:该学校至多能购买5台B 型打印机.34.(2018•苏州)解不等式组:3242(21)x x x x +⎧⎨+<-⎩【解答】解:由32x x +,解得1x ,由42(21)x x +<-,解得2x >,所以不等式组的解集为2x >.35.(2018•无锡)(1)分解因式:3327x x -(2)解不等式组:()21111213x x x x +>-⋯⎧⎪⎨--⋯⎪⎩①② 【解答】解:(1)原式23(9)x x =-3(3)(3)x x x =+-;(2)解不等式①,得:2x >-,解不等式②,得:2x ,则不等式组的解集为22x -<.36.(2018•南京)如图,在数轴上,点A 、B 分别表示数1、23x -+.(1)求x 的取值范围;(2)数轴上表示数2x -+的点应落在 B .A .点A 的左边B .线段AB 上C .点B 的右边【解答】解:(1)由数轴上的点表示的数右边的总比左边的大,得231x -+>,解得1x <;(2)由1x <,得1x ->-.212x -+>-+,解得21x -+>.数轴上表示数2x -+的点在A 点的右边;作差,得23(2)1x x x -+--+=-+,由1x <,得1x ->-,10x -+>,23(2)0x x -+--+>,232x x ∴-+>-+,数轴上表示数2x -+的点在B 点的左边.故选:B .37.(2018•淮安)(1)计算:02sin 45(1)18|22|π︒+--+-;(2)解不等式组:35131212x x x x -<+⎧⎪⎨--⎪⎩【解答】解:(1)原式2213222=⨯+-+212=+-1=;(2)解不等式351x x -<+,得:3x <,解不等式31212x x --,得:1x ,则不等式组的解集为13x <.38.(2018•盐城)解不等式:312(1)x x --,并把它的解集在数轴上表示出来.【解答】解:312(1)x x --, 3122x x --,3221x x --+,1x -;将不等式的解集表示在数轴上如下:39.(2018•连云港)解不等式组:3242(1)31x x x -<⎧⎨-+⎩【解答】解:()3242131x x x -<⎧⎪⎨-+⎪⎩①②,解不等式①,得2x <,解不等式②,得3x -,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为32x -<.40.(2020•镇江)(1)解方程:21133x x x =+++; (2)解不等式组:427,3(2)4x x x x +>-⎧⎨-<+⎩ 【解答】解:(1)21133x x x =+++,213x x =++,213x x -=+,4x =,经检验,4x =是原方程的解,∴此方程的解是4x =;(2)()427324x x x x +>-⎧⎪⎨-<+⎪⎩①②, ①427x x ->--,39x >-,3x >-;②364x x -<+,346x x -<+,210x <,5x <,∴不等式组的解集是35x -<<. 41.(2020•常州)解方程和不等式组:(1)2211x x x+=--; (2)26036x x -<⎧⎨-⎩. 【解答】解:(1)方程两边都乘以1x -得:22(1)x x -=-,解得:0x =,检验:把0x =代入1x -得:10x -≠,所以0x =是原方程的解,即原方程的解是:0x =;(2)26036x x -<⎧⎨-⎩①②, 解不等式①得:3x <,解不等式②得:2x -,∴不等式组的解集是:23x -<.42.(2020•泰州)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A 为全程25km 的普通道路,路线B 包含快速通道,全程30km ,走路线B 比走路线A 平均速度提高50%,时间节省6min ,求走路线B 的平均速度.【解答】解:设走路线A 的平均速度为/xkm h ,则走路线B 的平均速度为(150%)/xkm h +, 依题意,得:25306(150%)60x x -=+, 解得:50x =,经检验,50x =是原方程的解,且符合题意,(150%)75x ∴+=.答:走路线B 的平均速度为75/km h .43.(2019•徐州)(1)解方程:22133x x x-+=-- (2)解不等式组:3222155x x x x >-⎧⎨+-⎩【解答】解:(1)22133x x x-+=--, 两边同时乘以3x -,得232x x -+-=-,32x ∴=; 经检验32x =是原方程的根; (2)由3222155x x x x >-⎧⎨+-⎩可得22x x >-⎧⎨⎩, ∴不等式的解为22x -<;44.(2019•镇江)(1)解方程:23122x x x =+--; (2)解不等式:14(1)2x x --< 【解答】解;(1)方程两边同乘以(2)x -得232x x =+-1x ∴=检验:将1x =代入(2)x -得1210-=-≠1x =是原方程的解.∴原方程的解是1x =.(2)化简14(1)2x x --<得 1442x x --< 932x ∴< 32x ∴< ∴原不等式的解集为32x <. 45.(2019•常州)甲、乙两人每小时共做30个零件,甲做180个零件所用的时间与乙做120个零件所用的时间相等.甲、乙两人每小时各做多少个零件?【解答】解:设甲每小时做x 个零件,则乙每小时做(30)x -个零件,由题意得:18012030x x=-,解得:18x=,经检验:18x=是原分式方程的解,则301812-=(个).答:甲每小时做18个零件,则乙每小时做12个零件.。

2020年江苏中考数学一模二模考试试题分类(南通专版)(2)——方程与不等式(含解析)

2020年江苏中考数学一模二模考试试题分类(南通专版)(2)——方程与不等式(含解析)

2020年江苏中考数学一模二模考试试题分类(南通专版)(2)——方程与不等式一.选择题(共12小题)1.(2020•如东县二模)若x1,x2是方程x2﹣3x﹣2=0的两个根,则x1+x2﹣x1•x2的值是()A.﹣5 B.﹣1 C.5 D.12.(2020•海门市二模)《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐,乙发齐,七日至长安,今乙发已先二日,甲仍发长安.同几何日相逢?译文:甲从长安出发,5日到齐国.乙从齐国出发,7日到长安,现乙先出发2日,甲才从长安出发.问甲经过多少日与乙相逢?设甲经过x日与乙相逢,可列方程.()A.+=1 B.﹣=1 C.=D.+=13.(2020•海安市模拟)把方程x2﹣x﹣5=0,化成(x+m)2=n的形式得()A.B.C.D.4.(2020•启东市一模)已知x1,x2是一元二次方程x2+x﹣3=0的两个根,则x1+x2﹣x1x2的值为()A.1 B.2 C.3 D.45.(2020•如皋市一模)已知方程x2﹣3x+1=0的两个根分别是x1,x2,则x12x2+x1x22的值为()A.﹣6 B.﹣3 C.3 D.66.(2020•三明模拟)受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450 B.300(1+2x)=450C.300(1+x)2=450 D.450(1﹣x)2=3007.(2020•海门市校级模拟)若x1和x2为一元二次方程x2+2x﹣1=0的两个根.则x12x2+x1x22值为()A.4B.2 C.4 D.38.(2020•启东市一模)若关于x的不等式组的解集为x<3,则k的取值范围为()A.k>1 B.k<1 C.k≥1 D.k≤19.(2020•海安市模拟)已知m,n满足方程组,则m+n的值为()A.3 B.﹣3 C.﹣2 D.210.(2020•南通模拟)已知点P(3﹣3a,1﹣2a)在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.11.(2020•崇川区校级一模)若关于x的一元一次不等式组有解,则a的取值范围是()A.a>1 B.a≥1 C.a<1 D.a≤112.(2020•海门市校级模拟)已知三角形的两边长为4和5,第三边的长是方程x2﹣5x+6=0的一个根,则这个三角形的周长是()A.11 B.12 C.11或12 D.15二.填空题(共12小题)13.(2020•启东市三模)“新冠肺炎”防治取得战略性成果.若有一个人患了“新冠肺炎”,经过两轮传染后共有16个人患了“新冠肺炎”,则每轮传染中平均一个人传染了人.14.(2020•如皋市二模)《九章算术》是中国古代数学著作之一,其中“方程”记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻、一雀一燕交而处,衡适平.并燕、雀重一斤,问燕、雀一枚各重几何?”译文:“五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.间:每只雀、燕的重量各为多少?”设一只雀的重量为x斤,一只燕的重量为y斤,则可列方程组为.15.(2020•南通二模)若一元二次方程2x2﹣x+k=0有两个相等的实数根,则k的值为.16.(2020•海门市一模)若关于x的一元二次方程x2﹣(2m+2)x+m2=0有两个不相等的实数根,则实数m的取值范围是.17.(2020•通州区一模)某呼吸机制造商2020年一月份生产呼吸机1000台,2020年三月份生产呼吸机4000台,设二、三月份每月的平均增长率为x,根据题意,可列方程为.18.(2020•海安市模拟)明代珠算大师程大位著有《珠算统宗》一书,有下面的一道题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤(1斤等于16两)”.据此可知,客有人,银有两.19.(2020•海安市一模)学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有种.20.(2020•海安市模拟)为了更进一步优化环境,甲、乙两队承担河道整治任务.甲、乙两个工程队每天共整治河道1500米,且甲整治3600米河道用的时间与乙工程队整治2400米所用的时间相等.设甲工程队每天整治河道xm,根据题意列方程为.21.(2020•如东县二模)《九章算术》是我国古代数学名著,卷七“盈不足”中题目译文如下:“今有人合伙买羊,每人出5钱,还差45钱;每人出7钱,还差3钱.问合伙人数、羊价各是多少?”设合伙人数为x人,根据题意可列一元一次方程为.22.(2020•广陵区二模)若关于x的方程x2﹣8x+m=0有两个相等的实数根,则m=.23.(2020•南通模拟)已知α、β是方程x2+x﹣6=0的两根,则α2β+αβ=.24.(2020•启东市一模)《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x人,小和尚y人,可列方程组为.三.解答题(共18小题)25.(2020•如东县二模)“绿水青山就是金山银山”,为了进一步优化居住环境,某社区计划购买甲、乙两种树苗600棵,甲、乙两种树苗的相关资料如表:甲种乙种单价(元)48 60成活率80% 90%(1)若购买这两种树苗共用去33000元,则甲、乙两种树苗各购买多少棵?(2)若要使这批树苗的总成活率不低于85%,请设计出最省钱的购买方案,并说明理由.26.(2020•海门市二模)解不等式组并在给定的数轴上表示出解集.27.(2020•海安市模拟)解不等式5x+2≥3(x﹣1),并把它的解集在数轴上表示出来.28.(2020•南通二模)(1)计算:﹣(3﹣π)0﹣4cos45°;(2)解方程:.29.(2020•海门市一模)文峰超市花10000元购进了甲、乙两种商品,其中甲商品件数比乙商品件数的2倍少10,甲、乙两种商品的进价和售价如表:甲乙进价(元/件)120 80售价(元/件)160 130(1)该超市购进甲、乙两种商品各多少件?(2)销售完该批商品的利润为多少元?30.(2020•海门市一模)求不等式组的正整数解.31.(2020•通州区一模)新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控.甲、乙两个工厂生产同一种防护口罩,甲厂每天比乙厂多生产口罩5万只,甲厂生产该种口罩40万只所用时间与乙厂生产该种口罩15万只所用时间相同,甲、乙两个工厂每天分别生产该种口罩多少万只?32.(2020•如皋市一模)一商店在某一时间以每件60元的价格卖出甲、乙两件衣服,其中甲件盈利25%,乙件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?说明理由.33.(2020•启东市一模)(1)计算:(﹣1)3+|﹣6|×2﹣1﹣;(2)解不等式:x<,并把解集在数轴上表示出来.34.(2020•如东县模拟)(1)计算:4cos45°+(π+3)0﹣+()﹣1;(2)解方程:1﹣=.35.(2020•崇川区校级一模)解方程组和不等式组:(1)(2)36.(2020•海安市模拟)(1)计算:|﹣2|+(﹣1)2+(﹣2020)0﹣sin30°;(2)解方程组:37.(2020•海安市模拟)新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?38.(2020•如皋市校级模拟)(1)解方程:﹣1=(2)解不等式组:39.(2020•海门市校级模拟)林华在2017年共两次到某商场按照标价购买了A,B两种商品,其购买情况如下表:购买A商品的数量(个)购买B商品的数量(个)购买两种商品的总费用(元)第一次购买 6 5 1140第二次购买 3 7 1110(1)分别求出A,B两种商品的标价;(2)最近商场实行“迎2018新春”的促销活动,A,B两种商品都打折且折扣数相同,于是林华前往商场花1062元又购买了9个A商品和8个B商品,试问本次促销活动中A,B商品的折扣数都为多少?在本次购买中,林华共节省了多少钱?40.(2020•海门市校级模拟)元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.41.(2020•崇川区校级模拟)列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?42.(2020•崇川区校级一模)已知关于x的方程:=﹣2.(1)当m为何值时,方程无解.(2)当m为何值时,方程的解为负数.2020年江苏中考数学一模二模考试试题分类(南通专版)(2)——方程与不等式参考答案与试题解析一.选择题(共12小题)1.(2020•如东县二模)若x1,x2是方程x2﹣3x﹣2=0的两个根,则x1+x2﹣x1•x2的值是()A.﹣5 B.﹣1 C.5 D.1【答案】C【解答】解:根据题意得x1+x2=3,x1x2=﹣2,所以x1+x2﹣x1•x2=3﹣(﹣2)=5.故选:C.2.(2020•海门市二模)《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐,乙发齐,七日至长安,今乙发已先二日,甲仍发长安.同几何日相逢?译文:甲从长安出发,5日到齐国.乙从齐国出发,7日到长安,现乙先出发2日,甲才从长安出发.问甲经过多少日与乙相逢?设甲经过x日与乙相逢,可列方程.()A.+=1 B.﹣=1 C.=D.+=1【答案】D【解答】解:设甲经过x日与乙相逢,则乙已出发(x+2)日,依题意,得:+=1.故选:D.3.(2020•海安市模拟)把方程x2﹣x﹣5=0,化成(x+m)2=n的形式得()A.B.C.D.【答案】C【解答】解:x2﹣x﹣5=0,x2﹣3x=15,x2﹣3x+=15+,(x﹣)2=.故选:C.4.(2020•启东市一模)已知x1,x2是一元二次方程x2+x﹣3=0的两个根,则x1+x2﹣x1x2的值为()A.1 B.2 C.3 D.4【答案】B【解答】解:∵x1,x2是一元二次方程x2+x﹣3=0的两个根,∴x1+x2=﹣1,x1x2=﹣3,则原式=﹣1﹣(﹣3)=﹣1+3=2,故选:B.5.(2020•如皋市一模)已知方程x2﹣3x+1=0的两个根分别是x1,x2,则x12x2+x1x22的值为()A.﹣6 B.﹣3 C.3 D.6【答案】C【解答】解:由题意可知:x1+x2=3,x1x2=1,∴原式=x1x2(x1+x2)=1×3=3,故选:C.6.(2020•三明模拟)受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450 B.300(1+2x)=450C.300(1+x)2=450 D.450(1﹣x)2=300【答案】C【解答】解:设快递量平均每年增长率为x,依题意,得:300(1+x)2=450.故选:C.7.(2020•海门市校级模拟)若x1和x2为一元二次方程x2+2x﹣1=0的两个根.则x12x2+x1x22值为()A.4B.2 C.4 D.3【答案】B【解答】解:∵x1,x2是一元二次方程x2+2x﹣1=0的两个根,∴x1+x2=﹣2,x1x2=﹣1,x12x2+x1x22=x1x2(x1+x2)=2.故选:B.8.(2020•启东市一模)若关于x的不等式组的解集为x<3,则k的取值范围为()A.k>1 B.k<1 C.k≥1 D.k≤1【答案】C【解答】解:不等式整理得:,由不等式组的解集为x<3,得到k的范围是k≥1,故选:C.9.(2020•海安市模拟)已知m,n满足方程组,则m+n的值为()A.3 B.﹣3 C.﹣2 D.2【答案】A【解答】解:由②,可得:n=3m﹣2③,把③代入①,解得m=,∴n=3×﹣2=,∴原方程组的解是,∴m+n=+=3故选:A.10.(2020•南通模拟)已知点P(3﹣3a,1﹣2a)在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.【答案】C【解答】解:∵点P(3﹣3a,1﹣2a)在第四象限,∴,解不等式①得:a<1;解不等式②得:a>.∴a的取值范围为<a<1.故选:C.11.(2020•崇川区校级一模)若关于x的一元一次不等式组有解,则a的取值范围是()A.a>1 B.a≥1 C.a<1 D.a≤1【答案】C【解答】解:解不等式①得,x>a,解不等式②得,x<1,∵不等式组有解,∴a<1,故选:C.12.(2020•海门市校级模拟)已知三角形的两边长为4和5,第三边的长是方程x2﹣5x+6=0的一个根,则这个三角形的周长是()A.11 B.12 C.11或12 D.15【答案】C【解答】解:x2﹣5x+6=0,(x﹣2)(x﹣3)=0,x﹣2=0,x﹣3=0,x1=2,x2=3,根据三角形的三边关系定理,第三边是2或3都行,①当第三边是2时,三角形的周长为2+4+5=11;②当第三边是3时,三角形的周长为3+4+5=12;故选:C.二.填空题(共12小题)13.(2020•启东市三模)“新冠肺炎”防治取得战略性成果.若有一个人患了“新冠肺炎”,经过两轮传染后共有16个人患了“新冠肺炎”,则每轮传染中平均一个人传染了3人.【答案】3.【解答】解:设每轮传染中平均一个人传染了x个人,根据题意,得x+1+(x+1)x=16,x=3或x=﹣5(舍去).答:每轮传染中平均一个人传染了3个人.故答案为:3.14.(2020•如皋市二模)《九章算术》是中国古代数学著作之一,其中“方程”记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻、一雀一燕交而处,衡适平.并燕、雀重一斤,问燕、雀一枚各重几何?”译文:“五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.间:每只雀、燕的重量各为多少?”设一只雀的重量为x斤,一只燕的重量为y斤,则可列方程组为.【答案】见试题解答内容【解答】解:依题意,得:.故答案为:.15.(2020•南通二模)若一元二次方程2x2﹣x+k=0有两个相等的实数根,则k的值为.【答案】见试题解答内容【解答】解:∵关于x的一元二次方程2x2﹣x+k=0有两个相等的实数根,∴△=(﹣1)2﹣4×2×k=1﹣8k=0,解得:k=.故答案为:.16.(2020•海门市一模)若关于x的一元二次方程x2﹣(2m+2)x+m2=0有两个不相等的实数根,则实数m的取值范围是m>﹣.【答案】见试题解答内容【解答】解:根据题意得△=(2m+2)2﹣4m2>0,解得m>﹣.故答案为m>﹣.17.(2020•通州区一模)某呼吸机制造商2020年一月份生产呼吸机1000台,2020年三月份生产呼吸机4000台,设二、三月份每月的平均增长率为x,根据题意,可列方程为1000(1+x)2=4000.【答案】见试题解答内容【解答】解:依题意,得:1000(1+x)2=4000.故答案为:1000(1+x)2=4000.18.(2020•海安市模拟)明代珠算大师程大位著有《珠算统宗》一书,有下面的一道题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤(1斤等于16两)”.据此可知,客有6人,银有46两.【答案】见试题解答内容【解答】解:设客有x人,银有y两,依题意,得:,解得:.故答案为:6;46.19.(2020•海安市一模)学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有4种.【答案】见试题解答内容【解答】解:设购买x个A品牌足球,y个B品牌足球,依题意,得:60x+75y=1500,解得:y=20﹣x.∵x,y均为正整数,∴x是5的倍数,∴,,,,∴共有4种购买方案.故答案为:4.20.(2020•海安市模拟)为了更进一步优化环境,甲、乙两队承担河道整治任务.甲、乙两个工程队每天共整治河道1500米,且甲整治3600米河道用的时间与乙工程队整治2400米所用的时间相等.设甲工程队每天整治河道xm,根据题意列方程为=.【答案】见试题解答内容【解答】解:设甲工程队每天整治河道xm,根据题意列方程为:=.故答案为:=.21.(2020•如东县二模)《九章算术》是我国古代数学名著,卷七“盈不足”中题目译文如下:“今有人合伙买羊,每人出5钱,还差45钱;每人出7钱,还差3钱.问合伙人数、羊价各是多少?”设合伙人数为x人,根据题意可列一元一次方程为5x+45=7x+3.【答案】见试题解答内容【解答】解:设合伙人数为x人,依题意,得:5x+45=7x+3.故答案为:5x+45=7x+3.22.(2020•广陵区二模)若关于x的方程x2﹣8x+m=0有两个相等的实数根,则m=16.【答案】见试题解答内容【解答】解:△=(﹣8)2﹣4m=0,解得m=16.故答案为16.23.(2020•南通模拟)已知α、β是方程x2+x﹣6=0的两根,则α2β+αβ=12或﹣18.【答案】见试题解答内容【解答】解:根据题意得α+β=﹣1,αβ=﹣6,所以α2β+αβ=αβ(α+1)=﹣6(α+1),而解方程x2+x﹣6=0得x1=﹣3,x2=2,当α=﹣3时,原式=﹣6(﹣3+1)=12;当α=2时,原式=﹣6(2+1)=﹣18.故答案为12或﹣18.24.(2020•启东市一模)《算法统宗》是中国古代数学名著,作者是明代著名数学家程大位.在其中有这样的记载“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”译文:有100名和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设有大和尚x人,小和尚y人,可列方程组为.【答案】见试题解答内容【解答】解:设大和尚有x人,则小和尚有y人,根据题意得,故答案为:.三.解答题(共18小题)25.(2020•如东县二模)“绿水青山就是金山银山”,为了进一步优化居住环境,某社区计划购买甲、乙两种树苗600棵,甲、乙两种树苗的相关资料如表:甲种乙种单价(元)48 60成活率80% 90% (1)若购买这两种树苗共用去33000元,则甲、乙两种树苗各购买多少棵?(2)若要使这批树苗的总成活率不低于85%,请设计出最省钱的购买方案,并说明理由.【答案】见试题解答内容【解答】解:(1)设甲种树苗购买x棵,乙种树苗购买y棵,依题意,得:,解得:.答:甲种树苗购买250棵,乙种树苗购买350棵.(2)设购买甲种树苗m棵,则购买乙种树苗(600﹣m)棵,依题意,得:80%m+90%(600﹣m)≥600×85%,解得:m≤300.设购买这批树苗的总费用为w元,则w=48m+60(600﹣m)=﹣12m+36000,∵﹣12<0,∴w随m的增大而减小,∴当m=300时,w取得最小值,最小值为32400.答:购买300棵甲种树苗,300棵乙种树苗最省钱.26.(2020•海门市二模)解不等式组并在给定的数轴上表示出解集.【答案】见试题解答内容【解答】解:解不等式2(x+2)<x+5,得:x<1,解不等式3x﹣6>2x﹣8,得:x>﹣2,则不等式组的解集为﹣2<x<1,将不等式组的解集表示在数轴上如下:27.(2020•海安市模拟)解不等式5x+2≥3(x﹣1),并把它的解集在数轴上表示出来.【答案】见试题解答内容【解答】解:去括号,得:5x+2≥3x﹣3,移项,得:5x﹣3x≥﹣3﹣2,合并同类项,得:2x≥﹣5,系数化为1,得:x≥﹣2.5,将不等式的解集表示在数轴上如下:28.(2020•南通二模)(1)计算:﹣(3﹣π)0﹣4cos45°;(2)解方程:.【答案】见试题解答内容【解答】解:(1)原式=2﹣1﹣4×=﹣1;(2)去分母得:x2﹣x2+2x=x﹣2,解得:x=﹣2,经检验x=﹣2是分式方程的解.29.(2020•海门市一模)文峰超市花10000元购进了甲、乙两种商品,其中甲商品件数比乙商品件数的2倍少10,甲、乙两种商品的进价和售价如表:甲乙进价(元/件)120 80售价(元/件)160 130(1)该超市购进甲、乙两种商品各多少件?(2)销售完该批商品的利润为多少元?【答案】见试题解答内容【解答】解:(1)设该超市购进甲种商品x件,购进乙种商品y件,依题意,得:,解得:.答:该超市购进甲种商品60件,购进乙种商品35件.(2)(160﹣120)×60+(130﹣80)×35=4150(元).答:销售完该批商品的利润为4150元.30.(2020•海门市一模)求不等式组的正整数解.【答案】见试题解答内容【解答】解:解不等式5x>3x﹣1,得x>﹣,解不等式﹣2≤,得x≤3,所以不等式组的解集是﹣<x≤3,其正整数解是1,2,3.31.(2020•通州区一模)新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控.甲、乙两个工厂生产同一种防护口罩,甲厂每天比乙厂多生产口罩5万只,甲厂生产该种口罩40万只所用时间与乙厂生产该种口罩15万只所用时间相同,甲、乙两个工厂每天分别生产该种口罩多少万只?【答案】见试题解答内容【解答】解:设乙厂每天生产该种口罩x万只,则甲厂每天生产该种口罩(x+5)万只,依题意,得:=,解得:x=3,经检验,x=3是原分式方程的解,且符合题意,∴x+5=8.答:甲厂每天生产该种口罩8万只,乙厂每天生产该种口罩3万只.32.(2020•如皋市一模)一商店在某一时间以每件60元的价格卖出甲、乙两件衣服,其中甲件盈利25%,乙件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?说明理由.【答案】见试题解答内容【解答】解:设甲件衣服的进价是x元,依题意有x+25%x=60,解得:x=48,设乙件衣服的进价为y元,依题意有y﹣25%y=60,解得:y=80.这两件衣服的进价是x+y=128元,而两件衣服的售价为120元.120﹣128=﹣8(元).故这两件衣服亏损8元.33.(2020•启东市一模)(1)计算:(﹣1)3+|﹣6|×2﹣1﹣;(2)解不等式:x<,并把解集在数轴上表示出来.【答案】见试题解答内容【解答】解:(1)原式=﹣1+6×﹣3,=﹣1+3﹣3,=﹣1;(2)去分母,得:6x﹣3(x+2)<2(2﹣x),去括号,得:6x﹣3x﹣6<4﹣2x,移项,得:6x﹣3x+2x<4+6,合并同类项,得:5x<10,系数化为1,得:x<2.在数轴上表示不等式的解集,如图所示:34.(2020•如东县模拟)(1)计算:4cos45°+(π+3)0﹣+()﹣1;(2)解方程:1﹣=.【答案】见试题解答内容【解答】解:(1)原式=4×+1﹣2+6=2+1﹣2+6=7;(2)去分母得:x﹣1﹣1=﹣2x,解得:x=,经检验x=是分式方程的解.35.(2020•崇川区校级一模)解方程组和不等式组:(1)(2)【答案】见试题解答内容【解答】解:(1),①+②,得:3x=6,解得x=2,将x=2代入②,得:2+3y=﹣1,所以方程组的解为;(2)解不等式x﹣(3x﹣2)≤4,得:x≥﹣1,解不等式<1﹣x,得:x<,∴不等式组的解集为.36.(2020•海安市模拟)(1)计算:|﹣2|+(﹣1)2+(﹣2020)0﹣sin30°;(2)解方程组:【答案】见试题解答内容【解答】解:(1)原式==.(2)①+②,得4x=4.解得x=1.把x=1代入①,得1+2y=9.解得y=4.∴这个方程组的解为37.(2020•海安市模拟)新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?【答案】见试题解答内容【解答】解:设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.再设应安排两个工厂工作y天才能完成任务,依题意,得:(6+4)y≥100,解得:y≥10.答:至少应安排两个工厂工作10天才能完成任务.38.(2020•如皋市校级模拟)(1)解方程:﹣1=(2)解不等式组:【答案】见试题解答内容【解答】解:(1)去分母得:x2﹣x(x﹣2)=x﹣2,整理得:2x=x﹣2,解得:x=﹣2,经检验x=﹣2是分式方程的解;(2),由①得:x>5,则不等式组的解集为x>5.39.(2020•海门市校级模拟)林华在2017年共两次到某商场按照标价购买了A,B两种商品,其购买情况如下表:购买A商品的数量(个)购买B商品的数量(个)购买两种商品的总费用(元)第一次购买 6 5 1140第二次购买 3 7 1110 (1)分别求出A,B两种商品的标价;(2)最近商场实行“迎2018新春”的促销活动,A,B两种商品都打折且折扣数相同,于是林华前往商场花1062元又购买了9个A商品和8个B商品,试问本次促销活动中A,B商品的折扣数都为多少?在本次购买中,林华共节省了多少钱?【答案】见试题解答内容【解答】解:(1)设A商品的标价为x元,B商品的标价为y元,依题意,得:,解得:.答:A商品的标价为90元,B商品的标价为120元.(2)设折扣数为m,依题意,得:(90×9+120×8)×=1062,解得:m=6,∴90×9+120×8﹣1062=708(元).答:本次促销活动中A,B商品的折扣数都为6,在本次购买中,林华共节省了708元钱.40.(2020•海门市校级模拟)元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.【答案】见试题解答内容【解答】解:(1)设甲种苹果的进价为a元/千克,乙种苹果的进价为b元/千克,根据题意得:,解得:.答:甲种苹果的进价为10元/千克,乙种苹果的进价为8元/千克.(2)根据题意得:(4+x)(100﹣10x)+(2+x)(140﹣10x)=960,整理得:x2﹣9x+14=0,解得:x1=2,x2=7,经检验,x1=2,x2=7均符合题意.答:x的值为2或7.41.(2020•崇川区校级模拟)列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?【答案】见试题解答内容【解答】解:设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x万人,由题意得,解得x=6,经检验x=6是分式方程的解,答:2017年每小时客运量24万人.42.(2020•崇川区校级一模)已知关于x的方程:=﹣2.(1)当m为何值时,方程无解.(2)当m为何值时,方程的解为负数.【答案】见试题解答内容【解答】解:(1)由原方程,得2x=mx﹣2x﹣6,①整理,得(4﹣m)x=﹣6,当4﹣m=0即m=4时,原方程无解;②当分母x+3=0即x=﹣3时,原方程无解,故2×(﹣3)=3m﹣2×3﹣6,解得m=2,综上所述,m=2或4;(2)由(1)得到(4﹣m)x=﹣6,当m≠4时.x=<0,解得m<4综上所述,m<4且m≠2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式一、单选题1.若a<b,则下列结论不一定成立的是()A. a-1<b-1B. 2a<2bC.D.【来源】江苏省宿迁市2018年中考数学试卷【答案】D2.不等式的解在数轴上表示正确的是()A. (A)B. (B)C. (C)D. (D)【来源】浙江省嘉兴市2018年中考数学试题【答案】A【解析】分析:求出已知不等式的解集,表示在数轴上即可.详解:不等式1﹣x≥2,解得:x≤-1.表示在数轴上,如图所示:故选A.点睛:本题考查了在数轴上表示不等式的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.不等式的解在数轴上表示正确的是()A. B.C. D.【来源】2018年浙江省舟山市中考数学试题【答案】A【解析】【分析】根据解不等式,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.【解答】在数轴上表示为:故选A.【点评】考查在数轴上表示不等式的解集,解一元一次不等式,解题的关键是解不等式. 4.不等式3x+2≥5的解集是()A. x≥1B. x≥C. x≤1D. x≤﹣1【来源】浙江省衢州市2018年中考数学试卷【答案】A5.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()A. B. C. D.【来源】湖北省孝感市2018年中考数学试题【答案】B6.把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A. B. C. D.【来源】山东省滨州市2018年中考数学试题【答案】B【解析】分析:先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.详解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选B.点睛:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.7.不等式组的最小整数解是()A. -1B. 0C. 1D. 2【来源】湖南省娄底市2018年中考数学试题【答案】B【解析】【分析】分别求出不等式组中每一个不等式的解集,然后确定出不等式组的解集,即可求出最小的整数解.【详解】,解不等式①得,x≤2,解不等式②得,x>-1,所以不等式组的解集是:-1<x≤2,所以最小整数解为0,故选B.【点睛】本题考查了解一元一次不等式组,不等式组的整数解,熟练掌握一元一次不等式组的解法是关键.8.不等式组有3个整数解,则的取值范围是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】B9.若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为()A. B. C. 1 D. 2【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C二、填空题10.不等式的解集是___________.【来源】安徽省2018年中考数学试题【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.11.不等式组的解是________.【来源】浙江省温州市2018年中考数学试卷【答案】x>412.若不等式组的解集为,则________.【来源】四川省凉山州2018年中考数学试题【答案】-1【解析】分析:解出不等式组的解集,与已知解集-1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.详解:由不等式得x>a+2,x<b,∵-1<x<1,∴a+2=-1,b=1∴a=-3,b=2,∴(a+b)2009=(-1)2009=-1.故答案为-1.点睛:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.13.不等式组1<x﹣2≤2的所有整数解的和为_____.【来源】四川省宜宾市2018年中考数学试题【答案】1514.不等式组的解集为__________.【来源】江苏省扬州市2018年中考数学试题【答案】【解析】分析:先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.详解:解不等式3x+1≥5x,得:x≤,解不等式,得:x>-3,则不等式组的解集为-3<x≤,故答案为:-3<x≤.点睛:此题考查了一元一次不等式组的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).三、解答题15.解不等式:3x-1≥2(x-1),并把它的解集在数轴上表示出来.【来源】江苏省盐城市2018年中考数学试题【答案】x≥-1,在数轴上表示见解析.16.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【来源】天津市2018年中考数学试题【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ).【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.17.“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理、两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.(1)求每台型、型净水器的进价各是多少元?(2)槐荫公司计划购进、两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.【来源】湖北省孝感市2018年中考数学试题【答案】(1)型净水器每台进价2000元,型净水器每台进价1800元.(2)的最大值是元.详解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据题意得:,解得:m=2000,经检验,m=2000是分式方程的解,∴m-200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.(2)根据题意得:2000x+180(50-x)≤98000,解得:x≤40.W=(2500-2000)x+(2180-1800)(50-x)-ax=(120-a)x+19000,∵当70<a<80时,120-a>0,∴W随x增大而增大,∴当x=40时,W取最大值,最大值为(120-a)×40+19000=23800-40a,∴W的最大值是(23800-40a)元.点睛:本题考查了分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出W关于x的函数关系式.18.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)【来源】山东省泰安市2018年中考数学试题【答案】(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.19.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)20.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)【来源】四川省凉山州2018年中考数学试题【答案】至少涨到每股6.06元时才能卖出.21.“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买两种型号的垃圾处理设备共10台,已知每台型设备日处理能力为12吨;每台型设备日处理能力为15吨,购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买两种设备的方案;(2)已知每台型设备价格为3万元,每台型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?【来源】湖南省娄底市2018年中考数学试题【答案】(1)共有4种方案,具体方案见解析;(2)购买A型设备2台、B型设备8台时费用最少.22.先化简,再求值:,其中是不等式组的整数解.【来源】山东省德州市2018年中考数学试题【答案】.【解析】分析:原式利用除法法则变形,约分后计算得到最简结果,求出x的值,代入计算即可求出值.详解:原式=•﹣=﹣=,不等式组解得:3<x<5,整数解为x=4,当x=4时,原式=.点睛:本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.23.解不等式组:【来源】浙江省金华市2018年中考数学试题【答案】不等式组的解集为3<x≤5.【解析】分析:首先分别解出两个不等式的解集,再求其公共解集即可.详解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x-1),得:x≤5,∴不等式组的解集为3<x≤5.点睛:此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.学科&网24.在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划是今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化和里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1 : 2,且里程数之比为2 : 1,为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)40千米;(2)10.25.某地年为做好“精准扶贫”,投入资金万元用于异地安置,并规划投入资金逐年增加,年在年的基础上增加投入资金万元.(1)从年到年,该地投入异地安置资金的年平均增长率为多少?(2)在年异地安置的具体实施中,该地计划投入资金不低于万元用于优先搬迁租房奖励,规定前户(含第户)每户每天奖励元,户以后每户每天奖励元,按租房天计算,求年该地至少有多少户享受到优先搬迁租房奖励.【来源】贵州省安顺市2018年中考数学试题【答案】(1)从年到年,该地投入异地安置资金的年平均增长率为;(2)年该地至少有户享受到优先搬迁租房奖励.26.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【来源】广东省深圳市2018年中考数学试题【答案】(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为元,则:解得:经检验:是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为元,则:,化简得:,解得:,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.27.解不等式组:【来源】江苏省连云港市2018年中考数学试题【答案】﹣3≤x<228.如图,在数轴上,点、分别表示数、.(1)求的取值范围.(2)数轴上表示数的点应落在()A.点的左边B.线段上C.点的右边【来源】江苏省南京市2018年中考数学试卷【答案】(1).(2)B.。

相关文档
最新文档