第一章三角形的证明复习资料

合集下载

北师大版八年级数学第一章三角形的证明单元复习

北师大版八年级数学第一章三角形的证明单元复习

八年级下册数学第一章三角形的证明第一部分:知识点1、等腰三角形(1)三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、(2)等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。

判定定理:有一个角是60度的等腰三角形是等边三角形。

或者三个角都相等的三角形是等边三角形。

(4)含30度的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。

2、直角三角形(1)勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。

逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

(2)直角三角形两个锐角之间的关系定理:直角三角形两个锐角互余。

逆定理:有两个锐角互余的三角形是直角三角形。

(3)含30度的直角三角形的边的定理定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。

逆定理:在直角三角形中,一条直角边是斜边的一半,那么这条直角边所对的锐角是30度。

(4)命题与逆命题命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。

(5)直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL) 3、线段的垂直平分线(1)线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。

(2)三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

第一章 三角形的证明复习

第一章 三角形的证明复习

B A 第一章 三角形的证明 知识点归纳与复习[知识点1] 等腰三角形(1)定义:有两条边 的三角形是等腰三角形。

(2)性质:①等腰三角形的两个底角 。

(简写为“等边对等角”)②等腰三角形的顶角平分线、底边上的 、底边上的 互相重合。

(简写为“ ”)③等腰三角形是 图形,对称轴是 ;(3)判定: ①定义:有两条边相等的三角形是 ;②有两个角 的三角形是等腰三角形。

(简写为 “ ”)练习:1.已知等腰三角形的两条边长分别是7和3,则第三条边的长是( )A .3或7B .7C . 4D .32.等腰三角形的两边长为4、9,则它的周长是( )A .17B .17或22C .20D .223.若等腰三角形的一个内角为50°,则这个等腰三角形顶角的度为 °;4. 等腰三角形的对称轴有( )A .1条 B. 2条 C. 3条 D. 1条或3条5.等腰三角形的顶角是120°,底边上的中线长为4cm, 则它的腰为 cm6.△ABC 中,若∠A =80o , ∠B =50o ,AC =5,则AB = ;7.如图,正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC 为等腰三角形.....,则点C 的个 数是( ) A .6 B . 7 C . 8D .9 8. 如图,在△ABC 中, AB=AC, BD 平分角ABC,交AC 于点D.若BD=BC, 则∠A = 。

[知识点2] 等边三角形定义: 的三角形是等边三角形;性质:①三条边都 ,三个角都等于 °,有 条对称轴;②等边三角形有没有“”三线合一”? 。

判定:①定义: 的三角形是等边三角形;②有一个角等于 °的等腰三角形是等边三角形;练习:1.顺次连接等边△ABC 各边的中点,可得到一个 三角形。

2.已知等边△ABC 的边长为4,则它的面积是( )A .8B .83 C .42 D . 433.已知a,b,c是三角形的三条边,若(a-b)2+(b-c)2=0,则这个三角形是()A.等腰三角形 B.等边三角形 C.直角三角形 D.锐角三角形4.用反证法证明“一个三角形中不能有两个角是直角”,应假设___________________;5. 如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为.[知识点3] 直角三角形1.直角三角形的性质定理与判定:(1)直角三角形的两锐角________;(2)在直角三角形中,30°角所对的直角边等于___________________;(3)有两个角互余的三角形是_______________.2.勾股定理及其逆定理:(1)直角三角形的两直角边的__________等于____________________;(2)如果三角形两边的___________等于第三边的平方,那么这个三角形是_________.定理:斜边和一直角边相等的两个三角形_________.简述为“________、______”或“______”练习:1.下列长度的三条线段能构成直角三角形的是()①8、15、17 ②4、5、6、③7.5、4、8.5 ④ 24、25、7 ⑤ 5、8、10A:①②④ B:②④⑤ C:①③⑤ D:①③④2. “平行四边形的对角线互相平分”的逆命题是___________________________.3.在直角三角形中,如果一个锐角为30°,而斜边与较小直角边的和为12,那么斜边长为.4.如图,在四边形BCDE中,∠C=∠BED=90°,∠B=60°,延长CD、BE得到Rt△ABC,已知CD=2,DE=1,求Rt△ABC的面积为.5.如图,在四边形ABCD中, AB∥CD, E为BC上的一点, 且∠BAE=25°,∠CDE=65°,AE=2,DE=3,则AD的长度是 .6.已知:如图1-2-4,△ABC中,CD⊥AB于D,AC=4,BC=3,DB=59. (1)求DC的长;(2)求AD的长;(3)求AB的长;(4)求证:△ABC是直角三角形.图1-2-47.如图1-2-9,已知∠ABC=∠ADC=90°,E 是AC 上一点,AB=AD ,求证:EB=ED.[知识点4] 线段垂直平分线 1.线段的垂直平分线上的点到这条线段的两个端点的距离_______;这个定理的逆定理是 _______________ _______________ _______________。

《三角形的证明》全章复习与巩固--知识讲解(基础)

《三角形的证明》全章复习与巩固--知识讲解(基础)

《三角形的证明》全章复习与巩固(基础)知识梳理【要点】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个角等于30°,那么它所对的直角边等于斜边的一半. 要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,比如边长为a的等边三角形它的高是32a,面积是234;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础.要点二、直角三角形1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL).要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,HL一共有5种判定方法.要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于12AB的长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线.要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围;②利用线段的垂直平分线定理可解决两条线段的和距离最短问题.要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.3.如何用尺规作图法作出角平分线要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形.【典型例题】类型一、三角形的证明1. 已知:点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E,F,且BF=CE.求证:△ABC是等腰三角形.【思路点拨】欲证△ABC 是等腰三角形,又已知DE ⊥AC ,DF ⊥AB ,BF=CE ,可利用三角形中两内角相等来证明.【答案与解析】证明:∵D 是BC 的中点,∴BD=CD ,∵DE ⊥AC ,DF ⊥AB ,∴△BDF 与△CDE 为直角三角形,在Rt △BDF 和Rt △CDE 中,,BF CE BD CD=⎧⎨=⎩ ∴Rt △BFD ≌Rt △CED (HL ),∴∠B=∠C ,∴AB=AC ,∴△ABC 是等腰三角形.【总结升华】考查等腰三角形的判定方法及全等三角形的判定及性质;充分利用条件证明三角形全等是正确解答本题的关键.举一反三:【变式1】(2015秋•江阴市校级期中)已知:如图,△AMN 的周长为18,∠B ,∠C 的平分线相交于点O ,过O 点的直线MN ∥BC 交AB 、AC 于点M 、N .求AB+AC 的值.【答案】解:∵MN ∥BC ,∴∠BOM=∠OBC ,∠CON=∠OCB ,∵∠B ,∠C 的平分线相交于点O ,∴∠MBO=∠OBC ,∠NCO=∠OCB ,∴∠MBO=∠BOM ,∠NCO=∠CON ,∴BM=OM ,CN=ON ,∵△AMN 的周长为18,∴AM+MN+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=18.【变式2】如图,在△ABC 中,AB=AC ,D 、E 在BC 上,且AD=AE ,求证:BD=CE .【答案】证明:∵AB=AC ,AD=AE ,∴∠B=∠C ,∠ADE=∠AED ,∵∠ADE=∠B+∠BAD ,∠AED=∠C+∠EAC ,∴∠BAD=∠CAE ,∵AB=AC ,AD=AE ,∴△ABD ≌△ACE ,∴ BD=CE .类型二、直角三角形2. 如图,已知,在Rt △ABC 中,∠C=90°,沿过B 点的一条直线BE 折叠这个三角形,使C 点与AB 边上的一点D 重合.(1)当∠A 满足什么条件时,点D 恰为AB 的中点写出一个你认为适当的条件,并利用此条件证明D 为AB 的中点;(2)在(1)的条件下,若DE=1,求△ABC 的面积.【思路点拨】(1)根据折叠的性质:△BCE ≌△BDE ,BC=BD ,当点D 恰为AB 的重点时,AB=2BD=2BC ,又∠C=90°,故∠A=30°;当添加条件∠A=30°时,由折叠性质知:∠EBD=∠EBC=30°,又∠A=30°且ED ⊥AB ,可证D 为AB 的中点;(2)在Rt △ADE 中,根据∠A 及ED 的值,可将AE 、AD 的值求出,又D 为AB 的中点,可得AB 的长度,在Rt △ABC 中,根据AB 、∠A 的值,可将AC 和BC 的值求出,代入S △ABC =AC ×BC 进行求解即可.【答案与解析】解:(1)添加条件是∠A=30°.证明:∵∠A=30°,∠C=90°,所以∠CBA=60°,∵C 点折叠后与AB 边上的一点D 重合,∴BE 平分∠CBD ,∠BDE=90°,∴∠EBD=30°,∴∠EBD=∠EAB ,所以EB=EA ;∵ED 为△EAB 的高线,所以ED 也是等腰△EBA 的中线,∴D 为AB 中点.(2)∵DE=1,ED ⊥AB ,∠A=30°,∴AE=2.在Rt △ADE 中,根据勾股定理,得22213-=∴AB=23,∵∠A=30°,∠C=90°,∴BC=12AB=3. 在Rt △ABC 中,AC=22AB BC -=3,∴S △ABC =12×AC ×BC=332. 【总结升华】考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,根据轴对称的性质,折叠前后图形的形状和大小不变.3. 小林在课堂上探索出只用三角尺作角平分线的一种方法:如图,在已知∠AOB 的两边上分别取点M ,N ,使OM=ON ,再过点M 作OB 的垂线,过点N 作OA 的垂线,垂足分别为C 、D ,两垂线交于点P ,那么射线OP 就是∠AOB 的平分线.老师当场肯定他的作法,并且表扬他的创新.但是小林不知道这是为什么.①你能说明这样做的理由吗?也就是说,你能证明OP 就是∠AOB 的平分线吗?②请你只用三角板设法作出图∠AOB 的平分线,并说明你的作图方法或设计思路.【思路点拨】①在Rt △OCM 与Rt △ODN 中,依据ASA 得出OC=OD;在Rt △OCP 与Rt △ODP 中,因为OP=OP ,OC=OD 得出Rt △OCP ≌Rt △ODP (HL ),所以∠COP=∠DOP ,即OP 平分∠AOB . ②可作出两个直角三角形,利用HL 定理证明两角所在的三角形全等.【答案与解析】①证明:在Rt △OCM 和Rt △ODN 中,COM DON OCM ODN OM ON ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△OCM ≌△ODN (AAS ),∴OC=OD ,在△OCP 与△ODP 中,∵,OC OD OP OP=⎧⎨=⎩∴Rt △OCP ≌Rt △ODP (HL ),∴∠COP=∠DOP ,即OP 平分∠AOB ;②解:①利用刻度尺在∠AOB 的两边上分别取OC=OD ;②过C ,D 分别作OA ,OB 的垂线,两垂线交于点E ;③作射线OE ,OE 就是所求的角平分线.∵CE ⊥OA ,ED ⊥OB ,∴∠OCE=∠ODE=90°,在Rt△OCE与Rt△ODE中,∵OC OD OE OE=⎧⎨=⎩,∴Rt△OCE≌Rt△ODE(HL),∴∠EOC=∠EOD,∴OE为∠AOB的角平分线.【总结升华】主要考查了直角三角形的判定,利用全等三角形的性质得出∠EOC=∠EOD是解题关键.类型三、线段垂直平分线4.(2015秋•麻城市校级期中)如图所示:在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E.(1)若∠ABE=50°,求∠EBC的度数;(2)若△ABC的周长为41cm,边长为15cm,△BCE的周长.【思路点拨】(1)由DE是AB的垂直平分线,根据线段垂直平分线的性质,可得AE=BE,继而求得∠A的度数,又由AB=AC,即可求得∠ABC的度数,则可求得答案;(2)由△BCE的周长=AC+BC,然后分别从腰等于15cm与底边等于15cm去分析求解即可求得答案.【答案与解析】解:(1)∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=50°,∵AB=AC,∴∠ABC=∠C=65°,∴∠EBC=∠ABC﹣∠ABE=15°;(2)∵AE=BE,∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC;∵△ABC的周长为41cm,∴AB+AC+BC=41cm,若AB=AC=15cm,则BC=11cm,则△BCE的周长为:15+11=26cm;若BC=15cm,则AC=AB=13cm,∵AB>BC,∴不符合题意,舍去.∴△BCE的周长为26cm.【总结升华】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.举一反三:【变式】如图所示,AD是△ABC中∠BAC的平分线,AD的垂直平分线EF交BC的延长线于F,试说明∠BAF=∠ACF的理由.【答案】解:∵EF垂直平分AD,∴AF=DF,∴∠FAD=∠FDA.又∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠BAF=∠BAD+∠FAD,∠ACF=∠DAC+∠FDA,∴∠BAF=∠ACF.类型四、角平分线5. 如图,在△ABC中,∠BAC=80°,延长BC到D,使AC=CD,且∠ADB=20°,DE平分∠ADB交AC于F,交AB于E,连接CE,求∠CED的度数.【思路点拨】作EG⊥DA,EH⊥BD,EP⊥AC,根据角平分线的性质得到EG=EH,根据△EGA≌△EPA,得出∠ECB,就可以得到∠CED的度数.【答案与解析】证明:作EG⊥DA交DA的延长线于G,再作EH⊥BD,EP⊥AC,垂足分别为H,P,则EG=EH ∵∠ADC=20°,AC=CD,∴∠CAD=20°,而∠BAC=80°,∴∠GAE=180°﹣20°﹣80°=80°,∴Rt△EGA≌Rt△EPA,∴EG=EP∴EP=EH,∴∠ECB=∠ECA=12∠BCA=12×40°=20°∴∠CED=∠BCE﹣∠BDE=20°﹣10°=10°【总结升华】主要考查了角平分线的性质定理及逆定理、三角形全等的性质和判定;做题中两次用到角平分线的知识是正确解答本题的关键.举一反三:【变式】如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处 C.3处 D.4处【答案】D.解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.。

三角形的证明

三角形的证明

第一章三角形的证明第一讲:1.等腰三角形(1)——等腰三角形的性质(知识回顾)知识点一三角形全等的证明方法:1、 2、 3、 4、例1如图所示,分别过点C,B作△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为E,F.求证:BF=CE1.如图,AC与BD交于点O,AB∥CD,若用“ASA”或“AAS”判定△AOB≌△COD,还需要添加的一个条件是.2、两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O 为边AC和DF的交点.求证:OF=OC.知识点二等腰三角形的性质定理定理:等腰三角形的两底角相等.这个定理简称为等边对等角.例2如图所示,在△ABC中,AB=AC,点D在BC上,且BD=AD,DC=AC,求∠B的度数3、若等腰三角形底边上的高与底边的比为1∶2,则它的顶角等于()A.90°B.60°C.120°D.150°4.已知等腰三角形的一个内角为50°,则这个等腰三角形顶角的度数是( )A.50°B.80C.50°或80°D.40°或65°知识点三等腰三角形性质定理的推论等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合.这条性质通常称为等腰三角形的“三线合一”.是证明那三条线证明: 等腰三角形两底角的平分线相等,高线相等已知:如图,在△ABC中, AB=AC, BD、CE是△ABC的角平分线.求证:BD=CE.拓展点一等腰三角形特殊性质的证明例1求证:等腰三角形两腰上的高的交点到底边两端的距离相等.已知:如图,在△ABC中,AB=AC,CE⊥AB于点E,BD⊥AC于点D,CE,BD交于点O,求证:OB=OC.知识点四等边三角形的性质定理定理:等边三角形的三个内角都相等,并且每个角都等于60°.例4 如图,点P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.拓展点二等边三角形与三角形全等的综合题5、如图,已知△ABC和△ADE都是等边三角形,连接CD,BE.求证:CD=BE习题1、下列各组几何图形中,一定全等的是()A、各有一个角是550的两个等腰三角形;B、两个等边三角形;C、腰长相等的两个等腰直角三角形;D、各有一个角是500,腰长都为6cm的两个等腰三角形.2、如图,已知:AB∥CD,AB=CD,若要使△ABE≌△CDF,仍需添加一个条件,下列条件中,哪一个不能使△ABE≌△CDF的是()A、∠A=∠B ;B、BF=CE;C、AE∥DF;D、AE=DF.3、如果等腰三角形的一个内角等于50°,则其余两角的度数为。

第一章 三角形的证明1

第一章  三角形的证明1

第一章 三角形的证明(性质)1.等腰三角形的性质定理;(1)等腰三角形的两个底角相等;( )∵ ∴(2)等腰三角形顶角的平分线、底边中线、底边上高三条线重合。

( )①∵ ∴ ②∵ ∴ ③∵ ∴2.等边三角形三个 都相等,且每个角都是 。

3.直角三角形的性质定理;(1)勾股定理: (2)Rt △中 (3)Rt △中,30°角。

数学符号∵∴ 4.线段的垂直平分线性质;线段垂直平分线上的点到 。

∵∴5.角平分线性质定理。

角平分线上的点到 . ∵∴第一章 三角形的证明(判定)1. 等腰三角形的判定定理;有两个角相等的三角形是等腰三角形( )∵ ∴ ∴2.三个角都相等的三角形是 三角形。

3.直角三角形的判定定理;(1)勾股逆定理:数学符号∵∴(2)若 ,则△ABC 是Rt △。

4.线段的垂直平分线判定定理;到一条线段两个端点的距离相等个点在 。

∵∴5.角平分线判定定理。

在一个角的内部且到角的两边距离相等的点,在 .∵∴6.全等三角形的判定定理① ② ③ ④ 特别地在Rt △中, ( )在∴ ( )NAPBC M 21EDCPOB A NAPBC M 21EDCPOBA巩固基础习题1 姓名1.在△ABC 中,AB =AC ,∠A =44°,则∠B = ° 2.已知等腰三角形两条边的长分别是3和6,则它的周长等于 .3.在△ABC 中,AB =AC ,∠BAC =120°,延长BC 到D ,使CD =AC ,则∠C DA = 度. 4.一个正三角形的边长为a ,它的高是( ) A . 3 a B .32 a C .12 a D .34a5.至少有两边相等的三角形是( )A .等边三角形B .等腰三角形C .等腰直角三角形D .锐角三角形 6.已知:如图,点D 是△ABC 内一点,AB =AC ,∠1=∠2.求证:AD 平分∠BAC .7.如图,若∠A =15°,AB =BC =CD =DE =EF ,则∠DEF 等于多少? F D ECBA8.在ΔABC 中,DB 平分∠ABC ,DC 平分∠ACB ,过D 作直线EF //BC ,交AB 、AC 于E 、F ,若AB =8,AC =7,则ΔAEF 的周长等于多少?巩固基础习题2 姓名1.已知:如图,在等腰△ABC 中,AB=AC ∠BAC=120° D 为BC 中点,DE ⊥AB 于E.2.已知,如图,△ABC 中,AB=AC ,AD 是角平分线,BE=CF ,则下列说法正确的有几个( ) 1)AD 平分∠EDF ;2)△EBD ≌△FCD ;3)BD=CD ;4)AD⊥BC .(A )1个 (B )2个(C )3个 (D )4个 3.如图,在△ABC 和△ABD 中,∠C=∠D=90°,若利用“AAS ”证明△ABC ≌△ABD ,则需要加条件 _______或 ; 若利用“HL ”证明△ABC ≌△ABD ,则需要加条4.如图,有一个直角△ABC ,∠C=90°,AC=10,BC=5,一条线段PQ=AB ,P.Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,当AP= 时,才能使ΔABC ≌ΔPQA.5.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB ,交BC 于 D,DE ⊥AB 于E ,且AB =6 cm ,则△DEB 的周长为________cm.6.如图,在△ABC 中,已知D 是BC中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,DE =DF . 求证:AB=ACFDECBA求证: AB AE 41巩固基础习题3 姓名1.已知:如图,AC 平分∠BAD ,CE ⊥AB 于E ,CF⊥AD 于F ,且BC =DC .你能说明BE 与DF 相等吗?2.已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,∠A=30°.求证:BD=14AB3.如图,在△ABC 中,AB =AC ,DE 是过点A 的直线,BD ⊥DE 于D ,CE ⊥DE 于E . (1)若BC 在DE 的同侧(如图①)且AD =CE ,说明:BA ⊥A C .(2)若BC 在DE 的两侧(如图②)其他条件不变,问AB 与AC 仍垂直吗?若是请予证明,若不是请说明理由.巩固基础习题4 姓名1.已知AB 是线段CD 的垂直平分线,E 是AB 上的一点,如果EC=7cm ,那么ED= cm ;如果∠ECD=60°,那么∠EDC=2.已知:△ABC 中,AB=AC ,AD 是BC 边一上的中线,AB 的垂直平分线交AD 于O求证:OA=OB=OC .3.已知:如图,P 是么AOB 平分线上的一点,PC ⊥OA ,PD ⊥OB ,垂足分别为C 、D .求证:(1)OC=OD ;(2)OP 是CD 的垂直平分线.P DAE COBA B C DE F12 CADBE。

(完整版)八年级下_第一章_三角形的证明_(知识点总结和习题练习),推荐文档

(完整版)八年级下_第一章_三角形的证明_(知识点总结和习题练习),推荐文档

第一章三角形的证明—重要知识点:1、全等三角形(1)性质=辛等三角飛的対应功、対应角相罢。

(2)判定=“SAS”、SSS 、 AAS ASA 、HL(直角三角形)。

2、二免(1)性质:①^睽三角形的两底角相等。

(“等边对等角”)@腰三角形的顶角平分线、底边b的中线、底边上的髙线互相重合 (三线合一)。

(2)判定:① 有两边相等的三角形是等腰三角形②有两个角相等的三角形是等腰三角形(等角对等边)(3)反证法:先假设令题的结说不成立,然后推导出与已知条件相矛盾的结果命題:由条件和结论组成逆錄:由结轮和条件组成3、等边三角形(1) 定义:的三角形是等边三角形。

(2) 性质:①三个内角都等于60度,三条边都相等②具有等腰三角形的一^性质。

(3) 判定:①三个角都相等的三角形是等边三角形②个角等于6Q度的等瞪三角形是等边三角形。

4、直角三角形(1)定理:在直角三角形中,如果一个锐角是30度,那么它所对的直角边等于斜边的一半。

(2)定理:在直角三角中,斜边上的中线等于斜边的一半(3)直角三角形的两锐角互余。

有两个角互余的三角形是直角三角形(4)勾股定理;直角三角形两条直角垃的平方和等于斜边的平方勾股定理的逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形(5) “斜边、直角垃”或“HL”直角三角形全等的判定定理:斜边和一条直角边分别相等的两个直角三角形全等定理的作用:判定两个直角三角形全等5、线段的垂i平分线C1)线段的垂直平分线上的点到送条线段的两个端点的距离相等(2)到一条线段两个端点距离相等的点,在这条线段的垂直平分线上6、角平分线(1)角平分线上的点到送个叫的两边的距离相等(2)在一个角的内部,到角的两边距离相等的点在送个角的平分线上二、考点:考点1等腰三角形的性质1-己知等腰三角形的一个底角为80°,则这个等腰三角形的顶角为( )A. 20°B. 40°C. 50°D. 80 °2.等腰三角形的两条边长分别为5 on和6 cm,则它的周长是3.已知等腰三角形.4BC的腰4B=AC=10 cm,底边BC=12 cm,则八4BC的角平分线AD的长是考点2等腰三角形的判定1.如图15 — 4,在中,ZB = ZC, AB=S,贝[(AC 的长为()A* 2 B. 3 C. 4 D. 52. 如图15—5,在AABC 中,AB=AC,点£>,£在忍6:途上,^ABD = ^DAE=^EAC=36a ,则图中共有等腰三角形的个数是()A. 4B. 5C. 6D. 7考点3等垃三角形的性质1.边长为6 cni的等边三角形中,其一边上高的长度.2.如圈15—6,己知A.4BC是等逊三角形,点B r C, D, E在同一直线上,且CGr = CD, DF=DE,贝度.考点3等边三角形的性质1.边长为6 的等边三角形中,其一边上高的长度.2.如图15—6,已知AABC是等边三角形,点忍,C, D, E在同一直线上,且CG=CD, DF=DE,贝 _____________________________ 度.1.在RtAASC 中,^ACB = 90°、AB = 10, CD 是AB 逊上的中线,贝CD 的长是()A. 20B. 10C. 5D.-2.在AASC 中,^C=90°,^ABC=60°,SD 平分交AC 于点Z>,若A/> = 6,则CD= .考点5勾股定理及其逆定理1.在RtAABC 中,ZC = 90。

第一章 三角形的证明

第一章 三角形的证明

第一章三角形的证明1.1等腰三角形导学案基础知识基本技能1.等腰三角形(1)概念:有两边相等的三角形叫等腰三角形,其中相等的两边叫腰,另一条边叫底边,两腰的夹角叫做顶角,腰与底边的夹角叫做底角.(2)理解:①等腰三角形是特殊的三角形,它具备三角形所有的性质,如内角和是180°,两边之和大于第三边等.②等腰三角形是轴对称图形,这既是等腰三角形的特点也是研究它的重要方法.破疑点等腰三角形有关概念的认识(1)对于等腰三角形问题,我们说角或边时,一般都要指明是顶角还是底角,是底边还是腰,没说明则都有可能,要讨论解决,这是解决等腰三角形最容易忽视和错误的地方;(2)等腰三角形顶角可以是直角,是钝角或锐角,而底角只能是锐角.【例1】等腰三角形两边长分别是5 cm和11 cm,则它的周长是().A.27 cm B.22 cmC.27 cm或22 cm D.无法确定2.等腰三角形性质1(1)性质1:等腰三角形的两个底角相等(简写成“等边对等角”).(2)理解:这是等腰三角形的重要性质,它是证明角相等常用的方法,它的应用可省去三角形全等的证明,因而更简便.(3)适用条件:必须在同一个三角形中.(4)应用模式:在△ABC中,因为AB=AC,所以∠B=∠C.【例2-1】已知等腰三角形的一个角为40°,则其顶角为().A.40°B.80°C.40°或100°D.100°哦,不指明是底角还是顶角时,要分类讨论,还要看三角形内角和是否是180°啊!【例2-2】如图,AD、BC相交于O,AB∥CD,OA=OB,求证:∠C=∠D.3.等腰三角形性质2(1)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.习惯上称作等腰三角形“三线合一”性质.(2)含义:这是等腰三角形所特有的性质,它实际上是一组定理,应用过程中,只要是在等腰三角形前提下,知道是其中“一线”,就可以说明是其他的“两线”,性质中包含有线段相等、角相等、垂直等关系,所以应用非常广泛.(3)对称性:等腰三角形是轴对称图形,顶角平分线(或底边上的高、底边上的中线)所在的直线是它的对称轴.(4)应用模式:如图,在△ABC中,解技巧“三线合一”的应用因为题目的证明或计算所求结果大多都是单一的,所以“三线合一”性质实际的应用也是单一的,一般得出一个结论,因此应用要灵活.【例3】如图,在△ABC中,AB=AC,AD⊥BC,交BC于D,BD=5 cm,求底边BC的长.分析:因为是等腰三角形,所以底边上的高也是底边上的中线,所以BC=2BD,即可求出BC的长.4.等腰三角形的判定(1)判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).(2)与性质的关系:判定定理与性质定理是互逆的,性质:→;判定:→.(3)理解:性质和判定应用的前提都是在同一三角形中,并且不经过三角形全等的证明,直接由等边得等角或由等角得等边,所以应用起来更简单、便捷.破疑点等腰三角形的判定方法的理解教材中涉及等腰三角形的判定方法主要有两种:一是判定定理;二是定义.另外还有很多方法,如在同一个三角形中,三线中两线重合,也能说明是等腰三角形.但不常用,一般是通过推理得出角相等或边相等,再得出是等腰三角形.【例4】如图,BE平分∠ABC,交AC于E,过E作DE∥BC,交AB于D.试证明△BDE是等腰三角形.5.等边三角形的概念和性质(1)等边三角形①概念:三边都相等的三角形是等边三角形.②认识:它是特殊的等腰三角形,具备等腰三角形的所有性质.(2)性质:等边三角形的三个内角都相等,并且每一个角都等于60°.(3)拓展:等边三角形是轴对称图形,它有三条对称轴,它三边相等,三个内角相等,各边上的高、中线,对应的角平分线重合,且长度相等.【例5】如图,点M、N分别在等边△ABC的边BC、AC上,且BM=CN,AM、BN交于点Q.求证:∠BQM=60°.6.等边三角形的判定(1)判定定理:①三个角都相等的三角形是等边三角形;②有一个角是60°的等腰三角形是等边三角形.(2)判定方法:等边三角形的判定方法有三种:一是定义,另运用两个定理.(3)拓展理解:对于判定定理①,有时候在一个三角形中只要有两个角是60°也可判定是等边三角形.解技巧巧用条件证明等边三角形在证明三角形是等边三角形时,根据所给已知条件确定选择用哪个方法证明.若已知三边关系,一般选定义法;若已知三角关系,一般选判定定理①;若已知该三角形是等腰三角形,则选判定定理②.【例6】如图,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ,问△APQ是什么形状的三角形?试说明你的结论.基本方法基本能力7.等腰三角形性质和判定的综合应用类似于全等三角形的性质和判定的关系,等腰三角形的性质和判定很多时候也是综合运用的.一方面等腰三角形是特殊的三角形,由等腰三角形性质,可以知道许多相等的线段,相等的角,还能知道垂直关系,成倍数关系的线段或角,所以有时通过判定是等腰三角形来证明角相等、线段相等或垂直关系等;另一方面通过等腰三角形性质和判定的运用,直接由线段相等得到角相等,由角相等到线段相等,省去了全等的证明,简化了过程,因此很多时候,等腰三角形性质和判定的应用更广泛.注意:等腰三角形性质和判定的应用前提是在同一个三角形中.【例7】如图1,在△ABC中,∠B=2∠C,AD是BC边上的高,求证:CD=AB+BD.图1 图28.巧用“三线合一”性质解题(1)性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称“三线合一”性质;(2)应用:它是等腰三角形特有的性质,这条线段是中线、高,也是角平分线,它包含有线段相等、角相等、垂直等关系,涉及量多,应用广泛,是证明线段相等、线段的倍数关系、角相等、角的倍数关系、垂直等常用的方法.构造“三线合一”解决等腰三角形问题在等腰三角形问题中,最常添加的辅助线就是作底边上的高,或作顶角的平分线,或作底边上的中线,这样就可以由其中一线得到其他两线,从而知道更多的条件,以便更好地完成计算、证明.【例8】已知:如图a所示,△ABC中,AB=AC,BF是AC边上的高,求证:∠FBC=∠BAC.图a 图b9.等边三角形的应用等边三角形也称正三角形,它是最特殊的三角形,它除了三边相等,三个内角相等,且每个角都是60°外,还具有很多特殊的性质:如,证明两个等边三角形全等只要有一边相等即可;同一个等边三角形的高、中线、角平分线都相等,并且任何一条高(或中线、顶角的平分线)将等边三角形都分成全等的两个含有30°角的直角三角形;它的高和边长也存在着特殊的比例关系,因此已知是等边三角形,就可以知道其中的许多等量关系.等边三角形的判定也具有自己独特的特点,可以由普通三角形满足条件直接判定,也可以在等腰三角形的基础上进行判定.【例9】(学科内综合题)如下图所示,在等边三角形ABC中,∠B、∠C的角平分线交于点O,OB和OC的垂直平分线分别交BC于E、F,试用你所学的知识说明BE=EF=FC的道理.思维拓展创新应用10.面积法证明等腰三角形的性质面积法是解决几何问题常用的一种的方法,它巧妙地运用面积之间的关系,通过计算的方式,求线段的长度,或用来证明线段之间的数量关系,有时它比运用线段之间的等量关系证明、计算更简捷,更巧妙,因而在特定条件下能出奇制胜,是一种很好的方法.面积法的运用,一般以同一个三角形的面积是相等的为基础,运用不同求法,即底不同、高不同、但面积都等于底×高的一半,或将一个图形分解成不同的图形来求面积,但面积之和相等.通过面积相等联系起各量之间的关系,再运用等式的性质,通过化简求出某些线段的长,或计算出某些线段之间的数量(如比例)关系.解技巧巧用面积法证明线段的关系因为直角三角形的特殊性,所以面积法最常用在直角三角形中求斜边上的高,有时也用在等腰三角形中证明线段相等或求线段的和.11.等腰三角形中的“二推一”模式应用在等腰三角形问题中,“等边、角平分线(等角)、平行”是出现最多,最常见的数量与位置关系,若这三个关系出现在同一图中,一般以其中任意两个条件为题设,推导、证明出第三个条件成立,因此我们称它为等腰三角形中的“二推一”.(1)基本图形:等腰三角形中的“二推一”一般有两种情况,一种是角平分线在外,要用到一个外角等于和它不相邻的两内角和;另一种是角平分线在内,基本图形如图①和图②所示,演变图形类型较多,主要有以下几种:(2)方法:通过角相等作为纽带,将线段相等、线段平行联系起来,在此过程中要用到等量代换得出的角相等,方式一般是:→→;→→.【例11-1】如图1,已知,在△ABC中,AB=AC,BD为腰AC上的高,G为底边BC上任一点,GF⊥AB,GE⊥AC,垂足分别为F、E.求证:GF+GE=BD.分析:要证明BD=GF+GE,按常规思路将BD分成两段,如图2,证明BH=GF,DH=GE.所以过G作BD的垂线,通过证明三角形全等和判定是矩形完成,既复杂又超出现在所学,但用面积法却简单得多.如图3,连接AG,运用面积法,分别表示出△ABG和△ACG的面积,由于同一三角形面积是相等的,所以S△ABC=S△ABG+S△ACG,所以AB·GF+AC·GE=AC·BD,由于AB =AC,经过等量代换和化简即可得到GF+GE=BD.【例11-3】如图,已知△ABC中,AC+BC=24,AO、BO分别是∠BAC、∠ABC的角平分线,MN过O点,且MN∥BA,分别交AC于N、BC于M,则△CMN的周长为___.【例11-4】如图,△ABC中,∠ABC、∠ACB的平分线BO、CO相交于点O,OE∥AB,OF ∥AC,△OEF的周长=10,求BC的长.直角三角形学习过程:一、课前准备1.每个命题都是由、两部分组成。

第一章三角形的证明知识点

第一章三角形的证明知识点

第一章三角形的证明知识点在几何学中,三角形是最基本的图形之一,其性质和证明方法在数学中有着重要的地位。

本章将介绍一些与三角形相关的证明知识点,帮助我们更好地理解三角形的性质和特点。

一、三角形的性质:1. 三角形的定义:三角形是由三条线段组成的图形,这三条线段称为三角形的边,而由这三条边所确定的三个内角则称为三角形的内角。

2. 三角形的分类:根据三角形的边长和角度大小,三角形可以分为三种不同类型:等边三角形、等腰三角形和普通三角形。

- 等边三角形的三条边的长度相等。

- 等腰三角形的两条边的长度相等。

- 普通三角形的三条边的长度各不相等。

3. 三角形的角度和边长关系:- 三角形的内角和等于180度(即∠A + ∠B + ∠C = 180°)。

- 三角形的任意两边之和大于第三边(即 AB + BC > AC,AC+ BC > AB,AB + AC > BC)。

二、三角形的证明知识点:1. 等腰三角形的性质:- 等腰三角形的底角相等,顶角相等。

- 等腰三角形的腰上的高线相等。

证明:设ΔABC 是一个等腰三角形,其中 AB = AC。

连接 A 到三角形的底边 BC,构造垂直于 BC 的高线 AD。

由于 AB = AC,所以∠ABC = ∠ACB。

同时,AD 为高线,所以 AD ⊥ BC,故∠BAC = ∠CAD。

因此,我们可以得出等腰三角形的底角相等并且顶角相等的结论。

同样,由于 AB = AC,所以 AD = AD,即等腰三角形的腰上的高线相等。

2. 直角三角形的性质:- 直角三角形的两条边之间满足勾股定理:c^2 = a^2 + b^2。

- 直角三角形的两条直角边之间满足勾股定理。

证明:设ΔABC 是一个直角三角形,其中∠ABC = 90°。

根据勾股定理,我们可以得出 c^2 = a^2 + b^2。

同时,直角三角形的两条直角边是相互垂直的,即∠ABC = 90°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档
《第1章三角形的证明》复习资料
知识点:
一、全等三角形的判定及性质
性质:全等三角形对应角相等、对应边相等
判定:①判定一般三角形全等:(SSS、SAS、ASA、AAS).
②判定直角三角形全等独有的方法:有斜边和一条直角边对应相等的两个直角三角形全等,即HL
二. 等腰三角形
性质:等腰三角形的两个底角相等(等边对等角).
判定:有两个角相等的三角形是等腰三角形(等角对等边).
推论:等腰三角形顶角平分线、底边中线、底边上的高互相重合(即“三线合
一”).
等边三角形的性质及判定定理
性质:等边三角形的三个角都相等,每个角都等于 60°;等边三角形是轴对图形,有 3
条对称轴.
判定:(1)有一个角是60°的等腰三角形是等边三角形;(2)三个角都相等的三角形是等边三角形.
三.直角三角形
1. 勾股定理:直角三角形两直角边的平方和等于斜边的平方。

222a?bc。

tp://w ww.xk =、b、c,则如果直角三角形的两直角边长和斜边分别为为a222a?bc,那么这个=a、b、c满足关系勾股定理的逆定理:如果三角形的三边长三角形是直角三角形。

常见的勾股数有:(1)3,4,5;(2)5,12,13;(3)6,8,10;(4)8,15,17
2.含30°的直角三角形的边的性质
在直角三角形中,如果一个锐角等于30°,那么它所对应的直角边等于斜边的一半.
3.直角三角形斜边上的中线等于斜边的一半。

四. 线段的垂直平分线
性质:线段垂直平分线上的点到线段两端点的距离相等.
精品文档.
精品文档 . 垂直平分线上判定:到一条线段两个端点距离相等的点在这条线段的
. 三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等角平分线五.
的距离相等;角两边性质:角平分线上的点到
. 判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上
三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。

一、选择题).等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为(112
或.6.8 C.10 DA.8或10 B)
,则该等腰三角形的周长为( .已知一个等腰三角形的两边长分别是2和4218 D.. C12或15 A.12 B.15
)3.以下各组数中不能作为直角三角形的三边长的是(24,25 C. 6, 8, 10 D.9, 12, 13 2, 3 B. 7,A. 1.5,)4.已知下列各组数据,可以构成等腰三角形的是(
5 2,. 2, 1,3,1 D.1,2,1 B 2,2,1 C..A AACBABCAB)
中,=70°,则∠=的度数是,∠5.如图,△(
.40° C.50° DA.70° B.55°) DBC的度数是(,∠A=36°,BD是AC边上的高,则∠ABC6.如图,△中,AB=AC .36° DB .24°
C.30°A.18°
现在他要到玻璃店去配一块完全一样,7.如图1,某同学把一块三角形的玻璃打
碎成三片. )去配形状的玻璃.那么最省事的办法是带(
③② C. D. ①和②A. ① B.
,,使CD=BCC先在AB的垂线BF上取两点,D、8.要测量河两岸相对的两点AB
的距离,EDCABC??ED=AB. ≌可以证明,得,BF再作出的垂线DE,使A,CE 在同一条直线上,EDC??ABC( ). 的条件是≌的长,在这里判定因此,测
得DE的长就是ABHL ..SAS C.SSS DA.ASA
B BECDABDBCECDAB.
) =3cm,那么AC9.⊥长为,△、△都是等腰三角形,如果,=8cm(34cm 5cm C..8cm D.A4cm B.CEABC?BD?,相交于点上的点,且与分别是,10.在等边中,ADBEP AC,D,EBC精品文档.
精品文档000 C..则的度数是().
A. B60554521???0 D.75
于点DE交AB°,边11.如图,在△ABC中,∠C=90°,∠B=30AB的垂直平分线)
(,则E,交BC于点D,CD=3BC的长为3
9 D.A.6 B.363 C.
二、填空题°,则它顶角的度数是。

1.腰三角形的一个内角是70.2.如图,在△ABC中,AB=AD=DC,∠BAD=20°,
则∠C=
cmcm.
____ 6 ,则BC=A3.如图,在△ABC中,∠C=90°,∠=30°,若AB=Rt ABD 到=4,则点于点=△ABC中,∠C90°,AD平分∠BAC,交BCD,CD4.如图,.__ __的距离为,DEF=在同一条直线上,∠1=∠2,BCEF,要使△ABC≌△,,5.如图,已知点BC,FE) __还需添加一个条件,这个条件可以是
_.(只需写出一个cm的D,若△BCE,垂足为22 6.如图,△ABC的周长为的垂直平分线交,ABAC于点E cmcm. 周长为14 ,则AB=____
三、解答题,中,,。

如图,在1.为边上一点,
精品文档.
精品文档
)求的度数。

(1。

2)求证:(AB=AC+CD.
的平分线,∠1=∠,求证:BAD在△2.如图所示,ABC中,∠C=2∠B,是∠BAC
OC. =O相交于点,且OB 3.如图,锐角三角形ABC的两条高BE,CD 是等腰三角形;(1)求证:△ABC 是否在∠BAC的平分线上,并说明理由.(2)判断点O
的BAD是BC的中点,作∠EAB=∠,AE边交CB,点已知:如图,在△4.ABC中,AB=ACD CF.F,使AF=AE,连结,延长延长线于点EAD到点.求证:BE=CF
E,且∠A=AB=DC.∠D,交于点与中,与△.如图,△5ABCDCBACBD ;≌)求证:△(1ABEDCE EBC)当∠AEB=50°,求∠(2的度数?精品文档.
精品文档。

是平分6.已知:如图,的中点,,
;(1)求证:平分)试说明线段2有怎样的位置关系?与(、)线段(间有怎样的关系?直接写出结果。

3、
cm B同时从A6 ,的等边三角形,动点P,Q如图,已知△7.(12分)ABC是边长为scm运动的运动的速度是1 ,点/QBC两点出发,分别沿AB,方向匀速运动,其中点P scms,解答下,Q两点都停止运动,设运动时间为t /,当点Q到达点C 时,P速度是2
列问题:
与AB的位置关系如何?请说明理由;当点Q到达点C时,PQ(1)
t是否能成为等边三角形?若能,请求出QP与点的运动过程中,△BPQ(2)在点的
值;若不能,请说明理由.
,于点的垂直平分线交,中,AB=AC24分)(本大题8.12如图,在ABABN ABC?精品文档.
精品文档
0. M,若交BC的延长线于点40??A?NMB的度数;1)求(
0?NMB的度数;的度数改为1)中,其余条件不变,再求)如果将((270A?
(3)你发现有什么样的规律性,试证明之;
(4)若将(1)中的改为钝角,你对这个规律性的认识是否需要加以修改?A
精品文档.。

相关文档
最新文档