FLUENT知识点解读(良心出品必属精品)
(完整版)学习fluent(流体常识及软件计算参数设置)

luent中一些问题----(目录)1 如何入门2 CFD计算中涉及到的流体及流动的基本概念和术语2.1 理想流体(Ideal Fluid)和粘性流体(Viscous Fluid)2.2 牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid)2.3 可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid)2.4 层流(Laminar Flow)和湍流(Turbulent Flow)2.5 定常流动(Steady Flow)和非定常流动(Unsteady Flow)2.6 亚音速流动(Subsonic)与超音速流动(Supersonic)2.7 热传导(Heat Transfer)及扩散(Diffusion)3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?3.1 离散化的目的3.2 计算区域的离散及通常使用的网格3.3 控制方程的离散及其方法3.4 各种离散化方法的区别4 常见离散格式的性能的对比(稳定性、精度和经济性)5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?6.1 可压缩Euler及Navier-Stokes方程数值解6.2 不可压缩Navier-Stokes方程求解7 什么叫边界条件?有何物理意义?它与初始条件有什么关系?8 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?9 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?10 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?12 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?14 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的?15 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?16 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?17 23 在FLUENT运行过程中,经常会出现“turbulence viscous rate”超过了极限值,此时如何解决?而这里的极限值指的是什么值?修正后它对计算结果有何影响18 24 在FLUENT运行计算时,为什么有时候总是出现“reversed flow”?其具体意义是什么?有没有办法避免?如果一直这样显示,它对最终的计算结果有什么样的影响26 什么叫问题的初始化?在FLUENT中初始化的方法对计算结果有什么样的影响?初始化中的“patch”怎么理解?27 什么叫PDF方法?FLUENT中模拟煤粉燃烧的方法有哪些?30 FLUENT运行过程中,出现残差曲线震荡是怎么回事?如何解决残差震荡的问题?残差震荡对计算收敛性和计算结果有什么影响?31数值模拟过程中,什么情况下出现伪扩散的情况?以及对于伪扩散在数值模拟过程中如何避免?32 FLUENT轮廓(contour)显示过程中,有时候标准轮廓线显示通常不能精确地显示其细节,特别是对于封闭的3D物体(如柱体),其原因是什么?如何解决?33 如果采用非稳态计算完毕后,如何才能更形象地显示出动态的效果图?34 在FLUENT的学习过程中,通常会涉及几个压力的概念,比如压力是相对值还是绝对值?参考压力有何作用?如何设置和利用它?35 在FLUENT结果的后处理过程中,如何将美观漂亮的定性分析的效果图和定量分析示意图插入到论文中来说明问题?36 在DPM模型中,粒子轨迹能表示粒子在计算域内的行程,如何显示单一粒径粒子的轨道(如20微米的粒子)?37 在FLUENT定义速度入口时,速度入口的适用范围是什么?湍流参数的定义方法有哪些?各自有什么不同?38 在计算完成后,如何显示某一断面上的温度值?如何得到速度矢量图?如何得到流线?39 分离式求解器和耦合式求解器的适用场合是什么?分析两种求解器在计算效率与精度方面的区别43 FLUENT中常用的文件格式类型:dbs,msh,cas,dat,trn,jou,profile等有什么用处?44 在计算区域内的某一个面(2D)或一个体(3D)内定义体积热源或组分质量源。
FLUENT知识点

FLUENT知识点FLUENT是一种计算流体力学(CFD)软件,用于模拟和分析流体流动和热传递的现象。
它由美国公司Ansys开发,已经成为工程和科学领域中最常用的CFD模拟工具之一、下面是一些关于FLUENT软件的知识点。
1. FLUENT的基本原理:FLUENT使用Navier-Stokes方程组来描述流动过程,它基于流体力学和热力学原理。
它可以模拟各种流动情况,包括稳态和非稳态流动、气流和液流、可压缩和不可压缩流体等。
2.网格生成:在FLUENT中,首先需要生成一个计算网格。
网格的划分对于计算结果的准确性和计算速度至关重要。
FLUENT提供了多种网格生成方法,包括结构网格和非结构网格,用户可以根据需要选择适当的网格类型。
3.边界条件和初始条件:在进行流动模拟之前,需要定义合适的边界条件和初始条件。
边界条件包括流体速度、压力和温度等。
初始条件是指模拟开始时的流体状态。
FLUENT提供了多种边界条件和初始条件的设置选项。
4.物理模型:FLUENT支持多种物理模型,包括湍流模型、传热模型、化学反应模型等。
这些物理模型可以根据流动问题的特点进行选择和调整,以获得准确的计算结果。
5. 数值方法:FLUENT使用有限体积法来离散化Navier-Stokes方程组。
它将流场划分为小的控制体积,并在每个控制体积上进行数值解算。
FLUENT提供了多种求解算法和网格收敛策略,以提高计算的准确性和稳定性。
6.模拟结果的后处理:FLUENT可以输出各种流动参数和图形结果,以便分析和解释模拟结果。
用户可以获取流体速度、压力、温度分布等信息,并绘制流线图、剖面图、轮廓图等。
7.多物理场耦合:FLUENT可以进行多物理场的耦合模拟,例如流体-固体的传热问题、流体-结构的耦合问题等。
这些问题可以使用FLUENT软件中的多物理模块来进行建模和求解。
8.并行计算:FLUENT可以利用多核计算机或计算集群进行并行计算,以加快计算速度。
fluent 相关知识点集锦

)yrogetac ...seitreporP eht ni( n-esahp fo ytisocsiV raluceloM • )yrogetac ...ytisneD eht ni( n-esahp fo ytisneD • )yrogetac ...sesahP eht ni( n-esahp fo noitcarf emuloV • �报汇据数和示显象图的目项列所下如生产以可你算计 FOV 对 型模 FOV 。间之 5.0~2.0 在置设应子因弛松欠的量变有所 �性定稳高提了为 �案方 FOV 的式隐态稳用使你果如 noitalum roF etatS-ydaetS eht rof noitaxaleR-rednU 。长步间时小减是法方个一另的性定稳高提。小减须必子因弛松欠 �为行散发、定稳不现出解�时 1 为置设子因弛松欠果如�时拟模何任行进 TNEULF 用当 ...noituloS slortnoC evloS 。8.0-7.0 为子因弛松欠选力压为议建性定稳 高 提了为时案方 OSIP 用�算计的上格网形角三和形边四在于对。 �数次代迭的少较用内步 间 时一每求要� 度速敛收和定稳的期预到达能且并 1 到子因弛松欠的量变有所加增能你常通 。定稳的解弱减会不而�值的子因弛松欠有所加增许允时 OSIP 用使。案方 OSIP 用采议建 算 计流变瞬常通 。中子因弛松欠和案方合耦力压度速的用使你在是化变个一另的器解求置设 snoitalum roF tnednepeD-emiT eht rof noitaxaleR-rednU dn a gnilpuoC yticoleV -erusserP ...noituloS slortnoC evloS 。snoitauqe noitcarf emulov 为 em ehcs noitazitercsid KCIUQ ro redro-dnoces 用采当 应 你�ssenprahs�度晰清的面界间相高提了为�时用使 emehcs ticilpxe reluE ro ticilpmi eht 当 snoitalum roF ticilpxE reluE dna ticilpmI eht rof noitceleS emehcS noitazitercsiD ...noituloS slortnoC evloS .emehcs !OTSERP eht ro emehcs noitalopretni erusserp dethgiew-ecrof-ydob 用使当应你�算计 FOV 的有所对 emehcS noitalop retnI erusserP 。的要重常非是域区的水满充在选不而域区的气空满充在 选置位的力压考参�统系的水和气空含包在�如例。量算计的少来带域区的值零非的大在现 出化变力压比将 �域区的小化变力压在现出域区的零为力压对相果如 。体流度密低于大化变 压 静的体流度密高时布分度速的同相定给当为因是这。 �相液个多或个一和相气个一有的算 计你果如�相气�是就也�体流的小最度密含包是总里那�域区的样这在当应置位的择选你 ...snoitidnoC gnitarepO enifeD 。置位个这动移中.lenap snoitidnoC gnitarepO 在 noitacoL erusserP ecnerefeR 的新定指过通以可你。 �0�0�0�点近靠或心 中元单在置位的力压考参 �况情的认默 。置位的算计力压少减能到动移该应置位的力压考参 noitacoL erusserP ecnerefeR eht gnitteS 95 �下如举列议建条几�性敛收和度精的解求型模 FOV 高提了为 �ledoM FOV eht rof seigetartS noituloS�略策解求的型模 FOV1.7.02
fluent笔记讲解

fluent笔记讲解Discretization离散Node values节点值,coarsen粗糙refine 细化curvature曲率,X-WALL shear Stress 壁面切应力的X方向。
strain rate应变率1、求解器:(solver)分为分离方式(segeragated)和耦合方式(coupled),耦合方式计算高速可压流和旋转流动等复杂高参数问题时比较好,耦合隐式(implicit)耗时短内存大,耦合显式(explicit)相反;2.收敛判据:观察残差曲线。
可以在残差监视器面板中设置Convergence Criterion(收敛判据),比如设为10 -3 ,则残差下降到小于10 -3 时,系统既认为计算已经收敛并同时终止计算。
(2)流场变量不再变化。
有时候不论怎样计算,残差都不能降到收敛判据以下。
此时可以用具有代表性的流场变量来判断计算是否已经收敛——如果流场变量在经过很多次迭代后不再发生变化,就可以认为计算已经收敛。
(3)总体质量、动量、能量达到平衡。
在Flux Reports (通量报告)面板中检查质量、动量、能量和其他变量的总体平衡情况。
通过计算域的净通量应该小于0.1%。
Flux Reports(通量报告)面板如图2-17 所示,其启动方法为:Report -> Fluxes3.一阶精度与二阶精度:First Oder Upwind and Second Oder Upwind(一阶迎风和二阶迎风)①一阶耗散性大,有比较严重的抹平现象;稳定性好②二阶耗散性小,精度高;稳定性较差,需要减小松弛因子4.流动模型的选择①inviscid无粘模型:当粘性对流场影响可以忽略时使用;例如计算升力。
②laminar层流模型:考虑粘性,且流动类型为层流。
③Spalart-Allmaras (S-A模型):单方程模型,适用于翼型、壁面边界层流动,不适于射流等自由剪切湍流问题。
FLUENT基础知识总结

FLUENT基础知识总结Fluent是一种专业的计算流体动力学软件,广泛应用于工程领域,用于模拟流体动力学问题。
下面是关于Fluent软件的基础知识总结。
1. Fluent软件概述:Fluent是一种基于有限体积法的流体动力学软件,可用于模拟和分析包括流体流动、传热、化学反应等在内的多种物理现象。
它提供了强大的求解器和网格生成工具,可处理各种复杂的流体问题。
2.求解器类型:Fluent软件提供了多种类型的求解器,用于求解不同类型的流体动力学问题。
其中包括压力-速度耦合求解器、压力-速度分离求解器、多相流求解器等。
用户可以根据具体的问题选择合适的求解器进行模拟计算。
3.网格生成:网格生成是流体模拟中的重要一步,它将复杂的物理几何体离散化成小的几何单元,用于计算流体动力学的变量。
Fluent提供了丰富的网格生成工具,包括结构化网格和非结构化网格。
用户可以通过手动创建网格或使用自动网格生成工具来生成合适的网格。
4.区域设置:在使用Fluent进行模拟计算之前,需要对模拟区域进行设置。
区域设置包括定义物理边界条件、初始化流场参数、设定物理模型参数等。
这些设置将直接影响到最终的模拟结果,因此需要仔细调整和验证。
5.模拟计算过程:模拟计算的过程主要包括输入网格、设置求解器和边界条件、迭代求解控制以及输出结果。
在模拟过程中,用户可以根据需要对物理模型参数、网格精度等进行调整,以获得准确的计算结果。
6.模型与边界条件:Fluent提供了多种物理模型和边界条件设置,包括连续介质模型、湍流模型、辐射模型、化学反应模型等。
用户可以根据具体问题选择合适的模型和边界条件,并根据需要进行参数调整。
7.结果分析:模拟计算结束后,用户可以对计算结果进行分析和后处理。
Fluent提供了丰富的后处理工具,可以对流动场、温度场、压力场等进行可视化展示、数据提取和统计分析。
这有助于用户深入理解流体动力学问题并作出合理的决策。
8.并发计算:Fluent支持并发计算,即使用多台计算机进行模拟计算,以提高计算速度和效率。
11 Fluent详解

? 依赖于温度的物性参数,温度必须采用 Kelvin 或Rankine温标
网格长度单位
? 将网格读入FLUENT 的时候,单位为米
Fluent主要文件类型
Fluent主要文件类型(续)
边界条件的导入、导出
? 文本命令: file -> write-bc file -> read-bc
Fluent应用
确定FLUENT中的单位制
? Define -> Units
FLUENT对单位的限制
? 以下情况必须使用SI单位
? 边界轮廓数据( boundary profiles ) ? 源项(source terms ) ? 自定义流场函数( custom field functions ) ? 用户自定义函数( user-defined functions ) ? 外部XY plot数据(data in externally-created
算例一:充分发展管流
? 进出口为周期性边界条件.mass flow rate=0.0008 kg/s
算例一:充分发展管流
890 cells
横截面速度分布
3800 cells
不对称,明 显失真
值视监差残
0.001
值视监差残
0.0001
算例一:充分发展管流
? 结论:
? 粗网格一般定性上是正确的。 ? 密网格有时会明显偏离真实解。
Using Full Multigrid (FMG) Initialization
? customize the FMG initialization
solve -> initialize -> set-fmg-initialization
FLUENT知识点解析(良心出品必属精品)

一、基本设置1.Double Precision的选择启动设置如图,这里着重说说Double Precision(双精度)复选框,对于大多数情况,单精度求解器已能很好的满足精度要求,且计算量小,这里我们选择单精度。
然而对于以下一些特定的问题,使用双精度求解器可能更有利[1]。
a.几何特征包含某些极端的尺度(如非常长且窄的管道),单精度求解器可能不能足够精确地表达各尺度方向的节点信息。
b.如果几何模型包含多个通过小直径管道相互连接的体,而某一个区域的压力特别大(因为用户只能设定一个总体的参考压力位置),此时,双精度求解器可能更能体现压差带来的流动(如渐缩渐扩管的无粘与可压缩流动模拟)。
c.对于某些高导热系数比或高宽纵比的网格,使用单精度求解器可能会遇到收敛性不佳或精确度不足不足的问题,此时,使用双精度求解器可能会有所帮助。
[1] 李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战:FLUENT GAMBIT ICEM CFD Tecplot[M]. 北京,人民邮电出版社,2011:114-1162.网格光顺化用光滑和交换的方式改善网格:通过Mesh下的Smooth/Swap来实现,可用来提高网格质量,一般用于三角形或四边形网格,不过质量提高的效果一般般,影响较小,网格质量的提高主要还是在网格生成软件里面实现,所以这里不再用光滑和交换的方式改善网格,其原理可参考《FLUENT全攻略》(已下载)。
3.Pressure-based与Density-based求解器设置如图。
下面说一说Pressure-based和Density-based 的区别:Pressure-Based Solver是Fluent的优势,它是基于压力法的求解器,使用的是压力修正算法,求解的控制方程是标量形式的,擅长求解不可压缩流动,对于可压流动也可以求解;Fluent 6.3以前的版本求解器,只有Segregated Solver和Coupled Solver,其实也是Pressure-Based Solver的两种处理方法;Density-Based Solver是Fluent 6.3新发展出来的,它是基于密度法的求解器,求解的控制方程是矢量形式的,主要离散格式有Roe,AUSM+,该方法的初衷是让Fluent具有比较好的求解可压缩流动能力,但目前格式没有添加任何限制器,因此还不太完善;它只有Coupled的算法;对于低速问题,他们是使用Preconditioning方法来处理,使之也能够计算低速问题。
FLUENT知识点

一、根本设置1.Double Precision的选择启动设置如图,这里着重说说Double Precision〔双精度〕复选框,对于大多数情况,单精度求解器已能很好的满足精度要求,且计算量小,这里我们选择单精度。
然而对于以下一些特定的问题,使用双精度求解器可能更有利[1]。
a.几何特征包含*些极端的尺度〔如非常长且窄的管道〕,单精度求解器可能不能足够准确地表达各尺度方向的节点信息。
b.如果几何模型包含多个通过小直径管道相互连接的体,而*一个区域的压力特别大〔因为用户只能设定一个总体的参考压力位置〕,此时,双精度求解器可能更能表达压差带来的流动〔如渐缩渐扩管的无粘与可压缩流动模拟〕。
c.对于*些高导热系数比或高宽纵比的网格,使用单精度求解器可能会遇到收敛性不佳或准确度缺乏缺乏的问题,此时,使用双精度求解器可能会有所帮助。
2.网格光顺化用光滑和交换的方式改善网格:通过Mesh下的Smooth/Swap来实现,可用来提高网格质量,一般用于三角形或四边形网格,不过质量提高的效果一般般,影响较小,网格质量的提高主要还是在网格生成软件里面实现,所以这里不再用光滑和交换的方式改善网格,其原理可参考"FLUENT全攻略"〔已下载〕。
3.Pressure-based与Density-based求解器设置如图。
下面说一说Pressure-based和Density-based的区别:Pressure-Based Solver是Fluent的优势,它是基于压力法的求解器,使用的是压力修正算法,求解的控制方程是标量形式的,擅长求解不可压缩流动,对于可压流动也可以求解;Fluent 6.3以前的版本求解器,只有Segregated Solver和Coupled Solver,其实也是Pressure-Based Solver的两种处理方法;Density-Based Solver是Fluent 6.3新开展出来的,它是基于密度法的求解器,求解的控制方程是矢量形式的,主要离散格式有Roe,AUSM+,该方法的初衷是让Fluent具有比拟好的求解可压缩流动能力,但目前格式没有添加任何限制器,因此还不太完善;它只有Coupled 的算法;对于低速问题,他们是使用Preconditioning方法来处理,使之也能够计算低速问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、基本设置1.Double Precision的选择启动设置如图,这里着重说说Double Precision(双精度)复选框,对于大多数情况,单精度求解器已能很好的满足精度要求,且计算量小,这里我们选择单精度。
然而对于以下一些特定的问题,使用双精度求解器可能更有利[1]。
a.几何特征包含某些极端的尺度(如非常长且窄的管道),单精度求解器可能不能足够精确地表达各尺度方向的节点信息。
b.如果几何模型包含多个通过小直径管道相互连接的体,而某一个区域的压力特别大(因为用户只能设定一个总体的参考压力位置),此时,双精度求解器可能更能体现压差带来的流动(如渐缩渐扩管的无粘与可压缩流动模拟)。
c.对于某些高导热系数比或高宽纵比的网格,使用单精度求解器可能会遇到收敛性不佳或精确度不足不足的问题,此时,使用双精度求解器可能会有所帮助。
[1] 李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战:FLUENT GAMBIT ICEM CFD Tecplot[M]. 北京,人民邮电出版社,2011:114-1162.网格光顺化用光滑和交换的方式改善网格:通过Mesh下的Smooth/Swap来实现,可用来提高网格质量,一般用于三角形或四边形网格,不过质量提高的效果一般般,影响较小,网格质量的提高主要还是在网格生成软件里面实现,所以这里不再用光滑和交换的方式改善网格,其原理可参考《FLUENT全攻略》(已下载)。
3.Pressure-based与Density-based求解器设置如图。
下面说一说Pressure-based和Density-based 的区别:Pressure-Based Solver是Fluent的优势,它是基于压力法的求解器,使用的是压力修正算法,求解的控制方程是标量形式的,擅长求解不可压缩流动,对于可压流动也可以求解;Fluent 6.3以前的版本求解器,只有Segregated Solver和Coupled Solver,其实也是Pressure-Based Solver的两种处理方法;Density-Based Solver是Fluent 6.3新发展出来的,它是基于密度法的求解器,求解的控制方程是矢量形式的,主要离散格式有Roe,AUSM+,该方法的初衷是让Fluent具有比较好的求解可压缩流动能力,但目前格式没有添加任何限制器,因此还不太完善;它只有Coupled的算法;对于低速问题,他们是使用Preconditioning方法来处理,使之也能够计算低速问题。
Density-Based Solver下肯定是没有SIMPLEC,PISO这些选项的,因为这些都是压力修正算法,不会在这种类型的求解器中出现的;一般还是使用Pressure-Based Solver解决问题。
基于压力的求解器适用于求解不可压缩和中等程度的可压缩流体的流动问题。
而基于密度的求解器最初用于高速可压缩流动问题的求解。
虽然目前两种求解器都适用于各类流动问题的求解(从不可压缩流动到高度可压缩流动),但对于高速可压缩流动而言,使用基于密度的求解器通常能获得比基于压力的求解器更为精确的结果。
4.axisymmetric和axisymmetric swirl从字面的意思很好理解axisymmetric和axisymmetric swirl的差别:axisymmetric:是轴对称的意思,也就是关于一个坐标轴对称,2D的axisymmetric问题仍为2D问题。
而axisymmetric swirl:是轴对称旋转的意思,就是一个区域关于一条坐标轴回转所产生的区域,这产生的将是一个回转体,是3D的问题。
在Fluent中使用这个,是将一个3D的问题简化为2D问题,减少计算量,需要注意的是,在Fluent中,回转轴必须是x轴。
5.操作工况参数(Operating Conditions)①操作压力的介绍关于参考压力的设定,首先需了解有关压力的一些定义。
ANSYS FLUENT中有以下几个压力,即Static Pressure(静压)、Dynamic Pressure(动压)与Total Pressure(总压);Absolute Pressure (绝对压力)、Relative Pressure(参考压力)与Operating Pressure (操作压力)。
这些压力间的关系为,Total Pressure(总压)=Static Pressure (静压)+Dynamic Pressure(动压);Absolute Pressure(绝对压力)=Operating Pressure(操作压力)+Gauge Pressure(表压)。
其中,静压、动压和总压是流体力学中关于压力的概念。
静压是测量到的压力,动压是有关速度动能的压力,是流动速度能量的体现。
而绝对压力、操作压力和表压是FLUENT引入的压力参考量,在ANSYS FLUENT中,所有设定的压力都默认为表压。
这是考虑到计算精度的问题。
②操作压力的设定设定操作压力时需要注意的事项如下:●对于不可压缩理想气体的流动,操作压力的设定直接影响流体密度的计算,因为对于理想气体而言,流动的密度由理想气体方程获得,理想气体方程中的压力为操作压力。
●对于低马赫数的可压缩流动而言,相比绝对静压,总压降是很小的,因此其计算精度很容易受到数值截断误差的影响。
需要采取措施来避免此误差的形成,ANSYS FLUENT通过采用表压(由绝对压力减去操作压力)的形式来避免截断误差的形成,操作压力一般等于流场中的平均总压。
●对于高马赫数可压缩流动的求解而言,因为此时的压力比低马赫可压缩流动的大得多,所以求解过程中的截断误差的影响不大,可以不设定表压。
由于ANSYS FLUENT中所有需输入的压力都为表压,因此此时可以将操作压力设定为0(这样可以最小化由于压力脉动而引起的误差),使表压与绝对压力相等。
●如果密度设定为常数或者其值由通过温度变化的函数获得,操作压力并没有在计算密度的过程中被使用。
●默认的操作压力为101325Pa。
操作压力的设定主要基于两点考虑,一是流动马赫数的大小,二是密度计算方法。
表格 1 操作压力的推荐设置密度关系式马赫数操作压力理想气体定律大于0.1 0或约等于流场的平均压力理想气体定律小于0.1 约等于流场的平均压力关于温度的函数不可压缩不使用常数不可压缩不使用不可压缩约等于流场的平均压力不可压缩的理想气体③关于参考压力位置的设定对于不涉及任何压力边界条件的不可压缩流动,ANSYS FLUENT在每次迭代后要调整表压值。
这个过程通过使用参考压力位置处(或该位置附近)节点的压力完成。
因此,参考压力位置处的表压应一直为0。
如果使用了压力边界条件,则不会使用到上述关系,因此参考压力位置不被使用。
参考压力位置默认为等于或接近(0,0,0)的节点中心位置。
实际计算中可能需要设置参考压力位置到绝对静压已知的位置处。
在Operating Conditions对话框中的Reference Pressure Location选项组中设置新的参考压力位置的x,y,z的坐标即可。
如果要考虑某一方向的加速度,如重力,可以勾选Gravity复选框。
对于VOF计算,应当选择Specified Operating Density,并且在Operating Density 下为最轻相设置密度。
这样做排除了水力静压的积累,提高了round-off精度为动量平衡。
同样需要打开Implicit Body Force,部分平衡压力梯度和动量方程中体积力,提高解的收敛性。
Reference Pressure Location(参考压强位置)应是位于流体永远是100%的某一相(空气)的区域,光滑和快速收敛是其基本条件。
二、求解模型的设定1.流动模型的设置①无粘模型理想流体是一种设想的没有粘性的流体,在流动时各层之间没有相互作用的切应力,即没有内摩擦力。
十分明显,理想流体对于切向变形没有任何抗拒能力。
应该强调指出,真正的理想流体在客观实际中是不存在的,它只是实际流体在某些条件下的一种近似模型。
在Inviscid流动模型应用方面,无粘流动忽略了粘性对流动的影响,这对高雷诺数的流动是合适的,因为高雷诺数流动惯性力的作用远大于粘性力的作用,粘性力可以忽略,所以可以将其考虑成无粘流动。
无粘流动的求解更快,其激波在某些值上预测的偏高。
无粘流动能对流动状态和激波位置进行快速预测。
马赫数与激波马赫数的定义是v=Ma它表示流体的流动速度与当地声速之比,是一个无量纲的参量。
对应于1M=和1M>这三种情况的流动分别称为亚声速流、声M<,1速流和超声速流。
当马赫数很小时,速度的相对变化只能引起很小的密度相对变化,但当马赫数很大时,则将引起较大的密度相对变化,这也说明了马赫数是流体压缩性的一个表征。
当飞机、炮弹和火箭以超音速飞行时,或者发生强爆炸、强爆震时,气流受到急剧的压缩,压强和密度突然显著增加,这时所产生的压强扰度将比声速大得多的速度传播,波阵面所到之处气流的各种参数都将发生显著变化,参数突跃。
这样一个强间断面叫做激波阵面。
渐缩渐扩管的流动是计算流体力学模拟的经典问题之一。
在这类流动中,激波的出现是流动中可压缩效应的体现。
精确的激波模拟是CFD研究的热点之一。
为了更好捕捉压力梯度,需要采用较细的网格并结合合适的数值模拟和格式。
很多实际模拟中,局部网格的自适应会很有帮助。
②层流模型流动有层流和湍流之分,判断湍流的标准可以参考[2],这里写出内流的判断标准:Re 2300UD ρμ=>对于内流而言,一般大多数流动都是湍流,一般不使用湍流模型。
而对一些外流而言(如外掠平板或是外掠障碍物),则很有可能是层流运动。
③ 湍流模型的评价与选择a. k ε-湍流模型这里我们使用的湍流模型是Standard k ε-模型,这种模型应用较多,计算量适中,有较多数据积累和比较高的精度,对于曲率较大和压力梯度较强等复杂流动模拟效果欠佳。
一般工程计算都使用该模型,其收敛性和计算精度能满足一般的工程计算要求,但模拟旋流和绕流时有缺陷。
壁面函数的选择对于有壁面的流动,当主流为充分发展湍流时,根据离壁面法线距离不同,可将流动划分为壁面区(或称内区、近壁区)和核心区(或称外区)。
核心区是完全湍流区,为充分发展的湍流。
在壁面区,由于有壁面的影响,流动与核心区不同。
壁面区可分为3个子层:粘性底层、过渡层和对数率层。
[2] 李鹏飞,徐敏义,王飞飞.精通CFD 工程仿真与案例实战:FLUENT GAMBIT ICEM CFD Tecplot[M]. 北京,人民邮电出版社,2011:122粘性底层是一个紧贴壁面的极薄层,在动量、热量和质量的交换过程中粘性力起主要作用,而湍流切应力可以忽略,因此流动几乎可以看成层流流动,且在平行于壁面方向上的速度呈线性分布。