迷宫问题 火车车厢重排问题 实验报告
迷宫的实验报告

一、实验目的1. 了解迷宫实验的基本原理和方法;2. 探究迷宫实验在心理学研究中的应用;3. 通过迷宫实验,分析被试者的认知能力和决策能力。
二、实验原理迷宫实验起源于古希腊,是一种经典的心理学实验。
实验中,被试者需要在迷宫中找到出口,以此模拟人类在面对复杂环境时的认知过程。
迷宫实验主要考察被试者的空间认知能力、决策能力、记忆能力和心理承受能力等。
三、实验方法1. 实验材料:迷宫卡片、计时器、实验指导语等;2. 实验步骤:(1)被试者随机分组,每组人数为5人;(2)主试者向被试者发放迷宫卡片,并讲解实验规则;(3)被试者按照实验指导语,在规定时间内完成迷宫;(4)记录被试者完成迷宫所需时间、走过的路径和遇到的问题;(5)对实验数据进行统计分析。
四、实验结果与分析1. 实验结果本次实验共收集有效数据100份。
根据实验结果,被试者在迷宫实验中的表现如下:(1)完成迷宫所需时间:平均值为5分钟;(2)走过的路径:大部分被试者能够顺利找到出口,但部分被试者在迷宫中迷失方向;(3)遇到的问题:被试者在迷宫中遇到的问题主要包括路径选择、记忆问题、心理压力等。
2. 实验分析(1)空间认知能力:被试者在迷宫实验中的空间认知能力整体较好,大部分被试者能够顺利找到出口。
但在迷宫中,部分被试者容易迷失方向,说明他们在空间认知方面存在一定程度的不足。
(2)决策能力:在迷宫实验中,被试者需要根据路径选择和记忆来做出决策。
实验结果显示,大部分被试者能够根据迷宫的布局和记忆做出正确的决策,但也有部分被试者在决策过程中出现失误。
(3)记忆能力:迷宫实验对被试者的记忆能力提出了较高要求。
实验结果显示,被试者在迷宫实验中的记忆能力整体较好,但部分被试者在记忆过程中出现遗忘现象。
(4)心理承受能力:在迷宫实验中,被试者需要面对复杂的环境和压力。
实验结果显示,大部分被试者能够保持冷静,但也有部分被试者在心理压力下出现焦虑、烦躁等现象。
五、结论1. 迷宫实验能够有效考察被试者的空间认知能力、决策能力、记忆能力和心理承受能力;2. 在迷宫实验中,被试者的表现受到多种因素的影响,包括个人能力、心理素质等;3. 迷宫实验在心理学研究中的应用具有重要意义,可以为相关研究提供有力支持。
迷宫问题_上机实验报告

一、实验目的1. 熟悉迷宫问题的基本概念和解决方法。
2. 掌握一种或多种迷宫求解算法。
3. 通过编程实践,提高算法设计和编程能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm三、实验内容迷宫问题是指在一个二维网格中,给定起点和终点,求解从起点到终点的路径。
本实验采用深度优先搜索(DFS)和广度优先搜索(BFS)两种算法进行迷宫求解。
1. 深度优先搜索(DFS)(1)算法原理:DFS算法是一种非确定性算法,其基本思想是沿着一个分支一直走到底,直到无法继续为止,然后回溯到上一个节点,再选择另一个分支继续走。
(2)算法步骤:a. 初始化迷宫,将起点设置为当前节点,将终点设置为目标节点。
b. 创建一个栈,将起点入栈。
c. 当栈不为空时,执行以下操作:a. 弹出栈顶元素,将其标记为已访问。
b. 判断是否为终点,如果是,则输出路径并结束算法。
c. 获取当前节点的上下左右邻居节点,如果邻居节点未被访问,则将其入栈。
d. 当栈为空时,算法结束。
(3)代码实现:```pythondef dfs(maze, start, end):stack = [start]visited = set()path = []while stack:node = stack.pop()if node == end:return path + [node]visited.add(node)for neighbor in get_neighbors(maze, node): if neighbor not in visited:stack.append(neighbor)path.append(node)return Nonedef get_neighbors(maze, node):x, y = nodeneighbors = []if x > 0 and maze[x-1][y] == 0:neighbors.append((x-1, y))if y > 0 and maze[x][y-1] == 0:neighbors.append((x, y-1))if x < len(maze)-1 and maze[x+1][y] == 0:neighbors.append((x+1, y))if y < len(maze[0])-1 and maze[x][y+1] == 0:neighbors.append((x, y+1))return neighbors```2. 广度优先搜索(BFS)(1)算法原理:BFS算法是一种确定性算法,其基本思想是从起点开始,按照一定顺序遍历所有节点,直到找到终点。
迷宫问题求解算法设计实验报告

迷宫问题求解算法设计实验报告一、引言迷宫问题一直是计算机科学中的一个经典问题,其解决方法也一直是研究者们探讨的重点之一。
本实验旨在通过设计不同的算法,对迷宫问题进行求解,并对比不同算法的效率和优缺点。
二、算法设计1. 暴力搜索算法暴力搜索算法是最简单直接的求解迷宫问题的方法。
其基本思路是从起点开始,按照某种规则依次尝试所有可能的路径,直到找到终点或所有路径都被尝试过为止。
2. 广度优先搜索算法广度优先搜索算法也称为BFS(Breadth First Search),其基本思路是从起点开始,按照层次依次遍历每个节点,并将其相邻节点加入队列中。
当找到终点时,即可得到最短路径。
3. 深度优先搜索算法深度优先搜索算法也称为DFS(Depth First Search),其基本思路是从起点开始,沿着某一个方向走到底,再回溯到上一个节点继续向其他方向探索。
当找到终点时,即可得到一条路径。
4. A* 算法A* 算法是一种启发式搜索算法,其基本思路是综合考虑节点到起点的距离和节点到终点的距离,选择最优的路径。
具体实现中,可以使用估价函数来计算每个节点到终点的距离,并将其加入优先队列中。
三、实验过程本实验使用 Python 语言编写程序,在不同算法下对迷宫问题进行求解。
1. 数据准备首先需要准备迷宫数据,可以手动输入或从文件中读取。
本实验使用二维数组表示迷宫,其中 0 表示墙壁,1 表示路径。
起点和终点分别用 S 和 E 表示。
2. 暴力搜索算法暴力搜索算法比较简单直接,只需要按照某种规则遍历所有可能的路径即可。
具体实现中,可以使用递归函数来实现深度遍历。
3. 广度优先搜索算法广度优先搜索算法需要使用队列来存储待遍历的节点。
具体实现中,每次从队列中取出一个节点,并将其相邻节点加入队列中。
4. 深度优先搜索算法深度优先搜索算法也需要使用递归函数来实现深度遍历。
具体实现中,在回溯时需要将已经访问过的节点标记为已访问,防止重复访问。
火车车厢重排问题,队列,c语言

计算机科学与工程学院
《算法与数据结构》试验报告[一]
专业班级10级计算机工程02 试验地点计算机大楼计工教研室学生学号1005080222 指导教师蔡琼
学生姓名肖宇博试验时间2012-4-21
试验项目算法与数据结构
试验类别基础性()设计性()综合性(√)其它()试
验目的及要求(1)掌握队列的特点及其存储方法;(2)掌握队列的常见算法和程序实现。
成绩评定表
类别评分标准分值得分合计
上机表现积极出勤、遵守纪律
主动完成设计任务
30分
程序与报告程序代码规范、功能正确
报告详实完整、体现收获
70分
goto label2;
}
else if(r!=0)
{
printf("重排前的序列为\n");
for(i=1;i<=k;i++)
{
printf("%d\t",a[i]);
}
printf("\n");
printf("排列后的车厢号为:\n");
reset(q,w1,w2,k);
}
else
{
printf("我也不知道错哪了?'");
}
}
四、测试用例(尽量覆盖所有分支)
1.输入正确的序列后得到结果如图:
2.倒输这几个数如图:
3.顺序输这个序列
4.如果输入的车厢数有误的时候(为负数或零)
5.如果输入的序列不是连续自然数。
火车车厢重排问题

⽕车车厢重排问题2014-11-04主要数据结构:栈题⽬:⼀列⽕车要将n节车厢分别送往n个车站按1~n的次序编号,⽕车按照n,n-1,…1的编号次序经过车站。
假设车厢的编号就是其⽬的地车站的编号。
要求:给定⼀个任意的车厢排列次序。
重新排列车厢,使其按照从1到n的次序排列。
规定重排时,只能从⼊轨到缓冲铁轨,或者从缓冲铁轨到出轨。
总的思路:⾸先:将所需要重排的车厢编号从左到右依次输⼊数组carrage中;然后:对carrage中的元素进⾏从左往右逐个遍历,如果符合下⼀个输出,则直接将其输出,并且遍历所有的缓冲轨道,查找是否有符合下⼀个输出的车厢,有的话便将其输出,否则将其压⼊缓冲轨道未经优化的代码:1 #include <iostream>2 #include <stack>3using namespace std;45 stack<int> stack_final;678void Output(int& minH, int& minS, stack<int> H[], int k, int n) {9// put the car from the strack to the output line, and change the minH and minS10int index; // the index of the car11//delete the minist car number from the minS12 stack_final.push(H[minS].top());13 H[minS].pop();14 cout << "Move car " << minH << "from holding track " << minS << " to output line" << endl;15//serch all the track's top, find the new minH and minS16 minH = n+2;17for (int i= 0; i < k; i++) {18if (!H[i].empty() && (index = H[i].top()) < minH) {19 minH = index;20 minS = i;21 }22 }23 }2425bool Input(int c, int& minH, int& minS, stack<int> H[], int k, int n) {26// put the new car c into the track27// if there is no available track, then return false, else return true28// find the best track for the car c29// initial30int BestTrack = 0; //the best track now31int BestTop = n+1; //the best track's top car32int index; //the index for the car33// search the k track34for (int i= 0; i < k; i++) {35if (!H[i].empty()) {36 index = H[i].top();37if (c < index && index < BestTop) {38//the top car's number is the smallest39 BestTop = index;40 BestTrack = i;41 }42 } else { // the track is empty43if (!BestTrack) {44 BestTrack = i;45 }46 }47 }48if (!BestTrack) {49return false; //there is available track to use50 }51 H[BestTrack].push(c);52 cout << "Move car " << c << "from input to holding track " << BestTrack << endl;53//if it is essencial, then change the minH and minS54if (c < minH) {55 minH = c;56 minS = BestTrack;57 }58return true;59 }6061bool Railroad(int input[], int n, int k) {62//k63// if it resort succed, then return true, else return false64// create the stack according to the k65 stack<int> *H;66 H = new stack<int> [k];67int NowOut = 1; // the next number of car to putout68int minH = n+1; //the minist number car in the k69int minS; //the minist number's strack70// resort the car71for (int i = n-1; i >= 0; i--) {72int number = input[i];73if (number == NowOut) {74 cout << "Move car " << number << " from the input line to the output line\n";75 stack_final.push(number);76 NowOut++;77while (minH == NowOut) {78 Output (minH, minS, H, k, n);79 NowOut++;80 }81 } else {82int end = 0;83for (int j = i; j > 0; j--) {84if (input[j-1] < input[j]) {85 end = j;86break;87 }88 }89for (int j = end; j <= i; j++) {90if (!Input (input[j], minH, minS, H, k, n)) {91return false;92 }93 }94if (end) {95 i = end;96 }97 }98 }99return true;100 }101102int main() {103int n, *input;104 cin >> n;105 input = new int[n];106for (int i = 0; i < n; i++) {107 cin >> input[i];108 }109if (Railroad(input, n, n-1)) {110 cout << "resort succed!\n";111while (!stack_final.empty()) {112 cout << stack_final.top() << "";113 stack_final.pop();114 }115 } else {116 cout << "failed\n";117 }118 }View Code经过优化之后的代码:增加的条件:车厢可以从排在后⾯的缓冲轨道移到前⾯的缓冲轨道。
火车重排问题

火车车厢重排问题1.1火车车厢重排问题一列货运列车共有n节车厢,每节车厢将停放在不同的车站。
假定n个车站的编号分别为1~n,货运列车按照第n站至第1站的顺序经过这些车站。
车厢编号与他们的目的地一样。
为了便于从列车上卸掉相应的车厢,必须重排车厢顺序,使得各车厢从前往后按编号1到n的次序排列。
当所有车厢按照这种次序排列时,在每个车站只需卸掉最后一个车厢即可。
1.2想法一列火车的每个车厢按顺序从入轨进入不同缓冲轨,缓冲轨重排后的进入出轨,重新编排成一列货车。
比如:编号为3的车厢进入缓冲轨1,则下一个编号小于3的车厢则必须进入下一个缓冲轨2,而编号大于3的车厢则进入缓冲轨1,排在3号车厢的后面,这样,出轨的时候才可以按照从小到大的顺序重新编排我们在一个转轨站里完成重拍的工作,在转轨站有一个入轨,一个出轨和k个缓冲轨(位于入轨和出轨之间)。
下面的图示就是一个转轨站,其中有3个缓冲轨,H1,H2,H3。
(PPT中有动态演示)1.3算法描述:那么缓冲轨就不是FILO 而是FIFO了那么就要用队列来实现车厢重排了,算法的描述和栈实现的基本一样的,只是OutPut和Hold 函数改了一下,将一截车厢移动到缓冲轨时,车厢c应该移动到这样的缓冲轨中:该缓冲轨中现有各车厢的编号均小于c,如果有多个缓冲轨都满足这一条件,那么选择其中左端车厢编号最大的那个缓冲轨,否则选择一个空的缓冲轨(如果存在的话)1.4代码:#include<iostream>#include<stack>usingnamespace std;template<class T>void PrintfNum(T a[], constint& n);// move cars from holding track to output trackvoid OutPut(stack<int> t[],int n, int totalStack,int& min){//move car from holding trackfor(int x = 0;x <totalStack; ++x){if(!t[x].empty() && t[x].top() == min){cout<<"Move car "<< t[x].top() <<" from holding track "<< x <<" to output"<<endl;t[x].pop();++min;x = -1; // find next car from the first holding track 0}}}// move cars from input track to holding trackbool Hold(stack<int> t[],int n , int totalStack){for(int i = 0;i <totalStack; ++i){if(t[i].empty() || (!t[i].empty() && t[i].top() > n)){cout<<"holding track "<<i<<" hold car "<< n <<endl;t[i].push(n);returntrue; // we already find a holding track, so break the loop. }}returnfalse;}int main(int argc, char* argv[]){constint NUM = 9;constint STACKNUM = 3;stack<int> t[STACKNUM];int min = 1;int a[NUM] = {5,8,1,7,4,2,9,6,3};PrintfNum(a,NUM);for(int i = NUM - 1; i>= 0; --i){if(a[i] == min){// try to move cars from input track or holding track cout<<"Move car "<< a[i] <<" from input to output"<<endl;++min;OutPut(t,a[i],STACKNUM,min);}else{// move cars from input track to holding trackif(!Hold(t,a[i],STACKNUM)){cout<<"Not enough holding track"<<endl;break;}}} getchar();return 0;}template<class T>void PrintfNum(T a[], constint& n){for(int i = 0; i< n; ++i){cout<< a[i] <<",";}cout<<endl;}1.5火车车厢重排问题决策过程H1H2H31.5.1初始数组H1 H2 H31.5.2H1H2H3H1 H2 H3H1 H2 H3H1 H2 H3H1 H2 H3H1 H2 H3H1H2 H3H1 H2 H3H1 H2 H3H1 H2 H3H1 H2 H3 1.6程序运行截图。
数据结构之迷宫实训报告

一、实训背景与目的随着计算机技术的不断发展,数据结构作为计算机科学的基础课程,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。
迷宫问题作为数据结构中的一个经典问题,不仅能够帮助学生深入理解栈和队列等数据结构,还能锻炼学生算法设计和编程能力。
本次实训旨在通过解决迷宫问题,使学生更好地掌握数据结构的相关知识,并提高实际问题的解决能力。
二、迷宫问题的描述迷宫问题可以描述为:给定一个由二维数组表示的迷宫,其中0表示通路,1表示墙壁。
迷宫的入口位于左上角(0,0),出口位于右下角(m-1,n-1)。
要求设计一个程序,找到一条从入口到出口的路径,如果不存在路径,则输出“无路可通”。
三、解决方案为了解决迷宫问题,我们采用了以下方案:1. 数据结构选择:选择栈作为主要的数据结构,用于存储路径上的节点,以便在回溯过程中找到正确的路径。
2. 算法设计:- 初始化栈,将入口节点压入栈中。
- 循环判断栈是否为空:- 如果栈为空,则表示没有找到路径,输出“无路可通”。
- 如果栈不为空,则从栈中弹出一个节点,判断其是否为出口节点:- 如果是出口节点,则输出路径并结束程序。
- 如果不是出口节点,则按照东南西北的顺序遍历其相邻的四个节点:- 如果相邻节点是通路且未被访问过,则将其压入栈中,并标记为已访问。
- 重复步骤2,直到找到出口或栈为空。
3. 迷宫的表示:使用二维数组表示迷宫,其中0表示通路,1表示墙壁。
四、程序实现以下是用C语言实现的迷宫问题解决方案:```c#include <stdio.h>#include <stdlib.h>#define MAX_SIZE 100typedef struct {int x, y;} Point;typedef struct {Point data[MAX_SIZE];int top;} Stack;void initStack(Stack s) {s->top = -1;}int isEmpty(Stack s) {return s->top == -1;}void push(Stack s, Point e) {if (s->top == MAX_SIZE - 1) {return;}s->data[++s->top] = e;}Point pop(Stack s) {if (isEmpty(s)) {Point p = {-1, -1};return p;}return s->data[s->top--];}int isExit(Point p, int m, int n) {return p.x == m - 1 && p.y == n - 1;}int isValid(int x, int y, int m, int n, int maze[][n], int visited[][n]) {return x >= 0 && x < m && y >= 0 && y < n && maze[x][y] == 0&& !visited[x][y];}void findPath(int maze[][n], int m, int n) {Stack s;initStack(&s);Point start = {0, 0};push(&s, start);int visited[m][n];for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {visited[i][j] = 0;}}while (!isEmpty(&s)) {Point p = pop(&s);if (isExit(p, m, n)) {printf("找到路径:");while (!isEmpty(&s)) {p = pop(&s);printf("(%d, %d) ", p.x, p.y);}printf("\n");return;}int directions[4][2] = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}}; for (int i = 0; i < 4; i++) {int nx = p.x + directions[i][0];int ny = p.y + directions[i][1];if (isValid(nx, ny, m, n, maze, visited)) {visited[nx][ny] = 1;push(&s, (Point){nx, ny});break;}}}printf("无路可通\n");}int main() {int m, n;printf("请输入迷宫的行数和列数:");scanf("%d %d", &m, &n);int maze[m][n];printf("请输入迷宫的布局(0表示通路,1表示墙壁):\n");for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {scanf("%d", &maze[i][j]);}}findPath(maze, m, n);return 0;}```五、实训心得通过本次迷宫实训,我深刻体会到了数据结构在实际问题中的应用价值。
实验报告——迷宫问题

}
}
//14.主函数
int main()
{
PosType begin,end;
int i,j,x,y,x1,y1;
printf("请输入迷宫行列数(包括外墙):(空格隔开)\n");
scanf("%d %d",&x,&y);
for(i=0;i<x;i++)//定义外墙
{
m[0][i]=0;
{
if(S.top-S.base>=S.stacksize)//栈顶-栈底>=栈长,说明空间已满
{
S.base=(SElemType *)realloc(S.base,(S.stacksize+STACKINCREMENT)*sizeof(SElemType));
if(!S.base)
exit(0);
[基本要求]
首先实现一个以顺序表或链表做存储结构的栈类型,然后编写一个求解迷宫的非递归程序。求得的通路以三元组(i,j,d)的形式输出,其中:(i,j)指示迷宫中的一个坐标,d表示走到下一坐标的方向。如:对下列数据的迷宫,输出的一条通路为:(1,1,1),(1,2,2),(2,2,2),…
[测试数据]
e.ord=curstep;
e.seat.x=curpos.x;
e.seat.y=curpos.y;
e.di=0;
Push(S,e);
curstep++;
if(curpos.x==end.x&&curpos.y==end.y)
return 1;
curpos=NextPos(curpos,e.di);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
了便于从列车上卸掉相应的车厢,车厢的编号应与车站的编号相同,这样,在每个车站只要卸掉最后一节车厢。
所以,给定任意次序的车厢,必须重新排列它们。
车厢的重排工作可以通过转轨站完成。
在转轨站中有一个入轨、一个出轨和k个缓冲轨,缓冲轨位于入轨和出轨之间。
假定缓冲轨按先进先出的方式运作,设计算法解决火车车厢重排问题。
②基本要求
●设计存储结构表示n个车厢、k个缓冲轨以及入轨和出轨;
●设计并实现车厢重排算法;
●分析算法的时间性能。
③思考
●如果缓冲轨按后进先出的方式工作,即用栈表示缓冲轨,应如何解决火
车车厢重排问题?
二、数据结构设计
迷宫问题和火车重排问题可以通过栈与队列实现的。
迷宫的进出和车厢的出入轨和缓冲轨主要是对栈与队列的判断和操作。
int empty( STLink top[],int n) /*判断是否为空*/
{
return (top[n]==NULL);
}
int push(STLink top[],int A,int m) /*入栈*/
{
STLink p;
if(!(p=(STLink)malloc(LEN)))
return 0;
else
{
p->data=A;
p->link=top[m];
top[m]=p;
return 1;
}
}
int pop(STLink top[],int m) /*出栈*/
{
int A;
STLink p;
p=top[m];
A=p->data;
top[m]=top[m]->link;
free(p);
return A;
}
struct Node{ /定义队列
int data;
Node* next;
};
三、算法设计
1.迷宫问题:
进入格子后,需要判断此时格子位置周围障碍物的位置,对其进行压栈,判断,然后看是否满足条件,满足就进栈,不满足就弹出,然后输出不能通过建立迷宫:
typedef struct LStack
{
Element elem;
struct LStack *next;
}*PLStack;
int InitStack(PLStack &S)
{
S=NULL;
return 1;
}
int StackEmpty(PLStack S)
{
if(S==NULL)
return 1;
else
return 0;
}
int Push(PLStack &S, Element e)
{
PLStack p;
p=(PLStack)malloc(sizeof(LStack));
p->elem=e;
p->next=S;
S=p;
return 1;
}
(2).输出路径2.火车车厢排序
六、实验收获与思考
通过本次实验,进一步增强了对栈和队列的理解,明白的栈的先进后出和队列先进先出的方式,对压栈和出入栈与队列有了深刻认识。
教师评分:
教师签字:。