直流无刷电机转速控制
无刷直流电机(BLDC)双闭环调速解析

无刷直流电机(BLDC)双闭环调速系统在无刷直流电机双闭环调速系统中,双闭环分别是指速度闭环和电流闭环。
对于PWM 的无刷直流电机控制来说,无论是转速的变化还是由于负载的弯化引起的电枢电流的变化,可控量输出最终只有一个,那就是都必须通过改变PWM的占空比才能实现,因此其速度环和电流环必然为一个串级的系统,其中将速度环做为外环,电流环做为内环。
调节过程如下所述:由给定速度减去反馈速度得到一个转速误差,此转速误差经过PID调节器,输出一个值给电流环做给定电流,再由给定电流减去反馈电流得到一个电流误差,此电流误差经过PID 调节器,输出一个值就是占空比。
在速度环和电流环的调节过程中,PID的输出是可以作为任意量纲(即无量纲,用标幺值来表示;标幺值:英文为per unit,简写为pu,是各物理量及参数的相对单位值,是不带量纲的数值)来输入给下一环节或者执行器的,因此无需去管PID输出的量纲,只要是这个输出值反映了给定值和反馈值的差值变化,能够使这个差值无限趋近于零即可,相当于将输出值模糊化,不用去搞的太清楚,如果你要是一直在这里纠结输出值具体是个什么东西时,那么你就会瞎在这里出不来了。
假如你要控制一个参数,并且这个参数的大小和你给定量和反馈量有着直接的关系(线性关系或者一阶导数关系或者惯性关系等),那么就可以不做量纲变换。
比如速度环的PID之后的输出就可以直接定义为转矩,因为速度过慢就要提高转矩,速度过快就要减小转矩,PID输出量的意义是调整了这个输出量,就可以直接改变你要最终控制的参数,并且这个输出量你是可以直接来控制的,这种情况下PID输出的含义是你可以自己定的,比如直流电机,速度环输出你可以直接定义为转矩,也可以定义为电流,然后适当的调节PID的各个参数,最终可以落到一个你能直接控制的量上,在这里最终的控制量就是占空比的值,当占空比从0%—100%时对应要写入到寄存器里面的值为0—3750时,那么0—3750就是最终的控制量的范围。
永磁无刷直流电机及其控制

永磁无刷直流电机及其控制一、本文概述永磁无刷直流电机(Permanent Magnet Brushless DC Motor,简称BLDC)是一种结合了直流电机与无刷电机优点的先进电机技术。
本文将对永磁无刷直流电机及其控制技术进行详细的阐述和探讨。
我们将概述永磁无刷直流电机的基本原理和结构特点,包括其与传统直流电机的区别,以及为何在现代工业和家用电器等领域得到广泛应用。
接着,我们将深入探讨永磁无刷直流电机的控制策略,包括位置传感器控制、无位置传感器控制以及先进的电子控制技术,如微处理器和功率电子器件的应用。
我们还将分析永磁无刷直流电机的性能优化和故障诊断技术,以提高其运行效率和可靠性。
我们将展望永磁无刷直流电机及其控制技术的发展趋势,并探讨其在未来可持续能源和智能制造等领域的应用前景。
通过本文的阐述,读者可以对永磁无刷直流电机及其控制技术有更为全面和深入的理解。
二、永磁无刷直流电机的基本原理永磁无刷直流电机(Permanent Magnet Brushless DC Motor,简称BLDC)是一种结合了直流电机与无刷电机优点的电机类型。
其基本原理主要依赖于磁场与电流之间的相互作用,以及电子换向器的无刷换向技术。
磁场与电流相互作用:永磁无刷直流电机中,永磁体(通常是稀土永磁材料)被用来产生恒定的磁场。
当电流通过电机的电枢(也称为线圈或绕组)时,电枢会产生一个电磁场。
这个电磁场与永磁体的磁场相互作用,导致电机转子的旋转。
无刷换向技术:与传统的有刷直流电机不同,永磁无刷直流电机使用电子换向器代替了机械换向器。
电子换向器通过控制电流在电枢中的流动方向,实现了电机的无刷换向。
这种技术不仅提高了电机的效率,还降低了维护成本和噪音。
控制策略:为了精确控制电机的转速和方向,永磁无刷直流电机通常与电子速度控制器(ESC)一起使用。
电子速度控制器可以根据输入信号(如PWM信号)调整电枢中的电流大小和方向,从而实现对电机转速和方向的精确控制。
直流无刷电机控制+电机控制

计数开始条件
将 TRDSTR 寄存器的 TSTART0 位置“1”(开始计数)
计数停止条件
TRDSTR 寄存器的 CSEL0 位设定为“1”时,将 TSTART0 位和 TSTART1 位清“0”(停止计数),PWM 输出引脚保持停止计数前的输出电平
中断请求发生时序
• 比较匹配(TRDi 寄存器和 TRDGRji 寄存器的内容匹配) • TRD1 溢出
a
c b abc = 001
a
c b abc = 101
a
c b abc = 011
a
c b abc = 010
a
a
c b
c b
abc = 100
abc = 110
图 1. 六步换相方法
图 1 为采用六步换相方法对一个三相直流无刷电机进行控制的示意图。例子中所使用的电机具有两对磁极, 在直流 15 V 的额定工作电压下转速可以达到 8000 rpm。三个固定在电机定子内壁上、间距为 60 度的霍尔传感 器(在图 1 中用分别用“a”、“b”、“c”表示)被用来获取转子的位置信息。霍尔传感器输出的电平信号的 高低状态取决于某一时刻通过该传感器上方定子磁极的极性,当 N 极通过霍尔传感器上方时输出为高电平,当 S 极通过霍尔传感器上方时输出为低电平。
RCC05B0071-0100/Rev.1.00
2008.09
Page 1 of 19
R8C/2L 群 直流无刷电机控制应用
3. 直流无刷马达控制简介
直流无刷电机(BLDC motors)在许多控制系统中已经被广泛使用。直流无刷电机主要由两部分组成:永磁体 转子以及与控制电路相连缠绕在定子上的励磁线圈。
图 5. 脉冲输出强制截止
无刷电调原理

无刷电调原理
无刷电调是一种用来控制无刷直流电机转速和方向的电子设备,它通过对电机的供电方式进行调节,实现对电机的精确控制。
无刷电调的原理是基于电机的三相交错驱动,通过对电机的三相绕组进行合理的供电,可以实现电机的正转、反转以及精准的转速控制。
首先,无刷电调通过对电机的三相绕组进行合理的供电来实现电机的正转和反转。
在正常情况下,电机的三相绕组会按照特定的顺序进行供电,从而产生磁场和驱动电机转动。
而无刷电调则可以通过改变三相绕组的供电顺序,来改变电机的转动方向,从而实现电机的正转和反转。
其次,无刷电调可以实现对电机转速的精确控制。
通过改变电机的供电频率和占空比,可以实现对电机转速的精确调节。
一般来说,通过改变电机的供电频率可以实现对电机转速的粗略调节,而通过改变电机的供电占空比可以实现对电机转速的精细调节。
这样,无刷电调可以实现对电机转速的精确控制,从而满足不同应用场景对电机转速的需求。
此外,无刷电调还可以实现对电机的启动和制动控制。
在电机启动时,无刷电调可以通过逐渐增加电机的供电频率和占空比来实现电机的平稳启动;在电机制动时,无刷电调可以通过逐渐减小电机的供电频率和占空比来实现电机的平稳制动。
这样,无刷电调可以实现对电机启动和制动过程的精确控制,从而保证电机在启动和制动过程中的安全性和稳定性。
综上所述,无刷电调是一种通过对电机的三相绕组进行合理的供电,实现对电机转速和方向精确控制的电子设备。
它可以实现对电机的正转、反转和精确转速控制,同时还可以实现对电机的启动和制动控制。
在无刷电机应用领域广泛的今天,无刷电调作为其重要的控制设备,发挥着越来越重要的作用。
无刷直流电机控制器使用说明书

1无刷直流电机控制器使用说明书
该控制器适用于直流12V/24V、功率200W 以下、转速30000转以内、电气相位为60°/120°的直流无刷电动机。
主要特点:
霍尔传感器解码、电子换相、适用于电气相位为60°/120°的无刷直流电机。
PWM 无级调速,调速范围为额定转速的10%-100%。
提供了开环和闭环两种速度检测方式。
控制方式:启动/停止、制动/运转、正转/反转。
保护功能:过流保护、欠压保护、短路保护、过热保护、电机堵转保护、传感器错相保护。
使用注意事项:
1、电源一定不能接反,否则会损坏电机控制器。
2、电机的各相及检测线必须和控制器正确连接,否则电机无法正常运转。
3、PR1为力度调节电位器,顺时针调节为力度增加,逆时针调节为力度减小;
PR2为速度调节电位器,顺时针调节为速度减小,逆时针调节为速度增加。
4、调节力度、速度电位器时,请用小一字螺丝刀微调多圈。
- 接直流电源正极 - 接直流电源
地 - 接电机绕组A (粗
白线)- 接电机绕组B (粗蓝线)- 接电机绕组C (
粗绿线)- 接红色线(细线) - 接黑色线(细线) - 接电机相位检测器A
(细白线) - 接电机相位检测器B (细蓝线) - 接电机相位检测器C
(细绿线
)
- 接地线(停止)、悬空(运- 未定义 - +15V 电源
- 接地线(正转
)
、
悬
空
(
反- 故障
输出-
地线
电源
指示灯 故障指示灯 - 地线- 接地线(运转)、悬空(制。
直流无刷电机转速控制

一、 直流无刷电机转速控制1. 模拟PID 控制1.1 模拟PID 控制原理在模拟控制系统中,最常用的控制器就是模拟PID 控制器。
以下图所示直流电机控制系统为例,说明PID 控制器控制电机转速的原理。
图中)(0t n 为转速设定值,)(t n 为转速反馈值,)()()(0t n t n t e -=为偏差信号,偏差信号通过PID 控制器后产生控制作用作用于直流电机从而控制电机转速到设定值。
常见的模拟PID 控制系统如下图所示。
PID 控制器由比例、积分、微分的线性组合构成。
控制规律如下:])()(1)([)(0⎰++=td i p dtt de T d e T t e K t u ττ *其中: p K ——控制器的比例系数 i T ——控制器的积分系数d T ——控制器的微分系数1) 比例部分比例部分的数学表达式:)(t e K p 。
比例部分的作用是对偏差信号做出快速反应,一旦控制器检测到偏差,比例部分就能迅速产生控制作用,且偏差越大,控制作用越强。
但仅存在比例控制的系统存在稳态偏差。
比例系数越大,响应越快,过渡越快,稳态偏差也越小,但系统也越不稳定,因此比例系数必须选择恰当。
2) 积分部分积分部分的数学表达式:⎰tip d e T K 0)(ττ。
从积分部分表达式可以看出,只要系统输出与设定值存在偏差,积分作用就会不断增加,知道偏差为零,因此积分部分可以消除稳态偏差。
但积分作用会降低系统的响应速度,增加系统的超调量。
积分常数越小,积分作用越强,过渡过程容易产生震荡,但回复时间减小;积分常数越大,积分作用越弱,过渡过程不产生震荡,但回复时间增长。
因此应根据具体情况选取积分常数。
3) 微分部分微分部分的数学表达式: dtt de T K dp )(。
微分作用能阻值偏差的变化。
它根据偏差的变化趋势进行控制。
偏差变化越快,微分作用越强,能在偏差变化之前就行控制。
微分作用的引入有助于减小超调量,克服振荡;但微分作用对噪声很敏感,导致系统的错误响应,使系统不稳定。
直流无刷电动机及其调速控制

直流无刷电动机及其调速控制1.直流无刷电动机的发展概况与应用有刷直流电动机从19世纪40年代出现以来,以其优良的转矩控制特性,在相当长的一段时间内一直在运动控制领域占据主导地位。
但是,有机械接触电刷-换向器一直是电流电机的一个致命弱点,它降低了系统的可靠性,限制了其在很多场合中的使用。
为了取代有刷直流电动机的机械换向装置,人们进行了长期的探索。
早在1917年,Bolgior就提出了用整流管代替有刷直流电动机的机械电刷,从而诞生了无刷直流电机的基本思想。
1955年美国的等首次申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,标志着现代无刷直流电动机的诞生。
无刷直流电动机的发展在很大程度上取决于电力电子技术的进步,在无刷直流电动机发展的早期,由于当时大功率开关器件仅处于初级发展阶段,可靠性差,价格昂贵,加上永磁材料和驱动控制技术水平的制约,使得无刷直流电动机自发明以后的一个相当长的时间内,性能都不理想,只能停留在实验室阶段,无法推广使用。
1970年以后,随着电力半导体工业的飞速发展,许多新型的全控型半导体功率器件(如GTR、MOSFET、IGBT等)相继问世,加之高磁能积永磁材料(如SmCo、NsFeB)陆续出现,这些均为无刷直流电动机广泛应用奠定了坚实的基础。
在1978年汉诺威贸易博览会上,前联邦德国的MANNESMANN公司正式推出了 MAC无刷直流电动机及其驱动器,引起了世界各国的关注,随即在国际上掀起了研制和生产无刷直流系统的热潮,这业标志着无刷直流电动机走向实用阶段。
随着现代永磁材料和相关电子元器件的性能不断提高,价格不断下降,无刷电动机的到了快速发展,并被广泛应用于各个领域,例如,在数控机床、工业机器人以及医疗器械、仪器仪表、化工、轻纺机械和家用电器等小功率场合,计算机的硬盘驱动和软盘驱动器器中的主轴电动机、录像机中的伺服电动机等。
2.直流无刷电动机的基本结构和工作原理直流无刷电动机的结构直流无刷电动机的结构示意图如图2-1所示。
直流无刷电机控制器原理

直流无刷电机控制器原理直流无刷电机(BLDC)控制器是一种用于控制无刷电机转速和方向的设备,它通过精确的电子控制来实现对电机的精准驱动。
在本文中,我们将详细介绍直流无刷电机控制器的原理,包括其工作原理、结构组成、控制方法等内容。
1. 直流无刷电机控制器的工作原理。
直流无刷电机控制器的工作原理主要是通过对电机的三相驱动信号进行精确的控制,从而实现对电机的转速和方向的控制。
在控制器内部,通常包含了驱动电路、传感器信号处理电路和控制逻辑电路。
其中,驱动电路用于产生电机的三相驱动信号,传感器信号处理电路用于处理电机位置和速度的反馈信号,控制逻辑电路用于实现对电机的闭环控制。
2. 直流无刷电机控制器的结构组成。
直流无刷电机控制器通常由主控芯片、功率放大器、传感器、电源模块等部分组成。
主控芯片是控制器的核心部分,它负责处理传感器反馈信号并生成电机驱动信号,功率放大器用于放大主控芯片输出的驱动信号,传感器用于检测电机的位置和速度,电源模块用于为整个控制器提供稳定的电源供应。
3. 直流无刷电机控制器的控制方法。
直流无刷电机控制器通常采用开环控制和闭环控制两种方法。
开环控制是指根据预先设定的电机驱动信号直接驱动电机,这种控制方法简单、成本低,但精度较低。
闭环控制是指通过传感器反馈信号对电机进行实时监测和调节,以实现对电机的精准控制,这种控制方法精度高,但成本较高。
4. 直流无刷电机控制器的应用领域。
直流无刷电机控制器广泛应用于工业自动化、电动汽车、无人机、家用电器等领域。
在工业自动化中,直流无刷电机控制器可以实现对生产线上各种设备的精准控制;在电动汽车中,直流无刷电机控制器可以实现对电动汽车驱动系统的精准控制;在无人机中,直流无刷电机控制器可以实现对无人机飞行稳定性的控制;在家用电器中,直流无刷电机控制器可以实现对家用电器的精准驱动。
5. 结语。
通过本文的介绍,相信读者对直流无刷电机控制器的原理有了更深入的了解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 直流无刷电机转速控制
1. 模拟PID 控制
1.1 模拟PID 控制原理
在模拟控制系统中,最常用的控制器就是模拟PID 控制器。
以下图所示直流电机
控制系统为例,说明PID 控制器控制电机转速的原理。
图中)(0t n 为转速设定值,)(t n 为转速反馈值,)()()(0t n t n t e -=为偏差信号,偏差信号通过PID 控制器后产生控制作用作用于直流电机从而控制电机转速到设定值。
常见的模拟PID 控制系统如下图所示。
PID 控制器由比例、积分、微分的线性组合构成。
控制规律如下:
])
()(1)([)(0⎰++=t
d i p dt
t de T d e T t e K t u ττ *
其中: p K ——控制器的比例系数 i T ——控制器的积分系数
d T ——控制器的微分系数
1) 比例部分
比例部分的数学表达式:)(t e K p 。
比例部分的作用是对偏差信号做出快速反应,一旦控制器检测到偏差,比例部分就
能迅速产生控制作用,且偏差越大,控制作用越强。
但仅存在比例控制的系统存在稳态偏差。
比例系数越大,响应越快,过渡越快,稳态偏差也越小,但系统也越不稳定,因此比例系数必须选择恰当。
2) 积分部分
积分部分的数学表达式:
⎰t
i
p d e T K 0
)(ττ。
从积分部分表达式可以看出,只要系统输出与设定值存在偏差,积分作用就会不断增加,知道偏差为零,因此积分部分可以消除稳态偏差。
但积分作用会降低系统的响应速度,增加系统的超调量。
积分常数越小,积分作用越强,过渡过程容易产生震荡,但回复时间减小;积分常数越大,积分作用越弱,过渡过程不产生震荡,但回复时间增长。
因此应根据具体情况选取积分常数。
3) 微分部分
微分部分的数学表达式: dt
t de T K d
p )
(。
微分作用能阻值偏差的变化。
它根据偏差的变化趋势进行控制。
偏差变化越快,微分作用越强,能在偏差变化之前就行控制。
微分作用的引入有助于减小超调量,克服振荡;但微分作用对噪声很敏感,导致系统的错误响应,使系统不稳定。
为实现PID 控制器的软件实现,将式*进行适当离散化,即离散PID 。
2. 数字PID 控制
2.1 位置式PID 算法 离散化处理的方法是,以T 为采样周期,对模拟信号进行采样,以k 为采样序列号,进行以下近似:
T
e e dt t de e
T d e kT
t k k k
j j
t
1
)()(-=-≈≈≈∑⎰ττ
将上式带入式*,得到如下式所示的位置式离散PID 控制规律。
][1
T
e e T e T T
e K u k k d
k
j j i
k p k -=-++
=∑ ** 由于位置式PID 要对t 时刻之前的所有输出进行记录,工作量大,对计算机硬件要求高。
增量式PID 可避免这些。
2.2 增量式PID 算法 由式**得到
][2
11
11T
e e T e T T
e K u k k d
k j j i
k p k ---=---++
=∑ 将式**与上式相减,得到增量式PID 控制规律如下
211)21()1(---++-++
=-=∆k d p k d p k d
i p k k k e T
T K e T T K e T T T T K u u u *** 一旦得出控制作用的增量,就可递推得出当前控制作用的输出。
2.3 控制器参数整定
1) 离线整定法
步骤 1:将控制器从“自动”模式切换至“手动”模式(此时控制器输出完全由人工控制),人为以阶跃方式增大或减少控制器输出,并记录控制器相关的输入输出动态响应数据。
步骤 2:由阶跃响应数据估计特性参数 K , T ,τ。
步骤3:按经验公式设定PID参数K c、T i、T d,并将控制器切换至“自动”模式。
步骤4:根据系统闭环响应情况,增大或减少控制器增益K c直至满意为止。
获取PID参数的方法:
上述整定规则仅限于。
上述整定规则不受的限制。
2)在线整定法
步骤1:将在线闭环运行的控制器,完全去除积分作用与微分作用(T i=最大值,T d = 0)成为纯比例控制器,并设置较小的K c值。
步骤2:施加小幅度的设定值或扰动变化,并观察CV的响应曲线。
步骤3:若CV 的响应未达到等幅振荡,则增大K c(减少比例带PB);若CV 响应为发散振荡,则减少K c。
重复步骤2。
步骤4:重复步骤3,直至产生等幅振荡。
获取PID参数的方法:
3.1软件截图
用MATLAB 强大的GUI功能编写软件控制窗口如下所示。
可以实现串口通信初始化,启动关闭电机并显示速度波形等基本功能。
图软件运行时的截图
图速度设定值从10cm/s阶跃到15cm/s时软件截图3.2速度波形曲线
采用离线PID参数整定法,得到的开环速度曲线如下图所示。
图 开环速度曲线
其中控制作用(PWM 占空比从0变化至1.0),由开环速度曲线得到该控制对象特性如下:
005
.003.0)(5.125
0632.0283.0632.0=--==-==--=
∆∆∆T T t t t T CO CO TO TO K O O O initial
final initial final τ
采用PI 控制,用ZN 法整定参数,由离线Ziegler-Nichols 法得到P 、I 、D 参数如下:
01665.0216.0===d i p T T K 在该PID 参数下得到的速度曲线如下图所示:
图 ZN 法整定PID 参数得到的速度曲线
从图中看出,速度输出在10cm/s 附近做等幅震荡,需要小幅度调整PID 参数以得到合适的曲线。
通过上述PID 参数整定方法,当采样周期为10ms 时,得到系统合适的PID 参数如下:
0,03.0,08.0===d i p T T K
在该参数下得到的速度波形曲线如下所示:
图设定值为10cm/s时的速度波形曲线
图设定值为15cm/s时的速度波形曲线
图设定值从10cm/s阶跃到15cm/s时的速度波形曲线
从上述仿真结果看出,PID控制器能够快速将速度控制到设定值,稳态偏差为0,超调量合适,过渡时间迅速。