第8章 贝叶斯网络

合集下载

贝叶斯网络

贝叶斯网络

201算概率分布
假设对于顶点xi, 其双亲节点集为Pai, 每个变量xi 的条件概率P (xi|Pai)。则顶点 集合X= {x1, x2,…,xn}的联合概率分布可如 下计算:
图1 的贝叶斯网络的简化联合概率公式如下: P (x1, x2, x3, x4, x5, x6) = P (x6|x5) P (x5|x2, x3) P (x6|x1, x2) P (x3|x1) P (x2|x1) P (x1)
2014-6-9
贝叶斯网络
24
贝叶斯网的表示方法
贝叶斯网络是表示变量间概率依赖关系的有向无环图
P(A) P(S)
亚洲旅游(A)
P(T|A)
抽烟(S)
P(L|S)
P(B|S)
肺结核(T)
肺癌(L)
支气管炎(B)
T 0 0 0 0 L 0 0 1 1 B 0 1 0 1
CPT:
D=0 0.1 0.7 0.8 0.9 ... D=1 0.9 0.3 0.2 0.1
P(j,m,a,~b,~e) = P(j|a)P(m|a)P(a|~b,~e) P(~b) P(~e)
= 0.9×0.7×0.001×0.999×0.998 = 0.00062 = 0.062%
2014-6-9 贝叶斯网络 19
贝叶斯网络的特性:
作为对域的一种完备而无冗余的表示,贝叶 斯网络比全联合概率分布紧凑得多 BN的紧凑性是局部结构化(Locally structured, 也称稀疏, Sparse)系统一个非常普遍特性的 实例 BN中每个节点只与数量有限的其它节点发 生直接的相互作用 假设节点数n=30, 每节点有5个父节点,则 BN需30x25=960个数据,而全联合概率分布 30= 10亿个! 需要 2 2014-6-9 20 贝叶斯网络

贝叶斯网络

贝叶斯网络

贝叶斯网络2007-12-27 15:13贝叶斯网络贝叶斯网络亦称信念网络(Belief Network),于1985 年由Judea Pearl 首先提出。

它是一种模拟人类推理过程中因果关系的不确定性处理模型,其网络拓朴结构是一个有向无环图(DAG)。

它的节点用随机变量或命题来标识,认为有直接关系的命题或变量则用弧来连接。

例如,假设结点E 直接影响到结点H,即E→H,则建立结点E 到结点H 的有向弧(E,H),权值(即连接强度)用条件概率P(H/E)来表示,如图所示:一般来说,有 n 个命题 x1,x2,,xn 之间相互关系的一般知识可用联合概率分布来描述。

但是,这样处理使得问题过于复杂。

Pearl 认为人类在推理过程中,知识并不是以联合概率分布形表现的,而是以变量之间的相关性和条件相关性表现的,即可以用条件概率表示。

如例如,对如图所示的 6 个节点的贝叶斯网络,有一旦命题之间的相关性由有向弧表示,条件概率由弧的权值来表示,则命题之间静态结构关系的有关知识就表示出来了。

当获取某个新的证据事实时,要对每个命题的可能取值加以综合考查,进而对每个结点定义一个信任度,记作 Bel(x)。

可规定 Bel(x) = P(x=xi / D) 来表示当前所具有的所有事实和证据 D 条件下,命题 x 取值为 xi 的可信任程度,然后再基于 Bel 计算的证据和事实下各命题的可信任程度。

团队作战目标选择在 Robocode 中,特别在团队作战中。

战场上同时存在很多机器人,在你附近的机器人有可能是队友,也有可能是敌人。

如何从这些复杂的信息中选择目标机器人,是团队作战的一大问题,当然我们可以人工做一些简单的判断,但是战场的信息是变化的,人工假定的条件并不是都能成立,所以让机器人能自我选择,自我推理出最优目标才是可行之首。

而贝叶斯网络在处理概率问题上面有很大的优势。

首先,贝叶斯网络在联合概率方面有一个紧凑的表示法,这样比较容易根据一些事例搜索到可能的目标。

贝叶斯网络

贝叶斯网络

(40-9)
贝叶斯网络中的独立关系
•利用变量间的条件独立关系可以将联合概率分布分解成多个复杂度较低的 概率分布,从而降低模型复杂度,提高推理效率。 •例如:由链规则可以把联合概率分布P(A, B, E, J, M)改写为: 独立参数:1+2+4+8+16=31
– E与B相互独立, 即P(E|B)=P(E) – 给定A时,J与B和E相互独立, 即P(J|B, E, A)=P(J|A) – 给定A时,M与J、B和E都相互独立,即P(M|J, A, B, E)=P(M|A)
– 条件独立 – 因果影响独立 – 环境独立
(40-11)
贝叶斯网络中的独立关系
(一)条件独立
•贝叶斯网络的网络结构表达节点间的条件独立关系。 •三种局部结构
– 顺连 (serial connection) – 分连(diverging connection) – 汇连(converging connection)
(40-15)
贝叶斯网络中的独立关系
(四)环境独立(context independence)
•环境独立是指在特定环境下才成立的条件独立关系。 •一个环境是一组变量及其取值的组合。设环境中涉及变量的集合用 C表示, C的一种取值用c表示,则C=c表示一个环境。 •定义5.8 设X,Y,Z,C是4个两两交空的变量集合,如果 P(X, Y, Z, C=c)>0 且 P(X|Y, Z, C=c)= P(X| Z, C=c) 则称X, Y在环境C=c下关于Z条件独立。若Z为空,则称X, Y在环境C=c下 环境独立。
得到联合概率边缘化分布:
再按照条件概率定义,得到
(40-8)
不确定性推理与联合概率分布

贝叶斯网络研究概述

贝叶斯网络研究概述

第2章贝叶斯网络研究概述2.1 发展现状自从50-60年代贝叶斯学派形成后,关于贝叶斯分析的研究久盛不衰。

贝叶斯网络是上世纪80年代发展起来的一种概率图形模型,曾成功用于专家系统,成为表示不确定性专家系统知识和推理的一种流行方法。

数据采掘兴起后,贝叶斯网络日益受到重视,再次成为引人注意的热点。

贝叶斯网络提供了不确定性环境下的知识表示,推理,学习手段,可以完成决策,诊断,预测,分类等任务,已广泛应用于数据挖掘,语言识别,工业控制,经济预测,医疗诊断等诸多领域。

贝叶斯网络有一些基础的可继续深入研究的问题:贝叶斯网络表示问题,贝叶斯网络推理问题,贝叶斯网络学习问题。

本章将对这些问题,做个全面的阐述。

2.2 贝叶斯网概述2.2.1 贝叶斯方法及先验分布贝叶斯方法源于贝叶斯的论文,此文提出了著名的贝叶斯公式(又称贝叶斯定理),此后一些统计学家将其发展成为一种系统的统计推断和决策的方法。

将先验信息正式的纳入统计学中并探索如何利用这种信息的方法称为贝叶斯分析,它的处理是比较鲜明而独特的。

统计学派一直存在贝叶斯学派和经典统计学派之争,但不可否认的贝叶斯方法有着坚实的数学基础,并且其方法逐步被人们理解和重视,并在实际应用中取得成功。

贝叶斯定理公式:P(A|B)=P(B|A)*P(A)/P(B) (2.1)事件A在事件B(发生)的条件下的概率P(A|B),与事件B在事件A 的条件下的概率P(B|A)是不一样的;然而,这两者是有确定的关系,贝叶斯法则就是这种关系的陈述。

P(A)称为先验概率,P(A|B)称为后验概率,先验概率和后验概率是相对于某组证据(这里是事件B发生)而言的。

贝叶斯方法就是利用贝叶斯公式描述了先验概率和后验概率之间的关系。

贝叶斯方法一般的定义是图2-1 贝叶斯方法贝叶斯学派和经典统计学派的基本区别在于对概率本质理解的差异性。

经典统计学派的概率是基于频率的,而贝叶斯观点认为概率可以是主观的,概率的陈述反映了在给定状况下统计学家的信念。

贝叶斯网络的构建方法(Ⅱ)

贝叶斯网络的构建方法(Ⅱ)

贝叶斯网络是一种用于描述变量之间概率关系的图模型,它通过节点和边的方式表示变量之间的依赖关系,是概率图模型中的一种重要方法。

在现实生活中,我们经常需要对大量的变量进行概率推断和预测,贝叶斯网络的构建方法可以帮助我们更好地理解变量之间的关系,从而提高建模和预测的准确性。

构建贝叶斯网络的方法主要包括两个步骤:变量选择和结构学习。

在变量选择阶段,我们需要确定需要建模的变量,通常需要考虑领域知识和数据可用性。

在结构学习阶段,我们需要确定变量之间的依赖关系,即网络的结构。

下面我们将详细介绍贝叶斯网络的构建方法。

首先,变量选择是构建贝叶斯网络的第一步。

在这一阶段,我们需要确定需要建模的变量,通常需要依据领域知识和数据可用性。

在实际应用中,我们可能需要从大量的变量中选择一部分进行建模。

变量的选择对于模型的准确性和可解释性具有重要影响。

因此,我们需要仔细考虑哪些变量对于我们的建模目标是最重要的,以及这些变量之间的关系如何。

在变量选择的过程中,我们需要根据领域知识和数据分析的结果,选择与建模目标相关的变量,并且尽量避免选择不相关或冗余的变量。

其次,结构学习是构建贝叶斯网络的第二步。

在这一阶段,我们需要确定变量之间的依赖关系,即网络的结构。

贝叶斯网络的结构通常用有向无环图(DAG)来表示,图中的节点表示变量,边表示变量之间的依赖关系。

在实际应用中,我们可以利用领域知识、数据分析和专业软件来进行结构学习。

结构学习的目标是找到一个最符合数据的网络结构,使得网络能够准确地描述变量之间的依赖关系。

在结构学习的过程中,我们需要考虑变量之间的条件独立性关系,并利用概率图模型的相关算法来进行搜索和优化,以找到最优的网络结构。

除了变量选择和结构学习,贝叶斯网络的构建方法还包括参数学习和推断。

在参数学习阶段,我们需要根据观测数据来学习网络中每个节点的条件概率分布参数。

在推断阶段,我们需要根据观测数据和网络结构来进行概率推断和预测。

通过这些步骤,我们可以构建一个准确描述变量之间概率关系的贝叶斯网络模型。

第8章贝叶斯网导论【本科研究生通用机器学习课程精品PPT系列】

第8章贝叶斯网导论【本科研究生通用机器学习课程精品PPT系列】

Burglary 独立假设2
独立假设2 Earthquake
Alarm
Alarm
JohnCalls
MaryCalls
1.5解决方案
•合并独立假设1和独立假设2,可得:P(John| Burglary, Earthquake, Alarm)=P(John| Alarm)
合并独立假设1和2
Burglary
P(E e) P( X ) 是 X 的先验分布, P(X | E e) 是 X 的后验分布, P(E e | X ) 称为 X 的似然函数。 P(E e) 是一个归一化常数
后验分布正比于先验分布和似然函数的乘积。
1.3几个重要原理
链规则(chain rule)
利用变量间条件独立性
1.3不确定性推理与联合概率分布
n n 9.1E-1
1.3不确定性推理与联合概率分布
从联合概率分布 P(Burglary,Earthquake, Alarm,John,Mary)出发,先计算边缘分布
P(Burglary, Mary)
P(Burglary, Earthquake, Alarm, John, Mary)
Earthquake, Alarm,John
0.000115
0.61
P(Burglary y, Mary y) P(Burglary n, Mary y) 0.000115 0.000075
1.4存在的问题
直接使用联合分布进行不确定性推理的困难很明显,即它的复杂度
极高。上图中有 5 个二值随机变量,整个联合分布包含25 1 31 个独
n n 2.8E-4 n
n
y
n n 2.9E-5
y
n

贝叶斯网络与概率图推理

贝叶斯网络与概率图推理

贝叶斯网络与概率图推理1. 贝叶斯网络介绍贝叶斯网络(Bayesian network),也称为信念网络(belief network),是一种概率图模型,用于表示随机变量之间的概率关系。

它是一种有向无环图(DAG),其中节点表示随机变量,边表示变量之间的依赖关系。

贝叶斯网络可以用于概率推理,即计算一个变量的概率分布,给定其他变量的值。

2. 贝叶斯网络的结构贝叶斯网络的结构由以下元素组成:•节点:节点表示随机变量。

•边:边表示变量之间的依赖关系。

•条件概率分布 (CPD):CPD 定义了每个节点的概率分布,给定其父节点的值。

3. 贝叶斯网络的推理贝叶斯网络的推理是指计算一个变量的概率分布,给定其他变量的值。

这可以通过以下步骤完成:1.对网络进行初始化。

这包括为每个节点分配一个初始概率分布。

2.根据网络结构和 CPD,计算每个节点的后验概率分布。

3.重复步骤 2,直到网络收敛。

4. 贝叶斯网络的应用贝叶斯网络有广泛的应用,包括:•诊断:贝叶斯网络可以用于诊断疾病,通过结合患者的症状和其他信息来计算患有特定疾病的概率。

•预测:贝叶斯网络可以用于预测未来的事件,通过结合历史数据和其他信息来计算事件发生的概率。

•决策:贝叶斯网络可以用于支持决策,通过计算不同决策方案的后果来帮助决策者做出最佳决策。

5. 概率图推理介绍概率图推理(probabilistic graphical model,简称PGM)是一种用于表示和推理不确定性的数学框架。

PGM 是一个图,其中节点表示随机变量,边表示变量之间的依赖关系。

PGM 可以用于解决各种各样的问题,包括分类、回归、聚类和异常检测。

6. 概率图模型的类型有许多不同类型的 PGM,包括:•贝叶斯网络:贝叶斯网络是一种有向无环图(DAG),其中节点表示随机变量,边表示变量之间的依赖关系。

•马尔可夫随机场 (MRF):MRF 是一种无向图,其中节点表示随机变量,边表示变量之间的依赖关系。

贝叶斯网络的构建方法(Ⅲ)

贝叶斯网络的构建方法(Ⅲ)

贝叶斯网络(Bayesian Network)是一种概率图模型,它用图表示变量之间的依赖关系,并且可以通过概率推理来对未知变量进行推断。

贝叶斯网络在人工智能、数据挖掘、生物信息学等领域都有着广泛的应用。

本文将介绍贝叶斯网络的构建方法,包括模型的搭建、参数的学习和推理的过程。

一、模型的构建构建贝叶斯网络的第一步是确定网络结构,即变量之间的依赖关系。

在实际应用中,可以通过领域专家的知识、数据分析或者专门的算法来确定网络结构。

一般来说,变量之间的依赖关系可以用有向无环图(DAG)来表示,其中每个节点代表一个变量,边代表变量之间的依赖关系。

确定了网络结构之后,就需要为网络中的每个节点分配条件概率分布。

这可以通过领域专家的知识或者从数据中学习得到。

如果使用数据学习的方法,需要注意数据的质量和数量,以及如何处理缺失数据。

二、参数的学习在确定了网络结构和每个节点的条件概率分布之后,就需要学习网络的参数。

参数学习的目标是估计每个节点的条件概率分布。

在数据学习的情况下,可以使用最大似然估计或者贝叶斯估计来求解参数。

最大似然估计是一种常用的参数学习方法,它的思想是选择参数值使得观测数据出现的概率最大。

贝叶斯估计则是在最大似然估计的基础上引入先验概率,通过先验概率和观测数据来更新后验概率。

三、推理过程贝叶斯网络的推理过程是指根据已知的证据来推断未知变量的概率分布。

推理可以分为两种类型:变量消除和贝叶斯更新。

变量消除是一种精确推理方法,它通过对网络中的变量进行递归消除来计算给定证据下的未知变量的概率分布。

这种方法可以得到准确的推理结果,但是在变量较多的情况下计算复杂度会很高。

贝叶斯更新是一种近似推理方法,它通过贝叶斯定理和采样方法来更新变量的概率分布。

这种方法通常用于变量较多或者计算复杂度较高的情况下,它可以通过随机采样来得到近似的推理结果。

总结:本文介绍了贝叶斯网络的构建方法,包括模型的搭建、参数的学习和推理的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23
例4:计算已知X光检查呈阳性(+PX)的情况下,患脑瘤(+BT)概率。
P(HO|PT) PT=TRUE PT=FALSE TRUE 0.7 0 FALSE 0.3 1
宴会(PT)
P(PT) P(BT) TRUE 0.2 0.001 FALSE 0.8 0.999
喝醉(HO)
P(SA|HO) HO=TRUE HO=FALSE TRUE 0.8 0.1 FALSE 0.2 0.9
4.2叶斯网络的诊断算法
25
例5:计算已知头疼(+HA)的情况下,患脑瘤(+BT)概率。
P(HO|PT) PT=TRUE PT=FALSE TRUE 0.7 0 FALSE 0.3 1
宴会(PT)
P(PT) P(BT) TRUE 0.2 0.001 FALSE 0.8 0.999
喝醉(HO)
P(SA|HO) HO=TRUE HO=FALSE TRUE 0.8 0.1 FALSE 0.2 0.9
脑瘤(BT)
P(PX|BT) BT=TRUE BT=FALSE TRUE 0.98 0.01 FALSE 0.02 0.99
头疼(HA)
酒精味(SA)
P(HA|HO,PT) TRUE FALSE
X射线(PX)
HO=FALSE BT=TRUE BT=FALSE 0.9 0.02 0.1 0.98
HO=TURE BT=TRUE BT=FALSE 0.99 0.7 0.01 0.3
管理建模
杜元伟 博士/副教授
duyuanwei@
贝叶斯网络
2
贝叶斯……这个生性孤僻,哲学气味重于数 学气味的学术怪杰,以其一篇遗作的思想重 大地影响了两个世纪以后的统计学术界,顶 住了统计学的半边天。 ——陈希孺 院士
2014-12-23
贝叶斯网络的应用
3
在科学和工程中的许多交叉领域里很 容易找到贝叶斯分析的众多研究者。 如:考古学、大气科学、教育、流行 病学、工程、遗传学、水文学、测量 和化验、药学、体育、质量管理、社 会科学、经济和计量经济学等。
4.1贝叶斯网络的预测算法
22
输入:给定贝叶斯网络B(包括网络结构m个节点以及某些节点间的连线、 原因节点到中间节点的条件概率或联合条件概率),给定若干个原因节点 发生与否的事实向量F(或者称为证据向量);给定待预测的某个节点t。 输出:节点t发生的概率。 (1)把证据向量输入到贝叶斯网络B中;
(2)对于B中的每一个没处理过的节点n,如果它具有发生的事实(证据), 则标记它为已经处理过;否则继续下面的步骤;
贝叶斯网络-讲述内容
4
引例 贝叶斯概率基础(先验/后验概率,条件概率,全概率) 贝叶斯网络概述(组成、结构、优缺点等) 贝叶斯网络的预测、诊断和训练算法
1.引 例
5
参加晚会后,第二天早 晨呼吸中有酒精味的可 能性有多大? 如果头疼,患脑瘤的概 率有多大? 如果参加了晚会,并且 第二天有酒精味,那么 喝醉的概率有多大?
宴会(PT)
P(PT) P(BT) TRUE 0.2 0.001 FALSE 0.8 0.999
喝醉(HO)
P(SA|HO) HO=TRUE HO=FALSE TRUE 0.8 0.1 FALSE 0.2 0.9
脑瘤(BT)
P(PX|BT) BT=TRUE BT=FALSE TRUE 0.98 0.01 FALSE 0.02 0.99
在统计学领域内,贝叶斯理 论在很多方面取得进展。如: 生物统计、因果关系研究、 分类、判别、神经网络、列 联表、决策分析和决策论、 试验设计、经验贝叶斯、有 穷总体抽样、广义线性模型、 现在已很难发现一个人类的研究领域 图方法和贝叶斯网络、多层 不存在某种水平的贝叶斯分析工具。 建模、图像处理、信息论等。
3.2贝叶斯网络的优越性
13
对已有的信息要求低,可以进行信 息不完全、不确定情况下的推理; 具有良好的可理解性和逻辑性; 专家知识和试验数据的有效结合与 相辅相成,忽略次要联系而突出主 要矛盾,可以有效避免过学习; 推理结果说服力强,贝叶斯网络对 先验概率的要求大大降低。
需要的数据多,分析计算比较复杂,特别在 解决复杂问题时,这个矛盾就更为突出; 有些数据必须使用主观概率,有些人不太相 信,这也妨碍了贝叶斯决策方法的推广使用。
4.2贝叶斯网络的诊断算法
24
例4:计算已知X光检查呈阳性(+PX)的情况下,患脑瘤(+BT)概率。
解:
P( A | B) P( B | A) P( A) P( B)
P(+BT|+PX)=P(+PX|+BT)P(+BT)/P(+PX) P(+PX)=P(+PX|+BT)P(+BT)+P(+PX|-BT)P(-BT)=0.011 P(+BT|+PX)=0.98*0.001/0.011=0.089 P(-BT|+PX)=1- P(+BT|+PX) =0.911
宴会(PT)
P(PT) P(BT) TRUE 0.2 0.001 FALSE 0.8 0.999
喝醉(HO)
P(SA|HO) HO=TRUE HO=FALSE TRUE 0.8 0.1 FALSE 0.2 0.9
脑瘤(BT)
P(PX|BT) BT=TRUE BT=FALSE TRUE 0.98 0.01 FALSE 0.02 0.99
P(HO|PT) PT=TRUE PT=FALSE TRUE 0.7 0 FALSE 0.3 1
宴会(PT)
TRUE FALSE
0.2 0.8
0.001 0.999
喝醉(HO)
P(SA|HO) HO=TRUE HO=FALSE TRUE 0.8 0.1 FALSE 0.2 0.9
脑瘤(BT)
P(PX|BT) BT=TRUE BT=FALSE TRUE 0.98 0.01 FALSE 0.02 0.99
头疼(HA)
酒精味(SA)
P(HA|HO,PT) TRUE FALSE
X射线(PX)
HO=FALSE BT=TRUE BT=FALSE 0.9 0.02 0.1 0.98
HO=TURE BT=TRUE BT=FALSE 0.99 0.7 0.01 0.3
4.1贝叶斯网络的预测算法
19
例2:计算已知参加晚会(+PT)的情况下,呼吸有 酒精味 (+SA)的概率。
P( A) P( Bi ) P( A | Bi )
i 1
n
基本事件的互斥性 基本事件的完备性
Bi B j , i j, i, j 1,2,......, n
B1 B2 ...... Bn
2.3贝叶斯公式
10
由条件概率公式和全概率公式可以推得贝叶斯公式,即
解: P(+HO)=0.7
P(-HO)=1- P(+HO)= 0.3
P(+HA)=
P(+HA|+HO,+BT)P(+HO,+BT)+ P(+HA|+HO,-BT)P(+HO,-BT)+ P(+HA|-HO,+BT)P(-HO,+BT)+P(+HA|-HO,-BT)P(-HO,-BT)
=0.496
P(-HA)=1-P(+HA)=0.504 2014-12-23
P(HO|PT) PT=TRUE PT=FALSE TRUE 0.7 0 FALSE 0.3 1
宴会(PT)
P(PT) P(BT) TRUE 0.2 0.001 FALSE 0.8 0.999
喝醉(HO)
P(SA|HO) HO=TRUE HO=FALSE TRUE 0.8 0.1 FALSE 0.2 0.9
宴会(PT)
喝醉(HO)
脑瘤(BT)
头疼(HA)
酒精味(SA) X射线(PX)
2.贝叶斯概率基础
6
先验概率、后验概率和条件概率
条件概率公式
全概率公式 贝叶斯公式
2.1先验概率、后验概率和条件概率
7
先验概率:根据历史资料或主观判断所确定的 各种事件发生的概率; 后验概率:通过贝叶斯公式,结合调查等方式 获取了新的附加信息(证据),对先验概率修正 后得到的更符合实际的概率; 条件概率:某事件发生后该事件的发生概率。
脑瘤(BT)
P(PX|BT) BT=TRUE BT=FALSE TRUE 0.98 0.01 FALSE 0.02 0.99
头疼(HA)
酒精味(SA)
P(HA|HO,PT) TRUE FALSE
X射线(PX)
HO=FALSE BT=TRUE BT=FALSE 0.9 0.02 0.1 0.98
HO=TURE BT=TRUE BT=FALSE 0.99 0.7 0.01 0.3
4.贝叶斯网络的几个主要议题
14
贝叶斯网络预测 宴会(PT) 贝叶斯网络诊断 贝叶斯网络预测与诊断的综合 贝叶斯网络学习/训练
喝醉(HO) 条件概 率表 头疼(HA) X射线(PX) 脑瘤(BT)
酒精味(SA)
4.1概率和条件概率数据
15
P(HO|PT) PT=TRUE PT=FALSE TRUE 0.7 0 FALSE 0.3 1
头疼(HA)
酒精味(SA)
P(HA|HO,PT) TRUE FALSE
X射线(PX)
HO=FALSE BT=TRUE BT=FALSE 0.9 0.02 0.1 0.98
HO=TURE BT=TRUE BT=FALSE 0.99 0.7 0.01 0.3
相关文档
最新文档