数字逻辑基础卡诺图化简
知识点3.卡诺图化简法

相邻项相加能消去一个因子,合并为一项,如:
。
卡诺图化简就是建立在相邻项的基础上的,消去多余的因子,使函
数得到简化。
逻辑函数的化简——卡诺图化简法
利用卡诺图化简时,首先要把函数表示成最小项之 和的形式,称为标准与或式(或最小项表达式),求函 数标准与或式有两种方法:
①从真值表中求标准与或式 ②从一般表达式利用展开法求标准与或式
逻辑函数的化简——卡诺图化简法
【例1】化简逻辑函数
化简得:
最小项合并结果有时不是唯一的,但合并后的项数和每一 项的因子数是相同的!
逻辑函数的化简——卡诺图化简法
【例2】 用卡诺图法化简逻辑函数Z(A,B,C,D)
=∑m(0,1,2,3,4,5,6,7,10,11)。
化简得:
逻辑函数的化简——卡诺图化简法
逻辑函数的化简——卡诺图化简法
利用前面介绍的公式法化简逻辑函数,要熟练掌 握逻辑代数的基本公式、常用公式和一些定律,并 且需要有一定的技巧,这对许多人来说有困难。借 助卡诺图化简逻辑函数比较方便,容易掌握。卡诺 图是美国工程师karnaugh在20世纪50年代提出的, 它建立在最小项的基础上,所以首先要了解有关最 小项的内容。
b.四个小方格组成一个大方格、或组成一行(列)、或 处于相邻两行(列)的两端、或处于四角时,所代表的最小 项可以合并,合并后可消去两个变量。
逻辑函数的化简——卡诺图化简法
c.八个小方格组成一个大方格、或组成相邻的两行 (列)、或处于两个边行(列)时,所代表的最小项可以合 并,合并后可消去三个变量。
逻辑函数的化简——卡诺图化简法
仔细分析上表,可以总结出最小项的性质: ①对任何一个最小项,只有一组变量的取值组合,使 它的值为1。反之,对于输入变量任何一组取值,有且 只有一个最小项的值为1。 ②任意两个最小项的乘积恒等于0 。 ③所有最小项之和为1。 ④具有相邻性的两个最小项之和能合并成一项且消去 一个因子。
逻辑函数的卡诺图化简法案例分析

逻辑函数的卡诺图化简法案例分析1.卡诺图化简逻辑函数的原理(1)2相邻项结合(用一个包围圈表示),可消去1个变量。
如图6.39所示。
(2)4相邻项结合(用一个包围圈表示),可以消去2个变量,如图6.40所示。
(3)8相邻项结合(用一个包围圈表示),可以消去3个变量,如图6.41所示。
图6.39 2个相邻的最小项合并 图6.40 4个相邻的最小项合并图6.41 8个相邻的最小项合并总之,2n 个相邻的最小项结合,可以消去n 个取值不同的变量而合并为l 项。
2.用卡诺图合并最小项的原则用卡诺图化简逻辑函数,就是在卡诺图中找相邻的最小项,即画圈。
为了保证将逻辑函数化到最简,画圈时必须遵循以下原则:(1)圈要尽可能大,这样消去的变量就多。
但每个圈内只能含有2n (n=0,1,2,3……)个相邻项。
要特别注意对边相邻性和四角相邻性。
(2)圈的个数尽量少,这样化简后的逻辑函数的与项就少。
ABCDABC D111111111111111ABDABCABDBCDBC CDBD (四角)D ABC111111111111BC(3)卡诺图中所有取值为1的方格均要被圈过,即不能漏下取值为1的最小项。
(4)取值为1的方格可以被重复圈在不同的包围圈中,但在新画的包围圈中至少要含有1个末被圈过的1方格,否则该包围圈是多余的。
3.用卡诺图化简逻辑函数的步骤 (1)画出逻辑函数的卡诺图。
(2)合并相邻的最小项,即根据前述原则画圈。
(3)写出化简后的表达式。
每一个圈写一个最简与项,规则是,取值为l 的变量用原变量表示,取值为0的变量用反变量表示,将这些变量相与。
然后将所有与项进行逻辑加,即得最简与—或表达式。
例3:用卡诺图化简逻辑函数:D C B A D C B A D B A AD F +++= 解:(1)由表达式画出卡诺图如图6.43所示。
(2)画包围圈合并最小项,得简化的与—或表达式:D B AD F +=图6.42 例3卡诺图 图6.43例4卡诺图注意:图中的虚线圈是多余的,应去掉;图中的包围圈D B 是利用了四角相邻性。
数字逻辑基础卡诺图化简-精共55页

26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
Thank you
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
卡诺图化简法一全文

m0
0
m1如何根据输入1变量组 m2合写出相应最2小项?
m3
3
m4
4
m5
5
m6
6
m7
7
例如 ABC 101 5 m5
m4 4 100 ABC
2. 最小项的基本性质
(1) 对任意一最小项,只有一组变量取值使它的值为1,而
其余各种变量取值均使其值为0。 (2) 不同的最小项,使它的值为1的那组变量取值也不同。 (3) 对于变量的任一组取值,任意两个最小项的乘积为0。 (4) 对于变量的任一组取值,全体最小项的和为1。
每一个与项都是最小项的与或逻辑式称为标 准与或式,又称最小项表达式。
任何形式的逻辑式都可以转化为标准与或式, 而且逻辑函数的标准与或式是唯一的。
[例] 将逻辑式 Y ABC AB C D 化为标准与或式。
解:(1) 利用摩根定律和分配律把逻辑函数式展开为与或式。
Y ABC AB C D ABC AB (C D) ABC ABC ABD 普通与或式,非标准与或式
CD
AB
C D CD CD C D
同一行最 左与最右 AB ABC D ABCD ABCD ABC D
方格相邻
AB ABC D ABCD ABCD ABC D 卡诺图特点: 循环相邻性 AB ABC D ABCD ABCD ABC D
同一列最 上与最下 ቤተ መጻሕፍቲ ባይዱ格相邻
AB ABC D ABCD ABCD ABC D
(2) 找出真值表中Y=1 对应的最小项,在 卡诺图相应方格中 填1,其余不填。
BC A 00 01 11 10
0 10 1 3 12
1 14 5 7 16
已 [例] 已知 Y AD AB(C BD),试画出Y的卡诺图。 知 解:(1) 将逻辑式转化为与或式
卡诺图化简法

26
(7) 由最大项表达式求最简与或式
例2.6.18 已知函数 F ( A, B,C, D) M (5,7,13,15)
求最简与或式。
CD AB 00 01 11 10
00 1 1 1 1 01 1 0 0 1 11 1 0 0 1 10 1 1 1 1
F(A,B,C,D) = B + D
图 2.6.18
16
(4) 合并的规律 ① 圈2格,可消去1个变量;
BC A 00 01 11 10
0 1 1 00 1 0 0 00
BC
A
00 01 11 10
0 1 0 01
1 0 0 00
F=AB
F=AC
17
② 圈4格,可消去2个变量;
ห้องสมุดไป่ตู้
BC
A
00 01 11 10
0 1 1 00
1 1 1 00
BC A 00 01 11 10
例2.6.16 化简函数
F( A, B,C, D) m(0,2,5,6,7,8,9,10,11,14,15)
为最简与或式。
CD AB 00 01 11 10
00 1 0 0 1 01 0 1 1 1 11 0 0 1 1 10 1 1 1 1
图 2.6.15
F(A,B,C,D) = A B D + BD+AB+BC
BC A 00 01 11 10 ⊕0 0 1 1 0
1 0 0 00
BC A 00 01 11 10 ﹦ 0 0 0 10
1 0 1 00
11
(4) 反演 BC
A 00 01 11 10
0 0 1 00 1 0 1 00
6.逻辑函数的卡诺图化简法(数字系)

B
0
1
0 1
1 0 1 1
1
1
1 1
1
0
0
1
输出变量Y的值
例2:三输入变量
A 0 0 0 0 1 1 1 1
Y1 B C Z 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1
Y ABC ABC ABC
BC 00 A 0 0 1 01 11 10
10
0 1
ABC ABC BC
1 1
ABC
0
该方框中逻辑函数的取值与变量A无关,当 B=1、C=1时取“1”。
化简过程: BC 00 A 0 0 BC 01
0 0
11
1 1
10
0 1
1
0
AB
F=AB+BC
卡诺图适用于输入变量为3、4个的逻辑代数式的 化简;化简过程比公式法简单直观。
利用卡诺图化简的规则
例2:化简
CD 00 AB 00 1
01
01 11 10
1 1 0 1
1 1 0 1
1 1 1 1
FA
1 1 1
FD
11 10
FB
F A B D
例2:解二
CD 00 AB 00 1
01 11 10
01 11 10
1 1 0 1
1 1 0 1
1 1 1 1
ABD
1 1 1
F ABD A+B+D
A 0 0 0 0 1 1 1 1
Z1 B C 编号 0 0 0 0 1 0 1 1 0 0 2 0 1 1 1 3 0 0 0 4 1 0 1 0 5 1 0 1 6 7 1 1 1
卡诺图化简

逻辑函数中的无关项
• 无关项在逻辑函数化简中的作用:
– 例2:用卡诺图简化下列逻辑函数,并写成最 简与或式和或与式。
Y ABC ABCD ABCD ABCD CD AB 00 约束条件:A B=0 00 × 约束条件可表示为:AB AB 0 01 1
逻辑函数中的无关项
• 约束项:
– 表示方法:
ABC 0 ABC 0 ABC 0 ABC 0 ABC 0
或
由于约束项的值始终为 0,所以既可以将约束 项写进逻辑函数式,也 可以不写。
ABC ABC ABC ABC ABC 0
逻辑函数中的无关项
BC A 0 1
1
00
01
1 1
11
1
10
1 1
卡诺图化简法
• 利用卡诺图化简函数
– 例1:用卡诺图化简 Y AC AC BC BC
Y AC AC BC BC AC BC AB
BC A 0 1
1
00
01
1 1
11
1
10
1 1
注:卡诺图化简不是唯 一,不同的圈法得到的 简化结果不同,但实现 的逻辑功能相同的。
0
11
0
10
0
最简或与式:
Y B( A C D)( A C D)
1
0 0
1
1 0
0
1 0
1
1 0
卡诺图化简法
• 利用卡诺图化简函数
– 例3:用卡诺图化简为最简与或式和最简或与式 Y M (2,3,4,6,11,12,14)
(完整版)逻辑函数的卡诺图化简法

第十章 数字逻辑基础补充:逻辑函数的卡诺图化简法1.图形图象法:用卡诺图化简逻辑函数,求最简与或表达式的方法。
卡诺图是按一定规则画出来的方框图。
优点:有比较明确的步骤可以遵循,结果是否最简,判断起来比较容易。
缺点:当变量超过六个以上,就没有什么实用价值了。
公式化简法优点:变量个数不受限制缺点:结果是否最简有时不易判断。
2.最小项(1)定义:是一个包括所有变量的乘积项,每个变量均以原变量或反变量的形式出现一次。
注意:每项都有包括所有变量,每个乘积它中每个变量出现且仅出项1次。
如:Y=F (A ,B ) (2个变量共有4个最小项B A B A B A AB )Y=F (A ,B ,C ) (3个变量共有8个最小项C B A C B A C B A BC A C B AC B A C AB ABC )结论: n 变量共有2n 个最小项。
三变量最小项真值表(2)最小项的性质①任一最小项,只有一组对应变量取值使其值为1: ②任意两个最小项的乘种为零; ③全体最小项之和为1。
(3)最小项的编号:把与最小项对应的变量取值当成二进制数,与之相应的十进制数,就是该最小项的编号,用m i 表示。
3.最小项表达式——标准与或式任何逻辑函数都可以表示为最小项之和的形式——标准与或式。
而且这种形式是惟一的,即一个逻辑函数只有一种最小项表达式。
例1.写出下列函数的标准与或式:Y=F(A,B,C)=AB+BC+CA 解:Y=AB(C +C)+BC(A +A)+CA(B +B)=ABC C B A ABC BC A ABC C AB +++++ =ABC C B A BC A C AB +++ =3567m m m m +++例2.写出下列函数的标准与或式:C B AD AB Y ++=解:))()(C B D A B A Y +++=( ))((C B D B A ++= D C B C A B A B A +++=D C B A D C B A C B A C B A BC A ++++=D C B A D C B A D C B A D C B A D C B A D BC A BCD A ++++++=_ 8014567m m m m m m m ++++++= =)8,7,6,5,4,1,0(m ∑ 列真值表写最小项表达式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
101
0
110
0
1 2020/8/14 1 1
1
14
练习:三变量表决逻辑真值表填入卡诺图
ABC
Y
000
0
001
0
010
0
011
1
100
0
101
1
110
1
111
1
2020/8/14
15
(2)从最小项表达式画卡诺图 把表达式中所有的最小项在对应的小方块中填
入1,其余的小方块中填入0。
例4: 画出函数Y(A、B、C、D)= ∑m(0,3,5,7,9,12,15) 的卡诺图。
① 无关项的概念
对应于输入变量的某些取值下,输出函数的值可 以是任意的(随意项、任意项),或者这些输入变量的 取值根本不会(也不允许)出现(约束项),通常把这 些输入变量取值所对应的最小项称为无关项或任意项, 在卡诺图中用符号“×”表示,在标准与或表达式中用 ∑d( )表示。
例:当8421BCD码作为输入变量时,禁止码1010~ 1111这六种状态所对应的最小项就是无关项。
相邻 相邻
② 几何相邻的必须
逻辑相邻:变量的 取值按00、01、11、 10的顺序(循环码 ) 排列 。
图1-11 三变量卡诺图的画法
2020/8/14
12
不 相邻
相邻
相邻
图1-12 四变量卡诺图的画法
正确认识卡诺 图的“逻辑相邻”: 上下相邻,左右相 邻,并呈现“循环 相邻”的特性,它 类似于一个封闭的 球面,如同展开了 的世界地图一样。
复习:
真值表--逻辑表达式(化简)--逻辑电路图
例:三变量表决逻辑 Y=? 逻辑图?
2020/8/14
ABC
Y
000
0
001
0
010
0
011
1
100
0
101
1
110
1
111
1
1
2.4 逻辑函数的卡诺图化简法
2.4.1 最小项及最小项表达式 2.4.2 用卡诺图表示逻辑函数 2.4.3 卡诺图化简法 2.4.4 含有无关项的逻辑函数的化简
40
图1-20 例11的卡诺图
利用无关项化简结果为:Y=A+BD+BC
充分利用无关项化简后得到的结果要简单得 多。注意:当圈组后,圈内的无关项已自动取值 为1,而圈外无关项自动取值为0。
2020/8/14
例10: Y(A, B, C, D)= ∑m(0, 1, 2, 3, 4, 5, 8, 10, 11) 解 (1) 画出函数的卡诺图, 如图1-19 (2) 按合并最小项的规律可画出三个卡诺圈, 如图 1-19所示。 (3) 写出化简后的逻辑表达式。
2020/8/14
34
CD
AB
00 01 11 10
2020/8/14
38
② 具有无关项的逻辑函数及其化简
因为无关项的值可以根据需要取0或取1,所以在 用卡诺图化简逻辑函数时,充分利用无关项,可以使 逻辑函数进一步得到简化。
2020/8/14
39
例11:设ABCD是十进制数X的二进制编码,当
X≥5时输出Y为1,求Y的最简与或表达式。
X ABCD Y
8,9,12,13,14)
3. 化简:F ( A, B,C, D) AB AC BC CD 4. 化简:F ( A, B,C, D) AC A B BC AC D
5. 化简:Y ABC ABD ACD C D ABC ACD
2020/8/14
37
2.4.4 具有无关项的逻辑函数及其化简
0
0000
0
1
0001
0
2
0010
0
3
0011
0
4
0100
0
5
0101
1
6
0110
1
7
0111
1
8
1000
1
9
1001
1
/
1010 ×
/
1011 ×
/
1100 ×
/
1101 ×
/
1 1 1
×
解:列真值表,见表1-20所示。 画卡诺图并化简。
表1-20 例11的真值表
解:化简步骤如下:
① 函数的卡诺图如图1-18所示, “0”
可以不填。 ② 画卡诺圈: 如图1-18
所示
CD AB 00 01 11 10
00 1
1
01
1
11
1
10 1 1 1 1
图 1-18 例9 卡诺图化简过程
2020/8/14
33
③ 按消去不同、 保留相同的方法写出逻辑表达式。
Y BD ABCD ACD AB
表1-18 三变量最小项的编号表
2020/8/14
7
(3)最小项表达式 任何一个逻辑函数都可以表示为最小项之和的
形式——标准与或表达式。而且这种形式是惟一的, 就是说一个逻辑函数只有一种最小项表达式。
例1: 将Y=AB+BC展开成最小项表达式。
解:Y AB BC AB(C C) (A A)BC
1
2
多余
的圈
4
3
Y ACD ABC ACD ABC
2020/8/14
1
2
3
4
31
圈组技巧(防止多圈组的方法):
① 先圈孤立的1; ② 再圈只有一种圈法的1; ③ 最后圈大圈; ④ 检查:每个圈中至少有一个1未被其它圈圈 过。
2020/8/14
32
例9:化简函数
Y ( A, B,C, D) BD ABD ABCD ABCD ABCD
关键是能否正确圈组 。
B.正确圈组的原则
① 必须按2、4、8、2N的规律来圈取值为1的相
邻最小项;
② 每个取值为1的相邻最小项至少必须圈一次,
但可以圈多次;
③ 圈的个数要最少(与项就少),并要尽可能
大(消去的变量就越多)。
2020/8/14
26
C.从圈组写最简与或表达式的方法:
① 将每个圈用一个与项表示 圈内各最小项中互补的因子消去, 相同的因子保留, 相同因子取值为1用原变量, 相同因子取值为0用反变量;
2020/8/14
10
2.4.2 用卡诺图表示逻辑函数
(1)卡诺图及其构成原则
卡诺图是把最小项按照一定规则排列而构成的 方框图。构成卡诺图的原则是:
① N变量的卡诺图有2N个小方块(最小项);
② 最小项排列规则:几何相邻的必须逻辑相邻。
逻辑相邻:两个最小项,只有一个变量的形式不 同,其余的都相同。逻辑相邻的最小项可以合并。
ABC ABC ABC 或:Y ( A, B,C ) m3 m6 m7
m(3,6,7)
2020/8/14
8
例2: 写出三变量函数的最小项表达式。
解 利用摩根定律将函数变换为与或表达 式,然后展开成最小项之和形式。
Y ( A, B,C) AB AB C AB
AB ABC AB
2020/8/14
22
BCD
m3
m11
图1-15 两个最小项合并
2020/8/14
23
图1-16 四个最小项合并
2020/8/14
24
2020/8/14
图1-17 八个最小项合并
25
(2)利用卡诺图化简逻辑函数
A.基本步骤:
① 画出逻辑函数的卡诺图;
② 合并相邻最小项(圈组);
③ 从圈组写出最简与或表达式。
ABC D ABCD ABC D ABCD
m(12,13,14,15)
Y2 ACD A(B B)CD
Y3 ABCD m7
ABCD ABCD
2020/8/1m4 (9,13)
17
熟悉后也可以直接由表达式填卡诺图。 Y AB ACD ABCD
AB=11
2020/8/14
种方法。
卡诺图的基本组成单元是最小项,所以先讨论
一下2020最/8/14小项及最小项表达式。
3
2.4.1 最小项及最小项表达式
(1)最小项
设A、B、C是三个逻辑变量,若由这三个逻辑变 量按以下规则构成乘积项:
①每个乘积项都只含三个因子,且每个变量都是 它的一个因子;
②每个变量都以反变量(A、B、C)或以原变量(A、 B、C)的形式出现一次,且仅出现一次。
2020/8/14
图1-14 例4的卡诺图 16
(3)从与-或表达式画卡诺图
把每一个乘积项所包含的那些最小项(该乘积 项就是这些最小项的的公因子)所对应的小方块都 填上1,剩下的填0,就可以得到逻辑函数的卡诺图。
例5:已知 Y AB ACD ABCD ,画卡诺图。
Y1 AB AB(C C)(D D)
表1-17 三变量最小项真值表
2020/8/14
5
(2)最小项的性质
①对于任意一个最小项,只有一组变量取值使它 的值为1,而变量取其余各组值时,该最小项均为0;
②任意两个不同的最小项之积恒为0; ③变量全部最小项之和恒为1。
2020/8/14
6
最小项也可用“mi” 表示,下标“i”即最小项 的编号。编号方法:把最小项取值为1所对应的那 一组变量取值组合当成二进制数,与其相应的十进 制数,就是该最小项的编号。
1 1 1 +1 1 1
1
ABCD=0111
ACD=101
最后将剩 下的填0
18
(4)从一般形式表达式画卡诺图
先将表达式变换为与或表达式,再画出卡 诺图。
2020/8/14
19