大直径空心轴转子结构设计及机械强度计算.
轴的结构设计及强度计算

轴的结构设计及强度计算(1)轴的概述一.轴的功能及分类1.功能支撑回转零件并传递扭矩。
2.分类轴的用途及分类轴的主要功用是支承回转零件及传递运动和动力按照承受载荷的不同,轴可分为:心轴─只承受弯矩的轴,如火车车轮轴。
传动轴─只承受扭矩的轴,如汽车的传动轴。
转轴─同时承受弯矩和扭矩的轴,如减速器的轴。
按照轴线形状的不同,轴可分为曲轴和直轴两大类。
直轴根据外形的不同,可分为光轴和阶梯轴。
轴一般是实心轴,有特殊要求时也可制成空心轴,如航空发动机的主轴。
除了刚性轴外,还有钢丝软轴,可以把回转运动灵活地传到不开敞地空间位置。
二.轴的材料轴的材料主要是碳钢和合金钢,钢轴的毛坯多数用圆钢或锻件,各种热处理和表面强化处理可以显著提高轴的抗疲劳强度。
碳钢比合金钢价廉,对应力集中的敏感性比较低,适用于一般要求的轴。
合金钢比碳钢有更高的力学性能和更好的淬火性能,在传递大功率并要求减小尺寸和质量、要求高的耐磨性,以及处于高温、低温和腐蚀条件下的轴常采用合金钢。
在一般工作温度下(低于200℃),各种碳钢和合金钢的弹性模量均相差不多,因此相同尺寸的碳钢和合金钢轴的刚度相差不多。
高强度铸铁和球墨铸铁可用于制造外形复杂的轴,且具有价廉、良好的吸振性和耐磨性,以及对应力集中的敏感性较低等优点,但是质较脆。
三.轴设计的主要内容轴的设计包括结构设计和工作能力验算两方面的内容。
(1)根据轴上零件的安装、定位以及轴的制造工艺等方面的要求,合理地确定轴的结构形式和尺寸。
(2)轴的承载能力验算指的是轴的强度、刚度和振动稳定性等方面的验算。
轴的设计过程是:选择材料—初估轴径—结构设计—校核强度,刚度,稳定性(2)轴的直径初估方法:类比法按扭矩估算一.轴的扭转强度强度条件:校核式:τT =T/WT=9.55 106P/0.2d3n≤[τT]设计式:d ≥[]362.01055.9n P T τ⨯=C 3nP C---系数(表12-2)(3)轴的结构设计轴的结构设计应该确定:轴的合理外形和全部结构尺寸。
轴的结构设计,轴的强度计算,轴的刚度计算

详见 P311 图16.3
16.2 轴的结构设计
轴肩处
r C或R 定位轴肩h 3 ~ 5mm,但 C或R 采用套筒、轴端挡圈、 圆螺母处: l轴 B轮
➢ 轴肩由定位面和内圆角组成
b
D h
d D
h C d
k、k 弯矩和转矩作用的有效 应力集中系数 (见附录表1、2, 配合零件的综合影响系 数见附录表3)
16.3 轴的强度计算
a、 a
a
a弯bb 曲和((扭bb 转WMWM应)力) 幅,
MPa;
b b
m、 m 弯曲和扭转平均应力, MPa;
m 0
m
2
表面状态系数(附录表 4及5);
bmax b
16.2 轴的结构设计
2.轴上零件的周向固定 常用的周向固定方法有键、花键、成形、弹性环、销和过
盈配合等联接。
配合处+键可传递较大T 配合处设置大倒角 装方便(对中性 )
16.3 轴的强度计算
设计思路: (1)类比定结构 必要校核计算 (2)强度计算为依据 逐步结构细化(设计, 节约材料) 轴的强度计算主要由三种方法(据轴受载及对安全要求) (1)按许用切应力计算 (2)许用弯曲应力计算; (3)安全系数校核计算。 16.3.1 按许用切应力计算 1.应用(仅与T有关) (1)传动轴计算(主要T) (2)需初步结构化的转轴(只知T)
现在,又开发了一种可更换式主轴 系统, 具有一 机两用 的功效 ,用户 根据不 同的加 工对象 选择使 用,即 电主轴 和镗杆 可相互 更换使 用。这 种结构 兼顾了 两种结 构的不 足,还 大大降 低了成 本。是 当今卧 式镗铣 床的一 大创举 。电主 轴的优 点在于 高速切 削和快 速进给 ,大大 提高了 机床的 精度和 效率。
轴的强度计算与设计

轴的强度计算与设计发布者:环球轴承网来源:互联网发布日期:2007年12月28日9.3.1轴的扭转强度计算开始设计轴时,通常还不知道轴上零件的位置及支点位置,无法确定轴的受力情况,只有待轴的结构设计基本完成后,才能对轴进行受力分析及强度、刚度等校核计算。
因此,一般在进行轴的结构设计前先按纯扭转受力情况对轴的直径进行估算。
设轴在转矩T的作用下,产生剪应力τ。
对于圆截面的实心轴,其抗扭强度条件为:式中T为轴所传递的转矩,单位为N·mm;Wr为轴的抗扭截面系数,单位为mm3;P 为轴所传递的功率,单位为kW;n为轴的转速,单位为r/min;τ,[τ]分别为轴的剪应力,单位为MPa;d为轴的估算直径,单位为mm。
轴的设计计算公式为常用材料的[τ]值、C值可查表9.1。
[τ]值、C值的大小的材料及受载情况关。
当作用在轴上的弯矩比转矩小,或轴只受转矩时,[τ]值取较大值,C值取较小值,否则相反。
由式(9.2)求出的直径值,需圆整成标准直径,并作为轴的最小直径。
如轴上有一个键槽,可将算得的最小直径增大3%~5%,如有两个键槽可增大7%~10%。
9.3.2轴的弯扭合成强度计算完成轴的结构设计后,作用在轴上外载荷(转矩和弯矩)的大小、方向、作用点、载荷种类及支点反力等就已确定,可按弯扭合成的理论进行轴危险截面的强度校核。
进行强度计算时通常把轴当作置于铰链支座上的梁,作用于轴上零件的力作为集中力,其作用点取为零件轮毂宽度的中点。
支点反的作用点一般可近似地取在轴承宽度的中点上。
具体的计算步骤如下:(1)画出轴的空间力系图。
将轴上作用力分解为水平面和垂直面分力,并求出水平面和垂直面上的支点反力。
(2)分别作出水平面上的弯矩(M H)图和垂直面上的弯矩(Mv)图。
(3)计算出合成弯矩M=M2H+M2v,绘出合成弯矩图。
(4)作出转矩(T)图。
(5)计算当量弯矩Me=M2H+(aT)2,绘出当量弯矩图。
式中α为考虑弯曲应力与扭转剪力循环特性的不同而引入的修正系数。
机械设计(8.4.1)--轴的强度计算

已知:作用在轴上的转矩T 适用: 1. 传动轴的设计; 2. 弯矩较小的转轴;3. 粗(初)估轴的直8-4 轴的强度计算一、按扭转强度条件轴的强度计算通常是在初步完成轴的结构设计后进行校核计算。
8-4轴的强度计算 一、按扭转强度条件[]23N/mm 2.01095503T T T dn PW T ττ≤⨯==τT ——轴的扭转应力,N/mm ,T ——轴传递的扭矩,N.mmW T ——轴的抗扭截面模量,mm 3;P ——轴传递的功率,kW ;n ——轴的转速,r/min ;[τT ]——许用扭转应力,N/mm ;8-4 轴的强度计算一、按扭转强度条件[]mm2.0109550 3.03.3nP A n P d T =⨯≥τ轴的最小直径设计公式:A 0——由轴材料及承载情况确定的系数,A 0=110~160, 材质好、弯矩较小、无冲击和过载时取小值;反之取大值。
β——空心轴内外径的比值,常取0.5~0.6。
当轴上有键槽时,应适当增大轴径:单键增大3%-5%8-4 轴的强度计算 一、按扭转强度条件实心圆轴[]mm )1( )1(2.0109550 3.403.43nPA n P d T βτβ-=-⨯≥空心圆轴已知:各段轴径,轴所受各力、轴承跨距计算:轴的强度步骤:可先画出轴的弯矩扭矩合成图,然后计算危险截面的最大弯曲应力。
二、按弯扭合成强度计算主要用于计算一般重要,受弯扭复合的轴。
计算精度中等。
[]222N/mm 4b T b ca στσσ≤+=第三强度理论[]b T caT T b WT M W T W M WT d T W T dM W M σστσ≤+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛==≈=≈=222332422.01.0122][)(-≤+==b caca WT M W M σασ弯曲应力 对称循环弯曲应力与扭转切应力的循环特征不同所以引入的应力校正系数α扭转应力不变化的转矩脉动变化的转矩频繁正反变化的转矩[][],3.011≈=+-b b σσα[][],6.001≈=-b b σσα[][],111≈=--b b σσα[σ]-1对称循环应力下轴的许用应力[σ]0脉动循环应力下轴的许用应力[σ]+1静应力下轴的许用应力轴的许用弯曲应力,表8-3[]311.0-≥b caM d σ122][)(-≤+==b cacaWT M W M σασ计算弯矩或校核轴径已知:轴的结构和尺寸、轴所受各力、轴承跨距、过渡圆角、表面粗糙度、轴毂配合计算:轴的强度用于重要的轴,计算精度高且复杂三、按疲劳强度计算安全系数8-4 轴的强度计算三、按疲劳强度计算安全系数轴的疲劳强度许用安全系数[S]=1.3-1.5,用于材料均匀;[S]=1.5-1.8,用于材料不够均匀;[S]=1.8-2.5,用于材料均匀性及计算精确度很低,或轴径 d>200mm 。
空心轴的设计计算公式

空心轴的设计计算公式
空心轴是一种常见的机械零件,其设计需要考虑多个因素,包括轴的材料、直径、长度、载荷等。
在设计空心轴时,需要使用一些计算公式来确定其尺寸和性能。
我们需要确定空心轴的最大扭矩。
扭矩是轴所能承受的力矩,通常用牛顿米(N·m)或英尺磅(ft·lb)表示。
最大扭矩的计算公式为:Tmax = (π/16) * σy * d^3
其中,Tmax为最大扭矩,σy为轴材料的屈服强度,d为轴的直径。
这个公式假设轴是圆形的,且材料的应力分布是均匀的。
接下来,我们需要计算空心轴的弯曲应力。
弯曲应力是轴在受到弯曲力矩时所产生的应力,通常用帕斯卡(Pa)表示。
弯曲应力的计算公式为:
σb = (M * y) / I
其中,σb为弯曲应力,M为弯曲力矩,y为轴的截面形心距,I为轴的截面惯性矩。
这个公式假设轴是直线的,且材料的应力分布是均匀的。
我们需要计算空心轴的转动惯量。
转动惯量是轴在旋转时所具有的惯性,通常用千克·米^2(kg·m^2)表示。
转动惯量的计算公式为:
I = (π/64) * (d^4 - d1^4)
其中,d为轴的外径,d1为轴的内径。
这个公式假设轴的截面是圆环形的。
设计空心轴需要考虑多个因素,包括最大扭矩、弯曲应力和转动惯量等。
通过使用上述计算公式,可以确定空心轴的尺寸和性能,从而满足机械系统的要求。
机械轴的设计、计算、校核

机械轴的设计、计算、校核轴的设计、计算、校核轴的设计、计算、校核以转轴为例,轴的强度计算的步骤为:1.轴I的强度校合(1)求作用在齿轮上的力111221386333381.3082tTF Nd⨯===11tan203381.3tan201230.69r tF F N=︒=⨯︒=(2)求轴承上的支反力垂直面内:NV1F917=NNV2F314=N水平面内:12518NHF N=NH2F863N=(1)画受力简图与弯矩图根据第四强度理论且忽略键槽影响[]170MMPa Wσσ-==〈= (M =332W dπ=)69.210W -=⨯[]531161.93101025.69709.210ca M Mpa MPa W σσ---⨯⨯===〈=⨯()[]53132 2.34101020.69700.10.045ca M Mpa MPa W σσ--⨯⨯===〈=⨯ 所以轴的强度足够2.校合轴II 的强度(1)求作用在齿轮上的力 21t t F F == 3381.30N 21r r F F ==1230.69N33225880239967118t T F N d ⨯===Ⅱ3tan tan 2099673739cos cos14.6n r ta F F N β︒==⨯=︒tan 9967tan142485a t F F N β==⨯︒=(2)求轴承上的支反力水平面内:31323(8511897)97(11897)2NV r r a d F F F F ⨯+++⨯=⨯++⨯求得1NV F =162N3232(8511897)(11885)852NV r a r d F F F F ⨯+++⨯++⨯=⨯求得NV2F =-2670N 垂直面内:123(8511897)(11897)97NH t t F F F ⨯++=⨯++⨯求得1NH F =5646N 232(8511897)(85118)85NH t t F F F ⨯++=⨯++⨯求得2NH F =7700N(2) 画受力简图与弯矩图(4)按弯扭合成应力校核轴的强度在两个轴承处弯矩有最大值,所以校核这两处的强度[]22170()a caMP T M σασ-+= 332W dπ=载荷 水平面H 垂直面V支反力F 1NH F =5646N2NH F =7700N 1NV F =162N NV2F =-2670N弯矩M 11297770097746900NHMax NH M F N mm=⨯=⨯=• 1297267097258990NVMax NV M F N mm=⨯=⨯=•查得材料的敏性系数为 ,应力集中系数为查得表面质量系数查得尺寸系数为 ;查得扭转尺寸系数为计算得综合系数为取40Cr 的特征系数为,取 ,取计算安全系数故可知截面III 左侧安全 截面A 右侧抗弯截面系数 3320.10.19112.545W d mm ==⨯= 抗扭截面系数 3320.20.21822545W d mm ==⨯= 截面A 左侧的弯矩M 为 5958802335766497M N mm =⨯=• 截面A 左侧的扭矩T 为2588023T T N mm ==• 截面上的弯曲应力39b M MPa W σ==截面上的扭转切应力32b TMPa Wtσ== 轴的材料为45钢,调质处理。
空心轴强度的计算与分析

空心轴强度的计算与分析空心轴是一种常见的结构形式,广泛应用于桥梁、塔楼等建筑物的设计和建造中。
空心轴的强度计算和分析是设计师和工程师在设计过程中必须考虑的重要问题之一。
本文将探讨空心轴强度的计算和分析方法,帮助读者更好地理解和应用于实际工程中。
空心轴的强度计算是建立在力学原理的基础上的。
首先,我们需要确定空心轴的几何特征,包括外径、内径和长度。
接下来,我们要对空心轴进行截面分析,计算其截面面积和截面模量。
在进行强度计算时,主要考虑以下几个方面:1. 弯曲强度:空心轴在工作状态下通常会受到弯曲力的作用。
为了计算空心轴的弯曲强度,我们可以使用弯曲强度计算公式,其中包括杨氏模量、截面面积和截面矩。
这些参数通过对截面进行几何分析可以得到。
2. 剪切强度:剪切力是空心轴另一个重要的工作状态下的受力情况。
为了计算空心轴的剪切强度,我们需要确定其剪切模量和截面面积。
剪切强度计算公式可以通过这些参数和剪切力得到。
3. 扭转强度:扭转力是作用在空心轴上的一种受力情况。
空心轴在扭转状态下会受到很大的应力和变形。
为了计算空心轴的扭转强度,我们需要知道其截面的扭转常数和截面面积。
通过扭转强度计算公式,可以根据这些参数和扭转力来进行计算。
除了上述三种受力状态下的强度计算,我们还需要考虑空心轴的强度组合问题。
在实际工程中,空心轴通常同时承受多种受力状态,如弯曲、剪切和扭转力等。
为了综合考虑各种受力情况,我们需要对这些受力状态进行组合,计算空心轴在各种受力组合下的最不利情况。
通常,我们可以采用弯曲、剪切和扭转强度的组合计算公式,来确定空心轴在综合受力情况下的最小强度。
除了强度计算,我们还可以通过有限元分析等方法对空心轴的受力情况进行更精细的分析。
有限元分析方法可以模拟空心轴在实际受力情况下的变形和应力分布情况,帮助工程师更好地理解和优化设计。
然而,有限元分析方法通常需要计算机软件的支持,需要进行一系列的计算和模型建立,增加了设计的复杂性和时间成本。
大直径空心轴转子结构设计及机械强度计算.

不超过5200mm的电机转子。而ZD315/1344100kW
电机若设计采用实心轴的话,其转子总重量将达80吨,总长为6785rran,为此只能采用空心轴结构。全焊接空心轴因为在浸漆前就已将两端的两段实心轴部分联接在一起,因此加大了转子浸漆的吨位及整体长一10一
对大直径、大转矩的电动机来说,电机制造难
度、造价的增加主要还在于转子轴及转子支架。因
为转轴要锻造、轴径要粗,还要有充分的冷却,转子铁心压装要求高,加工困难。因此如何改进电机的结构,特别是改进电机转子、转子轴的结构已成为电机行业的一大课题。上海电机厂于二十世纪六十年代末就对转子空心轴的结构在大型直流电机上的应用进行攻关研究,最近为国内钢铁厂热轧工程轧机
度,该电机的制造只能采用组合式空心轴结构。组合式空心轴选用材料方便,容易找到两种焊接性能差别不大的材料来做空-1、5'轴圆筒和空心轴法兰盘,且焊接时占地空间、面积小,对设备的要求不是很高。但是组合式空心轴结构要比全焊接空心轴结构多一次两侧实心轴的装、拆轴工艺。这种结构必须要有大量的高强度螺栓、圆柱销等配合连接零件,且金加工工序多、周期长、精度高、技术难度大,同时要严格控制转
27280kg
转轴的临界转速3310r/rain
1513r/min
非传动端388kN有效铁心长度
117era117era
轴承支撑力传动端353kN
空心圆筒长度173cm
总集中扭矩
2940kNm
非传动端551kNm主极气隙长度0.7era
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
度、造价的增加主要还在于转子轴及转子支架。因
为转轴要锻造、轴径要粗,还要有充分的冷却,转子铁心压装要求高,加工困难。因此如何改进电机的结构,特别是改进电机转子、转子轴的结构已成为电机行业的一大课题。上海电机厂于二十世纪六十年代末就对转子空心轴的结构在大型直流电机上的应用进行攻关研究,最近为国内钢铁厂热轧工程轧机
现代大型电机的制造均要求转子采用绝缘性能优越、能提高绝缘强度和机械强度、减小吊装、浸漆吨位及尺寸的真空压力整体浸漆工艺。上海电机厂拥有目前亚洲最大的04800mm真空压力整体浸漆罐,但该罐及其附属设备也只能浸漆50吨以下,单体总长
不超过5200mm的电机转子。而ZD315/1344100kW
电机若设计采用实心轴的话,其转子总重量将达80吨,总长为6785rran,为此只能采用空心轴结构。全焊接空心轴因为在浸漆前就已将两端的两段实心轴部分联接在一起,因此加大了转子浸漆的吨位及整体长一10一
和4)。
图3组合式空心轴
图4螺栓、销钉连接
另一种转子空心轴结构是将空心轴的中间空心圆筒制成后直接和两端实心轴相焊接,这种空心轴结构称为“全焊接空心轴”。这种结构与组合式空心轴相比,结构较为简单,其中间空心轴部分其实就是一个空心薄壁圆筒,设计时只须在两侧加工好焊接用的坡口即可,但对焊接的技术要求很高。
由于空心轴结构是一种大直径的薄壳圆筒结构,因此它与转子支架的配合就不宜采用热套过盈配合的结构。根据转子支架上需叠压的转子扇形冲片的结构,采用了在空心轴圆筒上焊接15件“板凳”式支架筋的方式。且这些“板凳”式支架筋均是预先采用自动埋弧焊的方式焊接成形后再采用自动埋弧焊焊接到空心轴圆筒本体上去的(见图5和6)。15件“板凳”式支架筋之间焊接有立筋,且在换向器端一侧焊接有一块整圆幅板,以使15根支架筋相互连
2005.No.1
大直径空心轴转子结构设计及机械强度计算
大直径空心轴转子结构设计及机械强度计算
陈明镜谢宝昌上海交通大学
摘要:针对大直径高转矩电机制造难度大且造价高的问题,本文介绍了用于钢铁厂轧机的大型电机
空心轴转子结构设计和机械强度计算。与同功率实心轴转子相比较,结果显示空心轴具有明显的优越
性。
关键词:电机大型空心轴机械强度计算结构设计
1340mm(1420mm),转子总长度6785mm(7400mm)。
中空轴部分
图1电机转子轴的空心轴结构
图2电机转子轴的实心轴结构
由上述数据可看出,电机转子直径相同,总长及
铁心本体长度相差不大(约6%),转子单件重相差
28380kg,空心轴与实心轴相比轻达31.7%,因此采
用空心轴结构即使不计其性能改善,仅节约材料及
不同材料组成,其中中间圆筒部分由90mm厚的Q235一A普通厚钢板滚圆成内径为巧1740mm的圆筒。要求滚圆后圆度控制在2mm左右,否则将会影响到转子的动、静平衡校正及圆筒上的焊接和加工。
而与空心轴圆筒相配的两端法兰材料则采用16Mn
优质合金锻钢。这种材料经过调质及回火处理,机
械强度高,焊接性能好,便于与圆筒部分的焊接。
4100kw(5750kW),额定电压750V(1000V);基速
40r/min,基速及以下恒转矩调压调速,2.5倍额定电流过载,2.75倍额定电流切断;高速80r/min,基速至高速恒功率弱磁调速,1.8倍额定电流过载,2倍额定电流切断;他励300V(100V),绝缘等级为F级绝缘和B级温升考核,s1工作制连续运行;总重量133300kg(211000kg),转子单件重量61220kg(89600kg),转子直径口3150mm,转子铁心长度
生产的大型直流电机(ZD315/134,4100kW)上采用
了国内外罕见的空心轴结构,获得了较为良好的制
造和使用效果。本文就此结合直流电机空心轴转子
制造实例对空心轴结构和机械强度设计计算进行探讨。
2.电机的基本技术参数
为了便于比较给出了两种型号大型直流电机
ZD315/134和ZD315/142的基本技术参数,其中括号中的数据为型号ZD315/142的参数;转子轴空心轴(实心轴)结构(如图1和2所示),额定功率
度,该电机的制造只能采用组合式空心轴结构。组合式空心轴选用材料方便,容易找到两种焊接性能差别不大的材料来做空-1、5'轴圆筒和空心轴法兰盘,且焊接时占地空间、面积小,对设备的要求不是很高。但是组合式空心轴结构要比全焊接空心轴结构多一次两侧实心轴的装、拆轴工艺。这种结构必须要有大量的高强度螺栓、圆柱销等配合连接零件,且金加工工序多、周期长、精度高、技术难度大,同时要严格控制转
---——9・--——
万方数据
上海大中型电机
轴承承重性能改善也是很显著的。
3.空心轴结构转子制造特点
转子空心轴结构大致可分为二种:一是空心轴中间圆筒Βιβλιοθήκη 成后,两端配法兰连接,然后用螺栓和圆
柱销将两端实心轴配合紧固成一体,国外也有采用螺栓和圆柱销合二为一的锥形超级把合螺栓紧固的,这种空心轴结构简称为“组合式空心轴”(见图3
1.前言
随着电机的单机容量及整机尺寸越来越大,但受电机制造工艺及装备的影响,较多地采用双电枢或双电机串联传动方式。这种结构方式由于存在电磁及负荷不平衡乃至不同步,且联接结构复杂、轴系较长、占地面积大、使用维护工作量增加,因而总体投资及后续费用与单电机相比也不经济合理。因此迫切需要直接传动的低速大直径、短铁心结构电动机,避免大直径高速电机加齿轮箱减速的方案,以减少电机的传动损耗和占地面积,还可以减少整个设备的成本和维护费用,提高运转的可靠性。
子轴系加工、连接及装配产生的误差。
空心轴的中间部分圆筒加工由于大型滚圆机的
应用变得非常简单,且只须根据机械强度和电机制
造工艺的要求,选用一定厚度、规格、品种的厚钢板滚圆成一定的直径并焊接拼缝即可。这种结构的空
心轴,与同直径的实心轴相比,飞轮转矩小,结构牢
固和强度好,承受重负荷能力强。
根据ZD315/134,4100kW,40/80r/min电机的实际工况,最终确定电机空心轴的本体是由三段两种
以上三段材料分别经过端部坡口、定位止口加工后,采用自动埋弧焊的工艺焊接,焊接时的工艺流程同全焊接空心轴相类似。但由于两端法兰是平底圆盘结构且轴向尺寸较短,因此其对加热、旋转等所需设备要求相对较低,但焊接时同样要求保持工件加热、旋转。焊接结束后,还须经多次焊缝探伤检查,证实焊接良好,无砂孔、夹杂或虚焊。