2-2大学高数历年期末试题
高数期末考试题及答案

高数期末考试题及答案一、选择题(每题4分,共20分)1. 极限的定义中,当x趋近于a时,f(x)趋近于A,则称A为f(x)的极限。
以下哪个选项是正确的?A. 若f(x)在x=a处连续,则f(x)在x=a处的极限存在B. 若f(x)在x=a处不连续,则f(x)在x=a处的极限不存在C. 若f(x)在x=a处的极限存在,则f(x)在x=a处连续D. 若f(x)在x=a处的极限不存在,则f(x)在x=a处不连续答案:A2. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^53. 以下哪个函数是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:A4. 以下哪个函数是周期函数?A. f(x) = e^xB. f(x) = sin(x)C. f(x) = ln(x)D. f(x) = x^2答案:B5. 以下哪个函数是单调递增函数?B. f(x) = x^2C. f(x) = e^xD. f(x) = ln(x)答案:C二、填空题(每题4分,共20分)6. 函数f(x) = 3x^2 - 2x + 1的导数是______。
答案:6x - 27. 函数f(x) = sin(x)的不定积分是______。
答案:-cos(x) + C8. 函数f(x) = e^x的不定积分是______。
答案:e^x + C9. 函数f(x) = x^3的不定积分是______。
答案:(1/4)x^4 + C10. 函数f(x) = ln(x)的不定积分是______。
答案:x*ln(x) - x + C三、计算题(每题10分,共30分)11. 求极限lim(x→0) [(x^2 + 1) / (x^2 + x)]。
答案:112. 求不定积分∫(3x^2 - 2x + 1)dx。
答案:(x^3 - x^2 + x) + C13. 求定积分∫(0 to 1) (x^2 - 2x + 3)dx。
高等数学2期末复习题与答案(可编辑修改word版)

x 2 + y 2 - 1 3 1- y 2《高等数学》2 期末复习题一、填空题:1. 函 数 z = + ln(3 - x 2 - y 2 ) 的 定 义 域 是 1≦X^2+Y^2<3 . 2.设 z = (1 + x ) y, 则∂z =∂y(1+ x ) yln(1+ x ) .3.函数 z = ln(1+ x 2 + y 2 ) 在点(1, 2) 的全微分dz = 1dx + 2 dy(1,2)3 34.设 f (x + y , xy ) = x 2 + y 2 , 则 f (x , y ) =.设 f (x + y , y) = x 2 - y 2 , 则 f (x , y ) = .x5. 设 z = e u sin v 而 u = xy v = x + y 则 ∂z =∂ye xy [x sin(x + y ) + cos(x + y )]6. 函数 z = x 2 + y 2 在点(1,2)处沿从点(1,2)到点(2,2 + )的方向导数是1+ 222 y 17. 改换积分次序⎰0dy ⎰y 2f (x , y )dx =; ⎰0 dy ⎰y -1f (x , y )dx = .8. 若 L 是抛物线 y 2 = x 上从点 A (1,-1) 到点 B (1,1) 的一段弧,则⎰xydx =L9. 微分方程(1+ e 2x )dy + ye 2x dx = 0 的通解为.二、选择题: 1.lim ( x , y )→(2,0) tan(xy )y 等于 ()(上下求导)A .2,B. 12C.0D.不存在2. 函 数 z = 的定义域是( D )A. {(x , y ) x ≥ 0, y ≥ 0} C. {(x , y ) y ≥ 0, x 2 ≥ y }B. {(x , y ) x 2 ≥ y } D. {(x , y ) x ≥ 0, y ≥ 0, x 2 ≥ y }3 x - y23.∂f (x , y ) | ∂x( x0 ,y 0 ) = ( B )A. lim ∆x →0 f (x 0 + ∆x , y 0 + ∆y ) - f (x 0 , y 0 )∆xB. lim∆x →0f (x 0 + ∆x , y 0 ) - f (x 0 , y 0 )∆xC. lim ∆x →0 f (x 0 + ∆x , y 0 + ∆y ) - f (x 0 + ∆x , y 0 )∆xD. lim∆x →0 f (x 0 + ∆x , y 0 ) ∆x5. 设 z = F (x 2 + y 2 ) ,且 F 具有导数,则∂z + ∂z= (D )∂x ∂yA. 2x + 2 y ;B. (2x + 2 y )F (x 2 + y 2 ) ;C. (2x - 2 y )F '(x 2 + y 2 ) ;D. (2x + 2 y )F '(x 2 + y 2 ) .6. 曲线 x = a cos t , y = a sin t , z = amt ,在 t = 处的切向量是 ( D )4A . (1,1, 2)B. (-1,1, 2)C. (1,1, 2m )D. (-1,1, 2m )7. 对于函数 f (x , y ) = x 2 + xy ,原点(0,0)( A )A .是驻点但不是极值点B.不是驻点C.是极大值点D.是极小值点8.设 I= ⎰⎰5Dx 2 + y 2 -1dxdy , 其中 D 是圆环1 ≤ x 2 + y 2 ≤ 4 所确定的闭区域, 则必有( ) A .I 大于零 B.I 小于零C.I 等于零D.I 不等于零,但符号不能确定。
高数二期末考试题及答案

高数二期末考试题及答案一、选择题(每题4分,共20分)1. 下列函数中,哪一个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = \sin(x) \)D. \( f(x) = \cos(x) \)答案:C2. 极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} \) 的值是多少?A. 0B. 1C. \( \frac{1}{2} \)D. \( \infty \)答案:B3. 微分方程 \( y'' + y = 0 \) 的通解是?A. \( y = C_1 e^{-x} + C_2 e^x \)B. \( y = C_1 \cos(x) + C_2 \sin(x) \)C. \( y = C_1 x + C_2 \)D. \( y = C_1 \ln(x) + C_2 \)答案:B4. 定积分 \( \int_{0}^{1} x^2 dx \) 的值是多少?A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( 1 \)D. \( 2 \)答案:A5. 曲线 \( y = x^3 \) 在点 \( (1,1) \) 处的切线斜率是?A. 3B. 1C. 0D. \( \frac{1}{3} \)答案:A二、填空题(每题5分,共20分)1. 函数 \( f(x) = x^2 - 6x + 8 \) 的最小值是 ________。
答案:22. 函数 \( f(x) = e^x \) 的导数是 ________。
答案:\( e^x \)3. 函数 \( y = \ln(x) \) 的定义域是 ________。
答案:\( (0, +\infty) \)4. 函数 \( y = \frac{1}{x} \) 的图像关于 ________ 对称。
答案:原点三、计算题(每题10分,共30分)1. 求函数 \( y = x^3 - 3x^2 + 4 \) 在 \( x = 2 \) 处的导数。
第二学期高数下期末考试试卷及答案

第二学期期末高数(下)考试试卷及答案1一、 填空题(每空 3 分,共 15 分) 1.设()=⎰22t xFx e dt ,则()F x '=-22x xe.2.曲面sin cos =⋅z x y 在点,,⎛⎫⎪⎝⎭1442ππ处的切平面方程是--+=210x y z .3.交换累次积分的次序:=(),-⎰⎰2302xxdx f x y dy.4.设闭区域D 是由分段光滑的曲线L 围成,则:使得格林公式: ⎛⎫∂∂-=+ ⎪∂∂⎝⎭⎰⎰⎰ÑD LQ P dxdy Pdx Qdy x y 成立的充分条件是:()(),,和在D上具有一阶连续偏导数P x y Q x y .其中L 是D 的取正向曲线;5.级数∞=-∑1nn 的收敛域是(],-33.二、 单项选择题 (每小题3分,共15分)1.当→0x ,→0y 时,函数+2423x yx y 的极限是()DA.等于0;B. 等于13;C. 等于14; D. 不存在.2.函数(),=zf x y 在点(),00x y 处具有偏导数(),'00x f x y ,(),'00y f x y 是函数在该点可微分的()CA.充分必要条件;B.充分但非必要条件;C.必要但非充分条件;D. 既非充分又非必要条件.3.设()cos sin =+x ze y x y ,则==10x y dz()=BA.e ;B. ()+e dx dy ;C. ()-+1edx dy ; D. ()+x e dx dy .4.若级数()∞=-∑11nn n a x 在=-1x 处收敛,则此级数在=2x处()AA.绝对收敛;B.条件收敛;C.发散;D.收敛性不确定.5.微分方程()'''-+=+3691x y y y x e 的特解*y 应设为()DA. 3xae ; B.()+3x ax b e ;C. ()+3x xax b e ; D. ()+23x x ax b e .三.(8分)设一平面通过点(),,-312,而且通过直线-+==43521x y z,求该平面方程. 解:()(),,,,,--312430QA B(),,∴=-142u u u rAB 平行该平面∴该平面的法向量()()(),,,,,,=⨯-=--5211428922rn∴所求的平面方程为:()()()----+=83912220x y z即:---=8922590x y z四.(8分)设(),=yz fxy e ,其中(),f u v 具有二阶连续偏导数,试求∂∂z x 和∂∂∂2zx y. 解:令=u xy ,=y v e五.(8分)计算对弧长的曲线积分⎰L其中L 是圆周+=222xy R 与直线,==00x y在第一象限所围区域的边界.解:=++123L L L L其中: 1L :(),+=≥≥22200xy R x y2L :()=≤≤00x y R3L :()=≤≤00y x R而Re ==⎰⎰1202RR L e Rdt ππ故:()Re =+-⎰212R R Le π六、(8分)计算对面积的曲面积分∑⎛⎫++ ⎪⎝⎭⎰⎰423z x y dS ,其中∑为平面++=1234x y z在第一卦限中的部分. 解:Q xy D :≤≤⎧⎪⎨≤≤-⎪⎩023032x y x=3-==⎰⎰323200x dx七.(8分)将函数()=++2143f x x x ,展开成x 的幂级数.解:()⎛⎫=-=⋅-⋅ ⎪+++⎝⎭+111111121321613Q f x xx x x , 而 ()∞=⋅=-+∑01111212n nn x x , (),-11 ()∞=-⋅=+∑01116313nn n n x x , (),-33 ()()∞+=⎛⎫∴=-+ ⎪⎝⎭∑10111123nnn n f x x , (),-11八.(8分)求微分方程:()()+-+-+=42322253330xxy y dx x y xy y dy 的通解.解:∂∂==-∂∂263Q P Qxy y y x,∴原方程为:通解为:++-=532231332x y x y y x C九.幂级数:()()!!!!=++++⋅⋅⋅++⋅⋅⋅246212462nx x x x y x n1.试写出()()'+y x y x 的和函数;(4分)2.利用第1问的结果求幂级数()!∞=∑202nn x n 的和函数.(8分)解:1、()()!!!-'=+++⋅⋅⋅++⋅⋅⋅-35213521n x x x y x x n (),-∞∞于是()()!!'+=++++⋅⋅⋅=23123x x x y x y x x e (),-∞∞ 2、令:()()!∞==∑202nn x S x n由1知:()()'+=x S x S x e 且满足:()=01S通解:()()--=+=+⎰12x x x xx Sx e C e e dx Ce e 由()=01S ,得:=12C ;故:()()-=+12xx S x e e十.设函数()f t 在(),+∞0上连续,且满足条件其中Ωt 是由曲线⎧=⎨=⎩2z ty x ,绕z 轴旋转一周而成的曲面与平面=zt (参数>0t )所围成的空间区域。
高等数学二期末复习题及答案

高等数学二期末复习题及答案_28171462418361700(共19页) -本页仅作为预览文档封面,使用时请删除本页-《高等数学(二)》期末复习题一、选择题1、若向量b 与向量)2,1,2(-=a 平行,且满足18-=⋅b a ,则=b ( ) (A ) )4,2,4(-- (B )(24,4)--, (C ) (4,2,4)- (D )(4,4,2)--.2、在空间直角坐标系中,方程组2201x y z z ⎧+-=⎨=⎩代表的图形为 ( )(A )直线 (B) 抛物线 (C ) 圆 (D)圆柱面 3、设22()DI x y dxdy =+⎰⎰,其中区域D 由222x y a +=所围成,则I =( )(A) 2240ad a rdr a πθπ=⎰⎰ (B) 22402ad a adr a πθπ=⎰⎰(C) 223023ad r dr a πθπ=⎰⎰(D) 2240012a d r rdr a πθπ=⎰⎰4、设的弧段为:230,1≤≤=y x L ,则=⎰Lds 6 ( ) (A )9 (B) 6 (C )3 (D)23 5、级数∑∞=-11)1(n nn的敛散性为 ( ) (A ) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 敛散性不确定6、二重积分定义式∑⎰⎰=→∆=ni i i i Df d y x f 10),(lim ),(σηξσλ中的λ代表的是( )(A )小区间的长度 (B)小区域的面积 (C)小区域的半径 (D)以上结果都不对7、设),(y x f 为连续函数,则二次积分⎰⎰-1010d ),(d xy y x f x 等于 ( )(A )⎰⎰-1010d ),(d xx y x f y (B) ⎰⎰-1010d ),(d yx y x f y(C)⎰⎰-x x y x f y 1010d ),(d (D)⎰⎰101d ),(d x y x f y8、方程222z x y =+表示的二次曲面是 ( )(A )抛物面 (B )柱面 (C )圆锥面 (D )椭球面9、二元函数),(y x f z =在点),(00y x 可微是其在该点偏导数存在的( ). (A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件10、设平面曲线L 为下半圆周 21,y x =--则曲线积分22()Lx y ds +=⎰( )(A) 0 (B) 2π (C) π (D)4π11、若级数1n n a ∞=∑收敛,则下列结论错误的是 ( )(A)12n n a ∞=∑收敛 (B) 1(2)n n a ∞=+∑收敛 (C)100nn a∞=∑收敛 (D) 13n n a ∞=∑收敛 12、二重积分的值与 ( )(A )函数f 及变量x,y 有关; (B) 区域D 及变量x,y 无关; (C )函数f 及区域D 有关; (D) 函数f 无关,区域D 有关。
高数b2期末考试试题及答案

高数b2期末考试试题及答案一、选择题(每题5分,共30分)1. 设函数f(x)=x^3-3x+1,求f'(x)的值。
A. 3x^2 - 3B. x^2 - 3xC. 3x^2 - 3xD. x^3 - 3x^2答案:A2. 计算定积分∫(0,1) x^2 dx。
A. 1/3B. 1/2C. 2/3D. 1/4答案:B3. 求极限lim(x→0) (sin x) / x。
A. 1B. 0C. 2D. ∞答案:A4. 判断下列级数是否收敛。
∑(1/n^2),n从1到∞。
A. 收敛B. 发散答案:A5. 判断函数f(x)=e^x在实数域R上的连续性。
A. 连续B. 不连续答案:A6. 求二阶偏导数f''(x,y),其中f(x,y)=x^2y+y^2。
A. 2xyB. 2xC. 2yD. 2答案:B二、填空题(每题5分,共20分)1. 设函数f(x)=ln(x+1),求f'(x)=______。
答案:1/(x+1)2. 计算定积分∫(0,2π) sin(x) dx=______。
答案:03. 求极限lim(x→∞) (1+1/x)^x=______。
答案:e4. 判断级数∑(1/n),n从1到∞是否收敛,答案是______。
答案:发散三、解答题(每题10分,共50分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。
答案:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1,x=11/3。
经检验,x=1为极大值点,x=11/3为极小值点。
2. 计算定积分∫(0,1) e^x dx。
答案:∫(0,1) e^x dx = [e^x](0,1) = e^1 - e^0 = e - 1。
3. 求极限lim(x→0) (e^x - 1) / x。
答案:根据洛必达法则,lim(x→0) (e^x - 1) / x = lim(x→0) e^x = 1。
高等数学第二学期期末考试试题真题及完整答案(第2套)

高等数学第二学期期末考试试题真题及完整答案一、填空题(将正确答案填在横线上)(本大题共5小题,每小题4分,总计20分)1、设函数,则=2、曲面在点处的切平面方程为____3、= .4、曲面积分= ,其中,为与所围的空间几何形体的封闭边界曲面,外侧.5、幂级数的收敛域为。
二、选择题(将选项填在括号内)(本大题共5小题,每小题4分,总计20分)1、函数在(1,1)点沿方向的方向导数为( )。
(A) 0 (B) 1 (C) 最小 (D)最大2、函数在处( ).(A)不连续,但偏导数存在 (B)不连续,且偏导数不存在(C)连续,但偏导数不存在 (D)连续,且偏导数存在3、计算=( ),其中为(按逆时针方向绕行).(A)0 (B)(C) (D)4、设连续,且,其中D由所围成,则( )。
(A)(B) (C) (D)5、设级数收敛,其和为,则级数收敛于( )。
(A)(B)(C)(D)三、解答下列各题(本大题共3小题,每小题8分,总计24分)1、设函数由方程所确定,计算,。
2、计算,其中,为曲线,.3、求幂级数的和函数.三、解答下列各题(本大题共3小题,每小题8分,总计24分)1、求内接于半径为的球面的长方体的最大体积.2、计算,其中平面区域.3、计算,其中为平面被柱面所截得的部分.五、解答下列各题(本大题共2小题,每小题6分,总计12分)1、计算其中为上从点到点.2、将函数展开成的幂级数.答案及评分标准一、填空题 (本大题分5小题,每小题4分,共20分)1、 2、3、 4、 5、二、选择题(将选项填在括号内)(本大题共5小题,每小题4分,共20分)1、C2、A3、B4、D5、B三、解答下列各题(本大题共3小题,每小题8分,共24分)1、解:方程两端同时对分别求偏导数,有,………………6分解得:.…………………………………………8分2、解:作图(略)。
原式=………………………2分.………………………8分3、解:经计算,该级数的收敛域为。
2-2大学高数历年期末试题word资料10页

2019-2019年一. 填空题 (共4小题,每小题4分,共计16分) 1.22(1,0)ln(),y z xe x y dz =++=设则2.设xy y x y x f sin ),(+-=,则dx x x f dy y ⎰⎰110 ),(=3.设函数21cos ,0()1,0xx f x xx x πππ+⎧<<⎪=-⎨⎪+-≤≤⎩以2π为周期,()s x 为的()f x 的傅里叶级数的和函数,则(3)s π-= .4.设曲线C 为圆周222Ry x =+,则曲线积分dsx y x C ⎰+)—(322=二.选择题(共4小题,每小题4分,共计16分)1. 设直线L 为32021030,x y z x y z ++=⎧⎨--+=⎩平面π为4220x y z -+-=,则 ( ) .(A) L 平行于平面π (B) L 在平面π上(C) L 垂直于平面π (D) L 与π相交,但不垂直2.设有空间区域2222:x y z R Ω++≤,则Ω等于 ( ).(A) 432R π (B) 4R π (C) 434R π (D) 42R π3.下列级数中,收敛的级数是( ).(A)∑∞=+-1)1()1(n nnn n (B) ∑∞=+-+11)1(n nn n(C)nn en -∞=∑13(D)∑∞=+1)11ln(n nnn4. 设∑∞=1n na是正项级数,则下列结论中错误的是( )(A ) 若∑∞=1n na收敛,则∑∞=12n na也收敛 (B )若∑∞=1n na收敛,则11+∞=∑n n naa 也收敛(C )若∑∞=1n n a 收敛,则部分和n S 有界 (D )若∑∞=1n n a 收敛,则1lim 1<=+∞→ρnn n a a三.计算题(共8小题,每小题8分,共计64分)1.设函数f 具有二阶连续偏导数,),(2y x y x f u +=,求y x u∂∂∂2.2.求函数y x xy z +-=23在曲线12+=x y 上点(1,2)处,沿着曲线在该点偏向x 轴正向的切线方向的方向导数. 解:3.计算,)(2dxdy y x D⎰⎰+其中}4),({22≤+=y x y x D . 4. 设立体Ω由锥面z =及半球面1z =围成.已知Ω上任一点(),,x y z 处的密度与该点到x y o 平面的距离成正比(比例系数为0K >),试求立体Ω的质量.6. 计算第二类曲面积分⎰⎰∑++dxdy zx xydxdz xyzdydz 2,其中∑为球面2x 的外侧.7.求幂级数nn x n ∑∞=+111的和函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-2大学高数历年期末试题2010-2011年一. 填空题 (共4小题,每小题4分,共计16分) 1.22(1,0)ln(),y z xe x y dz =++=设则2.设xy y x y x f sin ),(+-=,则dxx x f dy y ⎰⎰11 0 ),(=3.设函数21cos ,0()1,0xx f x xx x πππ+⎧<<⎪=-⎨⎪+-≤≤⎩以2π为周期,()s x 为的()f x 的傅里叶级数的和函数,则(3)s π-= . 4.设曲线C 为圆周222R y x =+,则曲线积分dsx y x C⎰+)—(322=二.选择题(共4小题,每小题4分,共计16分) 1. 设直线L 为32021030,x y z x y z ++=⎧⎨--+=⎩平面π为4220x y z -+-=,则 ( ) .(A) L 平行于平面π (B) L 在平面π上(C) L 垂直于平面π (D) L 与π相交,但不垂直 2.设有空间区域2222:x y z R Ω++≤,则222x y z dvΩ++等于( ).(A)432R π (B) 4R π (C)434R π(D) 42R π3.下列级数中,收敛的级数是( ).(A) ∑∞=+-1)1()1(n n nn n (B)∑∞=+-+11)1(n nn n(C)nn en -∞=∑13(D)∑∞=+1)11ln(n nnn4. 设∑∞=1n na是正项级数,则下列结论中错误的是( )(A ) 若∑∞=1n na收敛,则∑∞=12n na也收敛 (B )若∑∞=1n na收敛,则11+∞=∑n n naa 也收敛(C )若∑∞=1n na收敛,则部分和n S 有界 (D )若∑∞=1n na 收敛,则1lim 1<=+∞→ρn n n a a三.计算题(共8小题,每小题8分,共计64分)1.设函数f 具有二阶连续偏导数,),(2y x y x f u +=,求yx u ∂∂∂2.2.求函数y x xy z +-=23在曲线12+=x y 上点(1,2)处,沿着曲线在该点偏向x 轴正向的切线方向的方向导数. 解:3.计算,)(2dxdy y x D⎰⎰+其中}4),({22≤+=y x y x D .4. 设立体Ω由锥面22z x y =+及半球面2211z x y =--围成.已知Ω上任一点(),,x y z 处的密度与该点到x y o 平面的距离成正比(比例系数为0K >),试求立体Ω的质量.6. 计算第二类曲面积分⎰⎰∑++dxdy zx xydxdz xyzdydz 2,其中∑为球面1222=++z y x 的外侧.7.求幂级数nn x n ∑∞=+111的和函数。
四.证明题(本题4分)证明下列不等式成立:π≥⎰⎰D xydxdy ee ,其中}1|),{(D 22≤+=y x y x .五.证明题(本题8分)设有一小山,取它的底面所在平面为xoy 坐标面,其底部所占的区域为},75:),{(22≤-+=xy y x y x D 小山的高度函数为.75),(22xy y x y x h +--=(1)设),(0y x M 为区域D 上一点,问),(y x h 在该点沿平面上什么方向的方向导数最大?若记此方向导数的最大值为),(0y x g ,试写出),(0y x g 的表达式。
(2)现欲利用此小山举行攀岩活动,为此需要在山脚寻找一上山坡度最大的点作为攀登的起点也就是说,要在D 的边界线7522=-+xy y x 上找使(1)中的),(y x g 达到最大值的点,试确定攀登起点的位置。
2009-2010年一、 填空题(每小题5分,满分30分)1. 若向量→→→c b a ,,两两互相垂直,且5,12,13a b c →→→===和,则=++→→→c b a.2.设函数22sin y z xy x=,求z z xy x y∂∂+=∂∂.3. 设函数(,)f x y 为连续函数, 改变下列二次积分的积分顺序:22120(,)y y dy f x y dx -=⎰⎰. 4. 计算(1,2)(0,0)()(2)y y I e x dx xe y dy =++-=⎰. 5.幂级数nn n x n 213∑∞=的收敛域为:. 6. 设函数)()(2πππ<<-+=x x x x f 的傅里叶级数为:∑∞=++1)sin cos (2n n n nx b nx a a ,则其系数 3b = . 二、 选择题(每小题5分,满分20分) 1.直线11231-=-=-z y x 与平面34-2x y z +=的位置关系是( )(A) 直线在平面内; (B) 垂直;(C) 平行; (D) 相交但不垂直.2.设函数22(,)4()f x y x y x y =---, 则(,)f x y ( )(A) 在原点有极小值; (B) 在原点有极大值;(C) 在(2,2)-点有极大值; (D) 无极值. 3. 设L 是一条无重点、分段光滑,且把原点围在内部的平面闭曲线,L 的方向为逆时针方向,则⎰=+-Ly x ydxxdy 22( ) (A) 0; (B) π; (C) 2π; (D) 2π-.4. 设a 为常数,则级数21sin n na n n ∞=⎛ ⎝∑( ) (A) 绝对收敛; (B) 发散; (C) 条件收敛; (D) 敛散性与a 值有关.三、计算题 (本大题满分42分)1. 设⎪⎩⎪⎨⎧=≠+=.)0,0(),(,0),0,0(),(,),(422y x y x y x xy y x f 讨论(,)f x y 在原点)0,0(处是否连续,并求出两个偏导数)0,0(xf '和)0,0(yf '. (7分)本页满分14分本页得分2. 计算,222⎰⎰⎰Ω++=dxdydz z y x I 其中Ω是由上半球面222y x z --=和锥面22y x z +=所围成的立体 . (7分)本页满分14分 本页3. 求锥面22y x z +=被柱面222x y x+=所割下部分的曲面面积.(7分)4. 计算曲面积分 ⎰⎰∑++=ydzdxx xdydz z zdxdy y I 222 ,其中 ∑ 是由,22y x z +=0,0,0,122====+z y x y x 围在第一卦限的立体的外侧表面 . (7分)得分5.讨论级数312ln n n n∞=∑的敛散性. (6分)6. 把级数121211(1)(21)!2n n n n x n -∞--=--∑的和函数展成(1)x -的幂级数.(8分)本页满分14分 本页得分四、 (本题满分8分)设曲线L 是逆时针方向圆周1)()(22=-+-a y a x ,()x ϕ是连续的正函数,证明:.2)()(πϕϕ≥-⎰Ldx x y y xdy五、 设曲线L 是逆时针方向圆周1)()(22=-+-a y a x ,()x ϕ是连续的正函数,证明:.2)()(πϕϕ≥-⎰Ldx x y y xdy(8分)本页满分8分 本页得分本页满分8分 本页得分2008-2009年一.选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内).1. 设三向量,,满足关系式⨯=⨯,则( ). (A )必有=; (B )必有0=-c b ;(C )当0≠a 时,必有c b =; (D )必有λλ()(-=为常数). 2. 直线37423zy x =-+=-+与平面3224=--z y x 的关系是( ).(A )平行,但直线不在平面上; (B )直线在平面上;(C )垂直相交; (D )相交但不垂直.3. 二元函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,5),(22y x y x yx xyy x f 在点(0,0)处( )(A) 不连续,偏导数存在 (B) 连续,偏导数不存在(C) 连续,偏导数存在 (D) 不连续,偏导数不存在4. 已知2)()(y x ydydx ay x +++为某二元函数的全微分,则=a ( ).(A )1-; (B )0; (C )1; (D )2.5. 设)(u f 是连续函数,平面区域)11(,10:2≤≤--≤≤x x y D ,则=+⎰⎰Ddxdy y x f )(22( ).(A )⎰⎰-+2102210)(x dyy x f dx ; (B )⎰⎰-+2102210)(y dxy x f dy ;(C )⎰⎰120)(rdr r f d πθ; (D )⎰⎰120)(dr r f d πθ.6. 设a 为常数,则级数)cos 1()1(1n a n n--∑∞=( ). (A )发散 ; (B )绝对收敛; (C )条件收敛; (D )收敛性与a 的值有关.二.填空题(本题共6小题,每小题4分,满分24分). 1. 设函数181261),,(222z y x z y x u +++=,向量}1,1,1{=n ,点)3,2,1(0P ,=∂∂0P n u_____________.2. 若函数y xy ax x y x f 22),(22+++=在点)1,1(-处取得极值,则常数=a ____________.3. L 为圆122=+y x 的一周,则=-⎰L ds y x )(22_____________.4. 设2lim 1=+∞→nn n a a,级数∑∞=-112n n n xa 的收敛半径为_____________.5. 设⎰-=221)(x y dye xf ,则=⎰10)(dx x xf _____________.6. 设)(x f 是以2为周期的周期函数,它在区间]1,1(-上的定义为⎩⎨⎧≤<≤<-=10,01,2)(3x x x x f ,则)(x f 的以2为周期的傅里叶级数在1=x 处收敛于_____________. 三.解答下列各题(本题共7小题,满分44分). 1.(本小题6分)设)(u f 是可微函数,)(xyf z =,求yzy x z x∂∂+∂∂2.解题过程是:2. (本小题6分)计算二重积分⎰⎰+++Ddxdy y x xy2211,其中}0,1|),{(22≥≤+=x y x y x D . 解题过程是:3. (本小题6分) 设曲面),(y x z z =是由方程13=+xz y x 所确定,求该曲面在点)1,2,1(0-M 处的切平面方程及全微分)2,1(|dz . 解题过程是:4. (本小题6分) 计算三重积分⎰⎰⎰Ω+dxdydzy x 22,其中Ω是由柱面21x y -=及0=y ,0=z ,4=++z y x 所围成的空间区域. 解题过程是:5. (本小题6分)求⎰⎰∑++zdxdy dydz z x )2(,其中∑为曲面)10(22≤≤+=z y x z ,方向取下侧.解题过程是:6. (本小题7分) 求幂级数∑∞=+121n nx n n 的收敛域及和函数.解题过程是:7. (本小题7分)计算⎰⎰∑+=dSy x I )(22,∑为立体122≤≤+z y x 的边界。