振动信号处理方法
断路器振动信号处理方法

断路器振动信号处理方法在研究的初期,时域包络法、短时能量、短时谱、人工神经网络法等方法被引入到断路器振动诊断中。
随着断路器振动诊断研究的深入发展,除了在原有的方法上进行改进之外,越来越多的新方法被吸纳采用,如细化频谱分析、小波分析、小波包分析、希尔伯特变换、信息端、分形方法、相空间重构等。
(1)时域法时域分析法可以直接从时域振动信号中获取振动事件的发生时刻、振动幅值及其他表示时域波形变化的指标作为特征参数错误!未找到引用源。
o包括包络分析法、短时能量法等。
利用包络分析(Envelope Analysis)方法,可以获得振动事件发生的时刻,如电磁铁动作、触头接触、缓冲器撞击等信息,而且包络幅值还能反映出不同时段振动事件的剧烈程度。
短时能量法(Short Time Energy, STE)对时域信号序列的平方变换进行窗函数滤波,得到能量函数序列再进行后续分析。
(2)频域法频域法将时域的振动信号变换为频域数据,根据各频率成分的分布和变化来进行故障诊断,例如包络谱分析、细化频谱分析等。
包络谱分析对信号包络进行频谱分析,可得到信号包络的频域表示,即包络谱(Envelope Spectrum)。
从而,可以进一步从频域表达信号特征,对高压断路器的状态进行诊。
细化频谱分析(Zoom Spectrum Analysis)采用选带分析方法增加选定频段的谱线密度,有效地改善了频率分辨率。
将线性调频Z变换(Chirp ZTransform, CZT)引入断路器振动信号分析中,并对快速傅里叶变换(FFT)、细化FFT (ZoomFFT)、线性调频z变换进行了比较分析。
(3)时频法时频法将时域信号变换到时频综合平面上,保持了信号的局部特征,特别适合于对非平稳信号进行分析•。
时频法对时域振动信号的时间和频率信息同时进行提取,是断路器机械故障振动诊断研究的主要方法,包括短时傅里叶变换、小波分析、小波包分析、经验模态分解((Empirical Mode Decomposition, EMD)、希尔伯特变换、振荡子波分解等方法。
振动信号的频谱分析与故障诊断

振动信号的频谱分析与故障诊断频谱分析是一种常用的信号处理技术,可以对振动信号进行分析和故障诊断。
本文将介绍频谱分析的原理和应用,并探讨其在故障诊断中的作用。
一、频谱分析的原理频谱分析是将一个信号分解成一系列频率成分的过程。
它基于傅里叶变换原理,将时域上的信号转换为频域上的频谱。
通过频谱分析,可以更直观地了解信号的频率特性和频率成分。
在振动信号处理中,频谱分析可以帮助我们获取振动信号的频率谱。
频率谱可以用图形表示,横轴表示频率,纵轴表示振幅。
通过分析频率谱,可以发现信号中的主要频率成分,从而进行故障诊断和分析。
二、频谱分析的方法1. 傅里叶变换(Fourier Transform)傅里叶变换是将信号从时域转换到频域的重要方法。
它将一个连续时域的信号转换为一个连续频域的频谱。
傅里叶变换可以精确地表示信号的频谱信息,但对计算机实现来说,计算量较大。
2. 快速傅里叶变换(Fast Fourier Transform,FFT)为了克服傅里叶变换的计算复杂度,人们提出了快速傅里叶变换算法。
FFT是一种高效的离散傅里叶变换方法,可以在计算机上快速计算信号的频谱。
FFT广泛应用于振动信号处理中,可以实时获得信号的频谱特征。
三、频谱分析在故障诊断中的应用1. 故障特征提取频谱分析可以帮助我们提取振动信号中的故障特征。
不同的故障在频谱上表现出不同的频率成分和振幅分布。
通过比较正常信号和故障信号的频谱特征,可以判断故障类型和程度。
2. 故障诊断频谱分析可以根据特定故障的频率特征,对故障进行诊断。
例如,对于轴承故障,通常会在频谱上出现与旋转频率相关的峰值,通过检测这些峰值可以判断轴承是否发生故障。
3. 故障监测与预警通过对振动信号进行实时频谱分析,可以实现故障的监测与预警。
当频谱中出现异常的频率成分时,说明设备可能存在故障隐患,及早发现并采取措施进行维修,可以避免设备故障进一步恶化。
四、频谱分析的局限性频谱分析虽然是一种有效的振动信号处理方法,但也存在一定的局限性。
振动信号处理

3) 通过谐波分量间的相位关系,可检测和表征时间序 列中的非线性,以及辨识非线性系统。
4) 检测和表征信号中的循环平稳性以及分析和处理循环平 稳信号。 高阶循环统计量能自动抑制任何平稳(高斯与非高斯)噪 声的影响。
2。确知信号的矩谱分析
2.1确定性信号的能量与功率 设 {X(k)})(k=0;±1,…为实确知信号,其瞬时功率为 !X(k)!2,总能量为:
➢由于频率与周期成反比,因此反映信号高频成份需要用窄时窗,而 反映信号低频成份需要用宽时窗
6.5时频分布的一般理论
更一般的方法是讨论二维的时频分布方法: 1.几个基本概念 (1)信号的能量
(2)时频分布的基本性质
希望时频分布所具有的性质: ➢时频分布必须是实的(最好是正的)一种能量的表示方式,所以为实的。 ➢时频分布关于时间t和频率f的积分为信号的总能量
第五章时频分析基础及短时傅利叶变换
所谓时变,是指信号的统计特性是随时间变化的。由于平稳信 号只不过是非平稳信号的最简单的例子,所以本章要着重讨论的信 号分析方法对任何信号都是适用的。这类分析方法统称为时频分析 方法,它是在时间—频率域而不是仅在时域或仅在频域上对信号进 行分桥的
6.1非平稳信号的研究领域 傅里叶变换及其反变换建立了时域(信号x(t))和领域(谱x(f))之间的—对一(射)关系。
双谱的性质
(1) 双谱满足以下对称性
(2) 零均值高斯信号的高阶谱(阶数大于2) 等于零。 因此双谱很适宜于分析淹没在高斯噪声中的非高斯信号, 理 论上可以完全抑制噪声, 提取有用信息。 (3) 双谱保留了信号的相位信息, 可以用来描述非线性相位耦合。 使用中常将双谱做归一化处理得到双相干谱
双相干谱的物理意义为: 频率X1 与X2 二次相位耦合产 生的能量在X1+ X2 处总能量中所占的比例。双相干谱 函数的平方, 值在0 与1 之间, 定量描述了二次耦合的程 度。当双相干谱函数的平方值为1时, 表示X1+ X2 处的 能量全部来自X1 与X2 间的相位耦合; 当其值为0 时, 表 示不存在相位耦合。
物理实验技术中的振动信号处理方法与技巧

物理实验技术中的振动信号处理方法与技巧振动信号是物理实验中常见的一种信号,它包含了丰富的物理信息。
在物理实验中,如何正确有效地处理振动信号,对于研究现象、分析数据以及获得准确结果至关重要。
本文将介绍几种常用的振动信号处理方法与技巧,帮助实验人员充分利用振动信号的信息。
一、去噪方法与技巧在实验中,振动信号常常受到各种干扰,如电磁干扰、机械噪声等,这些干扰会降低信号的质量。
为了保证振动信号的准确性,必须对其进行去噪处理。
1.数字滤波器数字滤波器是一种常用的去噪方法。
常见的数字滤波器有低通滤波器、高通滤波器和带通滤波器等。
低通滤波器可以过滤高频噪声,而高通滤波器则可以过滤低频噪声。
根据实验需求选择合适的滤波器,可以有效去除噪声。
2.小波变换小波变换是一种时频分析方法,可以将信号分解为不同频率的小波子信号。
通过选择合适的小波基函数和尺度,可以将噪声与信号有效分离,从而去除噪声。
小波变换在去噪中具有一定的优势,尤其适用于非平稳信号。
二、频域分析方法与技巧频域分析是振动信号处理中的一个重要步骤,它可以将时域信号转换为频域信号,进一步分析信号的频率成分、幅度、相位等信息。
1.傅里叶变换傅里叶变换是频域分析的基础方法之一,它可以将信号在时域和频域之间进行转换。
实验人员可以通过傅里叶变换得到信号的频谱图,进而分析信号的频率成分。
傅里叶变换的优点是简单易懂,但在处理非平稳信号时存在一定局限性。
2.短时傅里叶变换短时傅里叶变换是一种改进的傅里叶变换方法,可以处理非平稳信号。
它将信号分成若干小段,在每一段上进行傅里叶变换,然后通过描绘频率随时间变化的谱图来揭示信号的时频特性。
短时傅里叶变换在振动信号分析中应用广泛。
三、谐波分析方法与技巧谐波分析是对振动信号进行频域分析的一种方法,它可以分析信号中不同频率的谐波成分,揭示信号的特征和规律。
1.快速傅里叶变换快速傅里叶变换是一种高效的频域分析方法,可以快速计算信号的频谱。
通过快速傅里叶变换,可以快速得到信号中各个频率的幅度和相位信息,进而分析信号中的谐波成分。
振动信号处理

第一部分 频域信号处理
1.1 傅里叶级数 频域分析是采用傅立叶变换将时域信号x(t)变
换为频域信号X(f)。
周期信号的频谱分析
傅立叶级数——周期信号分析的理论基础——任何周 期信号都可以利用傅里叶级数展开成多个乃至无穷多 个不同频率的谐波信号的线性叠加。
Dirichlet条件(在一个周期内满足) ——函数或者为连续的,或者具有有限个第一类间断
x(n)=sinnω0
其图形如图
2. 傅利叶变换的几种可能形式
时间函数
频率函数
连续时间、连续频率—傅里叶变换 连续时间、离散频率—傅里叶级数 离散时间、连续频率—序列的傅里叶变换 离散时间、离散频率—离散傅里叶变换
连续时间、连续频率—傅里叶变换
X ( j) x(t)e jtdt
x(t) 1 X ( j)e jtd
振动信号分类
随机振动是一种非确定性振动,它只服从一定的 统计规律性。可分为平稳随机振动和非平稳随 机振动。平稳随机振动又包括各态历经的平稳 随机振动和非各态历经的平稳随机振动。
一般来说,仪器设备的振动信号中既包含有确定 性的振动,又包含有随机振动,但对于一个线 性振动系统来说,振动信号可用谱分析技术化 作许多谐振动的叠加。因此简谐振动是最基本 也是最简单的振动
点; ——函数的极值点有限; ——函数是绝对可积的;
傅里叶级数的三角函数表达形式:
傅立叶级数的三角函数表达式表明:
——周期信号可以用一个常值分量a0和无限多 个谐波分量之和表示;
——A1cos(ω0t-ϕ1)为一次谐波分量(或称基 波),基波的频率与信号的频率相同,高次谐 波的频率为基频的整倍数。
振动信号处理
2012.3
课程主要内容
振动信号处理技术的分类与应用

振动信号处理技术的分类与应用摘要:作为信息的载体,如果要在振动信号中提取出特征信息,就需要采取合理的振动信号处理方式,在状态监测、质量评价、参数检测、故障诊断上获取到有效的信息,本文主要针对机械故障诊断的研究现状与常见类型进行分析。
关键词:振动信号处理技术;分类;应用随着现阶段科学技术的不断发展,机械自动化的水平也在不断加强,功能越来越完善,因此也就对设备维修技术也提出了更高的要求。
在机械的使用过程中,要做好在线监测和故障分析方面,以保证企业的安全生产。
良好的机械状况也会促进生产,提高企业的经济利益,因此保证优良的机械状况是稳定生产的前提。
在生产过程中发现,大多数的机械故障都是在振动以后发生的,可以看出振动对于机械的损害是很严重的,因此如何在机械发生振动时及时的发现并采取行为是我们应该考虑的问题,现阶段也加强了振动信号处理技术的研究。
一、机械故障诊断的研究现状早在上世纪60年代,关于机械故障的理论知识就已经产生,并开始对机械故障进行研究,到了70年代,国外的一些大型的机械设备厂在机械故障的诊断上取得了一定的成绩,这些方面的努力大大降低了机械的故障率,提高了生产效率。
我国的机械故障诊断技术较之国外发达国家开始的较晚,发展至今大致经历了三个阶段,一是在上世纪80年代以前,机械故障的诊断依靠的是仪表器上的指针,技术人员通过指针上的数据判断机械是否正常运行,是否出现故障。
二是到了90年代我们将国外先进的监控仪器引进国内,通过监控设备来分析机械是否有故障,机械故障的排除进入了半自动化。
三是到了21世纪以后,故障诊断技术在我国引进并推广起来,它采用先进的故障排除手段,大大的提高了机械故障的排查能力,降低了机械出现大型故障的概率。
二、振动信号的处理方法1、时域分析方法时域分析方法是利用的最广泛的一种方法,其操作过程比较简单,就是在机械长期使用的过程中,根据机械本身的信号随时间的变动而产生的变动曲线来反应机械的运行情况,从而得出机械自身的一系列数据信息,是否在良好的运行范围内,如果结果出现偏差,要及时的对机械进行检查,以免出现大的故障。
机械振动学基础知识振动系统的振动信号处理方法

机械振动学基础知识振动系统的振动信号处理方法机械振动学是研究物体在受到外力作用时所表现出来的振动现象的学科。
在振动系统中,振动信号处理是非常重要的一环,它可以帮助我们更好地了解振动系统的性能和特性,为系统的设计和维护提供重要依据。
本文将介绍振动信号处理的方法及其在机械振动学中的应用。
1. 时域分析时域分析是最基本的信号处理方法之一,它通过对信号在时间轴上的变化进行观察和分析,来获取有关信号的信息。
在振动系统中,我们通常会采集到振动信号的波形,通过时域分析可以得到信号的幅值、频率、周期等特征参数,从而判断系统的运行状态和存在的问题。
2. 频域分析频域分析是将信号在频率域上进行分析的方法。
在机械振动学中,频域分析是非常重要的一种信号处理方法,因为振动信号往往包含了多种频率成分,通过频域分析可以将这些频率成分清晰地展现出来。
常用的频域分析方法包括傅里叶变换、功率谱密度分析、频谱分析等。
3. 频谱分析频谱分析是频域分析的一种重要形式,它可以将信号在频率轴上的能量分布清晰地表示出来。
在机械振动系统中,频谱分析可以帮助我们识别系统中存在的谐波成分、共振频率等信息,为系统的故障诊断和预防提供有力支持。
4. 转子动平衡技术转子动平衡技术是振动信号处理中的一种重要方法,通过对转子在运转时的振动信号进行处理,可以判断转子系统的不平衡情况,并进行相应的校正。
转子动平衡技术在机械工程中有着广泛的应用,可以有效降低机械设备的振动和噪声。
5. 振动传感器技术振动传感器是用于采集振动信号的一种重要设备,它可以将系统振动转化为电信号,并传输给信号处理系统进行分析。
振动传感器技术在机械振动学中有着重要的应用,可以帮助我们实时监测系统的振动情况,及时发现问题并进行处理。
总结:振动系统的振动信号处理是机械振动学中的重要领域,它可以通过时域分析、频域分析、频谱分析、转子动平衡技术和振动传感器技术等方法,来获取系统运行状态和特性的信息,为系统的设计、监测和维护提供支持。
振动信号处理方法综述

振动信号处理方法综述振动信号处理是一个极其重要的研究领域,尤其在机械工程、电子工程和物理学等领域中具有广泛的应用。
随着数码信号处理技术的不断发展,振动信号处理方法也在不断更新和完善。
本文将综述当前常见的振动信号处理方法,包括时域分析方法、频域分析方法、小波分析方法和模态分析方法。
时域分析方法:时域分析方法是指直接对振动信号进行时间域分析的方法。
主要包括以下几种:1、峰值检测法:通过寻找振动信号的波峰和波谷来分析振动信号的性质,它可用于快速检测机器故障并确定故障类型。
2、自相关函数法:通过计算振动信号的自相关函数来获得振动信号的特征值,进而实现故障诊断。
3、包络分析法:分析振动信号的包络线变化,用于判定工况条件或或机器设备运行状况是否正常。
频域分析方法:频域分析是指对振动信号进行频域分析的方法,可以更加深入地了解振动信号的频率分布情况,主要包括以下几种:1、傅里叶分析法:将时域信号分解为若干正弦波的叠加,以分析各分量在振动信号中的占比情况。
2、功率谱密度分析法:通过功率谱密度的分析,可以更准确地了解振动源的特性。
其使用广泛的技术是快速傅里叶变换(FFT)技术,以快速计算振动信号的频谱。
小波分析方法:小波分析是一种新兴的信号处理方法,可以同时在时域和频域中分析信号,主要包括以下几种:1、小波多尺度分析法:通过对振动信号的小波多尺度分析,可以更准确地确定振动信号的频率特性。
2、小波包分析法:对振动信号进行小波包分析,可将信号分解成一系列子信号,每个子信号的带宽和频率能够更加清晰地描述振动信号的特点。
模态分析方法:模态分析是指研究振动系统在不同的振动模态下的振动特点。
主要包括以下几种:1、模态分析法:通过响应分析技术,解出振动系统的振型和振频,在工程实践中常用于分析旋转机械和结构的振动特性。
2、主成分分析法:主要用于多属性振动信号的特征提取和数据降维处理,从而更好地对振动信号进行分析和处理。
综上所述,振动信号处理方法不仅应用广泛,而且种类繁多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谢谢观赏
短时傅里叶变换
• 它的思想是:选择一个时频局部化的窗函数,假定分析窗函数g(t)在一个短时间间 隔内是平稳(伪平稳)的,移动窗函数,使f(t)g(t)在不同的有限时间宽度内是平稳 信号,从而计算出各个不同时刻的功率谱。短时傅里叶变换使用一个固定的窗函数, 窗函数一旦确定了以后,其形状就不再发生改变,短时傅里叶变换的分辨率也就确 定了。如果要改变分辨率,则需要重新选择窗函数。短时傅里叶变换用来分析分段 平稳信号或者近似平稳信号犹可,但是对于非平稳信号,当信号变化剧烈时,要求 窗函数有较高的时间分辨率;而波形变化比较平缓的时刻,主要是低频 信号,则 要求窗函数有较高的频率分辨率。短时傅里叶变换不能兼顾频率与时间分辨率的需 求。短时傅里叶变换窗函数受到W.Heisenberg不确定准则的限制,时频窗的面积 不小于2。这也就从另一个侧面说明了短时傅里叶变换窗函数的时间与频率分辨率 不能同时达到 最优。
傅里叶变换( 1822 年傅里叶发表“热传导解析理论”)
优点与不足
• 傅里叶变换是傅里叶级数的推广。它 把时域信号转换到频域信号进行分析, 在信号处理发展中起到了突破性作用。 但该方法不具备任何的时域信号。另 一方面傅里叶变换是对数据段的平均 分析,对非平稳、非线性信号缺乏局 域性信息,不能有效给出某频率成分 发生的具体时间段,不能对信号做局 部分析。
振动信号处理方法
于海杰
Hale Waihona Puke 振动信号振动信号是指由非静止结构体所产生的信号,尽管与一般信号具有很多相同 之处,但也具有其独立特征。结构体受到振动源的激励而产生振动信号,分 为平稳振动信号和非平稳振动信号。结构体的运动是绝对的(静止是相对的), 所以都具有一定的振动特性。任何结构都有其本身的固有振动特性参数,当 振动源的激励与结构的固有特性参数相同或接近时,会产生共振响应。结构 体的振动响应是各个频率特征信息的叠加。振动信号的时域特征主要体现在 振幅、周期、相位等特性上,其频域特征则主要表现在频率、能量信息中。
小波分析
• 从公式可以看出,不同于傅里叶变换,变量只有频率ω,小波变换有两个变量:尺度a(scale)和平 移量 τ (translation)。尺度a控制小波函数的伸缩,平移量 τ 控制小波函数的平移。尺度就对应于频 率(反比),平移量 τ 就对应于时间。
• 小波分析方法是一种窗口大小固定但其形状改变,时间窗和频率窗都可改变的时频局域化分析方法, 这种特性使小波变换具有对信号的自适应性,这也正克服了傅里叶变换不能在时域和频域上局域化的 缺点。小波分析可以成功地进行非平稳信号、带有强噪声的信号的分析与检测。但小波变换是以傅里 叶变换为理论基础,仍然存在窗函数的局限性,无法准确描述频率随时间的变换。为了改进小波分析 的缺陷,1993 年英国 Newland 教授从小波的频谱出发,成功地构造出了具有严格盒型谱特性的小 波———谐波小波其在信号分解过程中数据信息量不变,算法实现简单,且具有明确的表达式。同时, 谐波小波还具有相位定位特性。有关研究在小波包和谐波小波的基础上,进一步提出了一种具有“无 限细分”整个频带,能够将信号分解到感兴趣频段的信号分析方法,即谐波小波包分析,在微弱振动 信号提取等方面已得到广泛应用 。
• 相关分析的不足:
• 当干扰信号是同频成分时,相关分析就有其难以克服的自身缺点,其性能急剧下降,甚至 出现与事实不符的结果,即出现“伪相关”等现象,可能导致时延估计等工程应用的精度 降低甚至出现错误的结果;相关分析可以有效地消除任何一个频段上与信号无关的噪声,但 是也会消除有用但不相关的信息;相关分析一般要求分析原信号中的特征信号为周期信号, 对于非周期信号则无能为力;在强噪声干扰下的特征信号,相关函数无法直接显出特征成分, 需要进行多次相关分析;信号经时延自相关处理后,其幅值和相位都会有所改变,存在幅值 和相位的修正问题等。这些也正是人们今后研究的方向和热点。
幅值域分析法
信号的幅值域参数: 主要包括均值、均方值、方差等。 优缺点: 在时域上通过幅值参数随时间的变化来反映信号每一瞬时的时域特 征,简单直观,计算方便,但无法得到任何频域特征。要想获取信 号的频域特征,只能通过傅里叶变换得到。
相关分析(1936 年 Hotelling)
• 相关分析是随机信号在时域上的统计分析,是用相关系数和相关函数等统计量来研究和描 述工程中振动信号的相关关系。相关函数分为自相关函数和互相关函数。
处理方法
• 一类是传统方法,典型的有幅值域分析法、傅里叶变换和相关分 析等。幅值域分析法是描述幅值随时间变化的时域分析方法,傅 里叶变换和相关分析都是基于时域统计分析,一般处理的信号对 象都为平稳信号。
• 另一类是现代方法,典型的有 Wigner-Ville 分布、谱分析、多 重分形、混沌理论、小波分析、盲源分离、Hilbert-Huang 变换 和高阶统计量分析等。
Hilbert-Huang 变换(希尔伯特、黄锷)
• 固有模态对应的函数称为固有模态函数(intrinsic mode function,IMF)
• EMD (Empirical mode decomposition,经验模 式分解)方法就是对复杂信号进行“筛选”的过程, 将信号逐级分解,得到一系列具有不同特征尺度 的 IMF。然后利用 Hilbert 变换求取每个固有模 态函数(IMF)的瞬时频率,进而得到 Hil-bert 谱 和边际谱。Hilbert 谱精确地描述了信号的幅值 在整个频段上随时间和频率的变化规律,边际谱 表明单位频率内的幅度/能量分布,代表着整个数 据段幅度概率分布的累加。
多重分形/index.php/%E5%A4%9A%E9%87%8D%E5%88%86%E5%BD%A2
• 现实中的复杂系统一般都 具有自相似特征,这种自 相似性不仅仅体现为几何 形体上的自相似,也体现 为某种质量、测度在空间 上的分配。
盲源分离
• 盲源分离是指在输入信号未知时,只由观测到的输出信号来辨识系统,以达 到对多个信号分离的目的,从而来恢复原始信号或信号源。独立分量分析算 法(ICA)是盲源分离的一种有效方法,它是在无正交限制下抽取信号的统 计独立分量,适用于平稳和非平稳信号,尤其对微弱信号的特征提取有较好 的效果,该方法已经得到了较多的应用。到目前为止,国际上已经发展了多 种有效的盲源分离算法,从算法的角度而言,可分为批处理算法和自适应算 法;从代数函数和准则而言,又分为基于神经网络的方法、基于高阶统计量 的方法、基于互信息量的方法、基于非线性函数的方法等。