第六章 振动信号的处理和分析

合集下载

《振动信号分析方法》课件

《振动信号分析方法》课件

2
频域分析的方法
常用的频域分析方法包括傅里叶变换、滤波、谱分析等。
3
操作和实例
通过实例演示如何使用频域分析方法来解释和理解振动信号。
振动信号的数据采集和处理
常见的数据采集方式
振动信号可以通过传感器进 行实时数据采集。
采集后的数据处理方法
采集到的振动信号可以通过 滤波、去噪等方法进行数据 处理。
时间序列数据、频谱数 据的可视化方法
总结与展望
振动信号分析方法的意 义和应用前景
振动信号分析方法在工程领 域具有广泛的应用前景。
后续深入学习和研究的 推荐资源
推荐一些深入学习和研究振 动信号分析方法的资源。
Q&A交流和应用案例分 享
为学习者提供问答交流和实 际应用案例分享的机会。
Байду номын сангаас
时间域分析方法
1
时域的基本概念和原理
时域分析是通过观察信号的时间变化来
时域分析的方法
2
研究信号的特性。
常用的时域分析方法包括时域图、自相
关函数、互相关函数等。
3
操作和实例
通过实例演示如何使用时域分析方法来 解释和理解振动信号。
频域分析方法
1
频域的基本概念和原理
频域分析是通过观察信号的频率分布来研究信号的特性。
《振动信号分析方法》 PPT课件
振动信号分析方法的课件将介绍振动信号的基本概念和特点,以及振动信号 分析方法的重要性。
振动信号的特性
周期性和非周期性振动信号
振动信号可能是周期性的,也可能是非周期性的。
定常和非定常振动信号
振动信号可以是定常的,也可以是非定常的。
时域和频域信号分析方式

随机振动信号分析与处理方法研究

随机振动信号分析与处理方法研究

随机振动信号分析与处理方法研究随机振动信号是在时间和频率上都呈现随机性的信号。

在工程领域中,随机振动信号广泛应用于结构健康监测、故障诊断、噪声控制等领域。

因此,研究随机振动信号的分析与处理方法对于工程实践具有重要意义。

本文将介绍一些常用的随机振动信号分析与处理方法,包括功率谱密度分析、自相关函数分析、非平稳随机振动信号分析以及小波分析方法。

首先,功率谱密度分析是最常见的随机振动信号分析方法之一。

它可以将信号的能量分布在频率域上进行表示。

通过计算信号在不同频率上的功率谱密度,可以了解信号的频率特性和能量分布情况。

常用的功率谱密度估计方法有周期图法、Welch方法和平均快速傅里叶变换等。

这些方法的基本原理都是先将信号分段,然后对每个段进行傅里叶变换,最后对所有段的幅度平方进行平均得到功率谱密度估计值。

其次,自相关函数分析是评估信号与自身延迟版本之间的关联性的一种方法。

自相关函数可以描述信号的周期性和相关性。

对于随机振动信号,自相关函数可以帮助我们了解信号的周期性和相关程度。

自相关函数的计算公式为R(t) = E[X(t)X(t+τ)],其中X(t)是原始信号,τ为延迟时间。

自相关函数的峰值位置和宽度可以提供有关信号的共振频率和频带宽度的信息。

非平稳随机振动信号的分析与处理是工程领域中的一个挑战。

在实际应用中,随机振动信号的特性经常随时间变化。

为了解决这个问题,一种常见的方法是采用短时傅里叶变换(STFT)来分析非平稳随机振动信号。

STFT通过将信号分成多个窗口,并对每个窗口进行傅里叶变换来获取信号在时间和频率上的变化。

它可以展示信号随时间变化的频率成分,并提供非平稳信号的局部特性。

最后,小波分析是一种适用于非平稳信号的分析方法。

小波分析通过将信号与一组基函数进行卷积来获得信号在时间和频率上的信息。

与STFT相比,小波分析可以提供更好的时频局部性,在处理非平稳信号时更为有效。

小波变换可以将原始信号分解成不同尺度和频率范围的小波系数,这些系数反映了信号的特定时频特性。

机械振动信号处理与分析方法研究

机械振动信号处理与分析方法研究

机械振动信号处理与分析方法研究振动信号处理与分析是机械工程领域中的一个重要课题,它涉及到机器设备的监测与诊断、结构安全评估、故障预测与预防等方面。

近年来,随着传感器技术和信号处理算法的不断发展,机械振动信号处理与分析方法也得到了极大的改进和提升。

一、振动信号采集与预处理振动信号通常通过加速度传感器来采集,然后经过放大、滤波等预处理手段将其转化为适于后续分析处理的信号。

在振动信号采集过程中,传感器的位置、放置方式以及采样频率等因素都会对信号质量产生影响,因此需要进行合理的设置并进行校准。

对于采集到的振动信号,预处理工作主要包括去趋势、去噪、去振动分量等。

去趋势是指将信号中的直流成分除去,以便更好地分析振动的周期性变化。

去噪是指通过一系列滤波技术将信号中的噪声成分进行抑制,以提高振动信号的信噪比。

去振动分量是指将信号中的周期性振动成分分离出来,以便后续对其进行特征提取和分析。

二、振动信号特征提取在对振动信号进行分析处理之前,需要从中提取出一些有用的特征来描述信号的特性和变化。

常用的振动信号特征包括幅值、频率、相位、能量、脉冲指标等。

这些特征可以通过傅里叶变换、小波变换、时频分析等方法提取出来。

傅里叶变换是一种将信号从时域转换到频域的方法,通过分析信号在不同频率上的能量分布,可以提取出信号的频率信息。

小波变换是一种更加灵活的信号分析方法,它能够同时提取出信号的时域和频域信息,可以更好地描述信号的变化过程。

时频分析则是一种将信号分解成时间和频率两个维度的方法,对于非稳态信号的分析具有较好的效果。

三、振动信号故障诊断与预测振动信号的特征提取可以为故障诊断和预测提供基础。

通过对机械设备振动信号中的异常特征进行分析,可以判断出设备是否存在故障或运行异常。

常用的振动信号故障诊断方法包括振动图谱分析、时域与频域特征分析、支持向量机等。

振动图谱分析是一种直观而常用的诊断方法,它通过将振动信号变换为频谱图来观察振动信号在不同频率上的能量分布,从而判断设备是否存在异常。

振动信号处理方法

振动信号处理方法

谢谢观赏
短时傅里叶变换
• 它的思想是:选择一个时频局部化的窗函数,假定分析窗函数g(t)在一个短时间间 隔内是平稳(伪平稳)的,移动窗函数,使f(t)g(t)在不同的有限时间宽度内是平稳 信号,从而计算出各个不同时刻的功率谱。短时傅里叶变换使用一个固定的窗函数, 窗函数一旦确定了以后,其形状就不再发生改变,短时傅里叶变换的分辨率也就确 定了。如果要改变分辨率,则需要重新选择窗函数。短时傅里叶变换用来分析分段 平稳信号或者近似平稳信号犹可,但是对于非平稳信号,当信号变化剧烈时,要求 窗函数有较高的时间分辨率;而波形变化比较平缓的时刻,主要是低频 信号,则 要求窗函数有较高的频率分辨率。短时傅里叶变换不能兼顾频率与时间分辨率的需 求。短时傅里叶变换窗函数受到W.Heisenberg不确定准则的限制,时频窗的面积 不小于2。这也就从另一个侧面说明了短时傅里叶变换窗函数的时间与频率分辨率 不能同时达到 最优。
傅里叶变换( 1822 年傅里叶发表“热传导解析理论”)
优点与不足
• 傅里叶变换是傅里叶级数的推广。它 把时域信号转换到频域信号进行分析, 在信号处理发展中起到了突破性作用。 但该方法不具备任何的时域信号。另 一方面傅里叶变换是对数据段的平均 分析,对非平稳、非线性信号缺乏局 域性信息,不能有效给出某频率成分 发生的具体时间段,不能对信号做局 部分析。
振动信号处理方法
于海杰
Hale Waihona Puke 振动信号振动信号是指由非静止结构体所产生的信号,尽管与一般信号具有很多相同 之处,但也具有其独立特征。结构体受到振动源的激励而产生振动信号,分 为平稳振动信号和非平稳振动信号。结构体的运动是绝对的(静止是相对的), 所以都具有一定的振动特性。任何结构都有其本身的固有振动特性参数,当 振动源的激励与结构的固有特性参数相同或接近时,会产生共振响应。结构 体的振动响应是各个频率特征信息的叠加。振动信号的时域特征主要体现在 振幅、周期、相位等特性上,其频域特征则主要表现在频率、能量信息中。

物理实验技术中的振动信号处理方法与技巧

物理实验技术中的振动信号处理方法与技巧

物理实验技术中的振动信号处理方法与技巧振动信号是物理实验中常见的一种信号,它包含了丰富的物理信息。

在物理实验中,如何正确有效地处理振动信号,对于研究现象、分析数据以及获得准确结果至关重要。

本文将介绍几种常用的振动信号处理方法与技巧,帮助实验人员充分利用振动信号的信息。

一、去噪方法与技巧在实验中,振动信号常常受到各种干扰,如电磁干扰、机械噪声等,这些干扰会降低信号的质量。

为了保证振动信号的准确性,必须对其进行去噪处理。

1.数字滤波器数字滤波器是一种常用的去噪方法。

常见的数字滤波器有低通滤波器、高通滤波器和带通滤波器等。

低通滤波器可以过滤高频噪声,而高通滤波器则可以过滤低频噪声。

根据实验需求选择合适的滤波器,可以有效去除噪声。

2.小波变换小波变换是一种时频分析方法,可以将信号分解为不同频率的小波子信号。

通过选择合适的小波基函数和尺度,可以将噪声与信号有效分离,从而去除噪声。

小波变换在去噪中具有一定的优势,尤其适用于非平稳信号。

二、频域分析方法与技巧频域分析是振动信号处理中的一个重要步骤,它可以将时域信号转换为频域信号,进一步分析信号的频率成分、幅度、相位等信息。

1.傅里叶变换傅里叶变换是频域分析的基础方法之一,它可以将信号在时域和频域之间进行转换。

实验人员可以通过傅里叶变换得到信号的频谱图,进而分析信号的频率成分。

傅里叶变换的优点是简单易懂,但在处理非平稳信号时存在一定局限性。

2.短时傅里叶变换短时傅里叶变换是一种改进的傅里叶变换方法,可以处理非平稳信号。

它将信号分成若干小段,在每一段上进行傅里叶变换,然后通过描绘频率随时间变化的谱图来揭示信号的时频特性。

短时傅里叶变换在振动信号分析中应用广泛。

三、谐波分析方法与技巧谐波分析是对振动信号进行频域分析的一种方法,它可以分析信号中不同频率的谐波成分,揭示信号的特征和规律。

1.快速傅里叶变换快速傅里叶变换是一种高效的频域分析方法,可以快速计算信号的频谱。

通过快速傅里叶变换,可以快速得到信号中各个频率的幅度和相位信息,进而分析信号中的谐波成分。

机械振动信号处理与故障诊断分析

机械振动信号处理与故障诊断分析

机械振动信号处理与故障诊断分析振动信号是机械运行中普遍存在的一种信号,它包含了机械系统的瞬态、稳态和周期随机特征信息。

通过对机械振动信号的处理和分析,可以有效地诊断出机械系统中存在的故障,并提供正确的维修措施。

本文将探讨机械振动信号处理与故障诊断分析的方法和应用。

一、振动信号的采集与处理振动信号的采集是进行信号处理与故障诊断的基础。

常见的振动传感器有加速度传感器、速度传感器和位移传感器。

其中,加速度传感器是最常用的一种。

传感器通过与机械系统的连接,将振动信号转换为电信号,并进一步传输到振动分析仪器中进行处理。

振动信号处理的目标是从庞杂的信号中提取出有用的信息,一般包括时域分析、频域分析和时频域分析三个方面。

时域分析主要通过计算信号的幅值、均值、方差等统计量来描述信号的时域特征;频域分析则通过对信号进行傅里叶变换,将信号转换到频域进行频谱分析;时频域分析则结合了时域和频域的信息,可以更直观地观察信号的瞬态特征。

二、故障特征分析与诊断在振动信号处理的基础上,进一步分析振动信号中存在的故障特征,从而诊断出机械系统中的故障。

常见的故障特征有以下几个方面。

1. 频谱分析:通过对振动信号进行频谱分析,可以观察到频谱图中的峰值和频率分布情况。

不同类型的故障在频谱图上呈现出不同的特征频率,比如齿轮啮合频率、轴承特征频率等。

通过对频谱图的分析,可以快速确定故障类型。

2. 波形分析:振动信号的波形可以直观地反映机械系统中的运动状态。

对波形进行分析,可以观察到振动信号的峰值、波形变化规律等。

比如,当齿轮齿面出现磨损时,振动信号的波形将发生变化,出现明显的振动峰值。

3. 轨迹分析:轨迹分析是通过对振动信号进行相位图分析,展示机械系统中不同零件的运动轨迹。

通过观察轨迹图的变化,可以找到故障信号与正常信号的区别。

比如,当轴承发生故障时,轨迹图可能呈现出明显的离心现象。

4. 频率变化分析:随着故障的发展,机械系统中的故障频率也会发生变化。

机械振动学基础知识振动系统的振动信号处理方法

机械振动学基础知识振动系统的振动信号处理方法

机械振动学基础知识振动系统的振动信号处理方法机械振动学是研究物体在受到外力作用时所表现出来的振动现象的学科。

在振动系统中,振动信号处理是非常重要的一环,它可以帮助我们更好地了解振动系统的性能和特性,为系统的设计和维护提供重要依据。

本文将介绍振动信号处理的方法及其在机械振动学中的应用。

1. 时域分析时域分析是最基本的信号处理方法之一,它通过对信号在时间轴上的变化进行观察和分析,来获取有关信号的信息。

在振动系统中,我们通常会采集到振动信号的波形,通过时域分析可以得到信号的幅值、频率、周期等特征参数,从而判断系统的运行状态和存在的问题。

2. 频域分析频域分析是将信号在频率域上进行分析的方法。

在机械振动学中,频域分析是非常重要的一种信号处理方法,因为振动信号往往包含了多种频率成分,通过频域分析可以将这些频率成分清晰地展现出来。

常用的频域分析方法包括傅里叶变换、功率谱密度分析、频谱分析等。

3. 频谱分析频谱分析是频域分析的一种重要形式,它可以将信号在频率轴上的能量分布清晰地表示出来。

在机械振动系统中,频谱分析可以帮助我们识别系统中存在的谐波成分、共振频率等信息,为系统的故障诊断和预防提供有力支持。

4. 转子动平衡技术转子动平衡技术是振动信号处理中的一种重要方法,通过对转子在运转时的振动信号进行处理,可以判断转子系统的不平衡情况,并进行相应的校正。

转子动平衡技术在机械工程中有着广泛的应用,可以有效降低机械设备的振动和噪声。

5. 振动传感器技术振动传感器是用于采集振动信号的一种重要设备,它可以将系统振动转化为电信号,并传输给信号处理系统进行分析。

振动传感器技术在机械振动学中有着重要的应用,可以帮助我们实时监测系统的振动情况,及时发现问题并进行处理。

总结:振动系统的振动信号处理是机械振动学中的重要领域,它可以通过时域分析、频域分析、频谱分析、转子动平衡技术和振动传感器技术等方法,来获取系统运行状态和特性的信息,为系统的设计、监测和维护提供支持。

振动信号处理方法综述

振动信号处理方法综述

振动信号处理方法综述振动信号处理是一个极其重要的研究领域,尤其在机械工程、电子工程和物理学等领域中具有广泛的应用。

随着数码信号处理技术的不断发展,振动信号处理方法也在不断更新和完善。

本文将综述当前常见的振动信号处理方法,包括时域分析方法、频域分析方法、小波分析方法和模态分析方法。

时域分析方法:时域分析方法是指直接对振动信号进行时间域分析的方法。

主要包括以下几种:1、峰值检测法:通过寻找振动信号的波峰和波谷来分析振动信号的性质,它可用于快速检测机器故障并确定故障类型。

2、自相关函数法:通过计算振动信号的自相关函数来获得振动信号的特征值,进而实现故障诊断。

3、包络分析法:分析振动信号的包络线变化,用于判定工况条件或或机器设备运行状况是否正常。

频域分析方法:频域分析是指对振动信号进行频域分析的方法,可以更加深入地了解振动信号的频率分布情况,主要包括以下几种:1、傅里叶分析法:将时域信号分解为若干正弦波的叠加,以分析各分量在振动信号中的占比情况。

2、功率谱密度分析法:通过功率谱密度的分析,可以更准确地了解振动源的特性。

其使用广泛的技术是快速傅里叶变换(FFT)技术,以快速计算振动信号的频谱。

小波分析方法:小波分析是一种新兴的信号处理方法,可以同时在时域和频域中分析信号,主要包括以下几种:1、小波多尺度分析法:通过对振动信号的小波多尺度分析,可以更准确地确定振动信号的频率特性。

2、小波包分析法:对振动信号进行小波包分析,可将信号分解成一系列子信号,每个子信号的带宽和频率能够更加清晰地描述振动信号的特点。

模态分析方法:模态分析是指研究振动系统在不同的振动模态下的振动特点。

主要包括以下几种:1、模态分析法:通过响应分析技术,解出振动系统的振型和振频,在工程实践中常用于分析旋转机械和结构的振动特性。

2、主成分分析法:主要用于多属性振动信号的特征提取和数据降维处理,从而更好地对振动信号进行分析和处理。

综上所述,振动信号处理方法不仅应用广泛,而且种类繁多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 sin t 6 4 3
试求该周期信号的基波周期T,基波角频率Ω,画出它的单边频谱图 解 首先应用三角公式改写f(t)的表达式,即
1 2 1 f (t ) 1 cos t cos t 2 3 6 2 4 4 3



x(t )e jt dt d X ( )d



x(t )e
jt
dt
x(t )
X ( )e jt d
X(ω)称为x(t)的傅里叶变换或频谱密度函数,简称频谱。 x(t)称为X(ω)的傅里叶逆变换或原函数。
傅里叶变换对
可记为:
x t X



x(t )e j2 ft dt d(2[ x(t )]

x(t )e j2πft dt
• 逆变换:
x(t ) F [ X ( f )]
1
X ( f )e j2πft df
非周期信号频谱
幅度频谱(幅度谱):
n n Fn Sa( ) Sa( ) n 0, 1, 2, T 2 T T
Fn为实数,可直接画成一个频谱图。设T = 4τ画图。
1 4

Fn

2
0
2
4



ω
周期信号频谱特点
周期信号的频谱具有谐波(离散)性。谱线位置是基频 1 的整数倍 一般具有收敛性。总趋势减小
证明:
F[ax(t ) by(t )] aF [ x(t )] bF [ y (t )] aX ( f ) bY ( f )
F [ ax(t ) by (t )] [ax(t ) by (t )]e j2 ft d t

ax(t ) e

傅里叶变换(FT)的重要性质
f t
F
E
E


2
o

2
t

2π o 2π



(2)k>1 时域压缩,频域扩展k倍。 f 2t
E
E 2
t
1 F 2 2
持续时间短,变化快。信号在频域高频分量增加, 频带展宽,各分量的幅度下降k倍。
o 4 4



幅度频谱(幅度谱): 幅值Ak随频率 变化的图形(单边谱) 幅值|ck|随频率 变化的图形(双边谱) 幅度谱中每条线代表某一频率分量的幅度——谱线 相位频谱(相位谱): 相位k随频率变化的图形
周期信号频谱举例1
举例:周期信号
1 2 f (t ) 1 cos t 2 3 4
• 非稳态信号:任何统计特性都随时间变化的信号。 • 连续性非稳态信号 • 瞬态信号
傅里叶变换
• 傅里叶变换(Fourier Transform)是一种线性的积分 变换。因其基本思想首先由法国学者傅里叶系统地提 出,所以以其名字来命名以示纪念。 • 傅里叶变换是一种能够将信号从时域到频域、从频域 到时域来回变换的传统方法,也是信号处理的一种主 要方法。
5. 均方根值(RMS, Root Mean Square): xrms
xrms
1 T 2 0 x (t )dt T
正弦信号: xrms=0.707 xp xav=0.637xp
周期信号频谱
信号的某种特征量随信号频率变换的关系,称为信号的频谱,所画出
的图形称为信号的频谱图。 周期信号的频谱是指周期信号中各次谐波幅值、相位随频率的变化关
1. 振动信号的测量
• • • • • • • • 振动信号传感器 位移传感器 速度传感器 加速度传感器 电涡流传感器 光纤传感器 机械振动的运动量和动特性参数的常用测量方法 频率的测量 相位差的测量 衰减系数及相对阻尼系数的测量
2. 振动信号的处理和分析
信号的分类
确定性信 号 随机信号 信号类型 非稳态信 号 连续信号 瞬态信号 周期性信 号
1 X ( ) F [ x(t )] 2
正变换(FT):


x(t )e jt dt
分解过程(时域→频域)
逆变换(IFT):
x(t ) F [ X ()]
1

X ()e d
jt
信号重构过程(频域→时域)
• 令 2πf
1 1 jt ck x(t )e dt d 2 2 x(t )e j2 ft dt df
j2 ft
d t by (t ) e j2 ft d t


aX ( f ) bY ( f )
傅里叶变换(FT)的重要性质
对称性
若x t 为偶函数 则X t x f
证明:
若x(t ) X ( f ) 则X t x f
A1cos(1t+1)称为基波或一次谐波,它的角频率与原周期信号相同; A2cos(21t+2)称为二次谐波,它的频率是基波的2倍;
一般而言,Akcos(kt+k)称为n次谐波。
傅里叶级数的复数表达法
• 欧拉公式:
1 j k t cos k t (e e jk t ) 2
x(t ) X ( f )e


j2πft
df x(t ) X ( f )e j2πft df


将t与f互换
x( f ) X (t )e j2πft dt F[ X (t )]


傅里叶变换(FT)的重要性质
• 尺度改变: F[ x(kt )] 1 X f , F 1 x t X (kf ) k k k k • 证明: F[ x(kt )]
k
ck e jk0t

k 0, 1, 2,
• 考虑到T→∞,ω→无穷小,记为dω;kω→ ω(由离散量变为连续 量),而
1 d T 2 2
同时,∑ →∫
d 1 ck x(t )e jt dt 2 2
1 X () 2
o




傅里叶变换(FT)的重要性质
• 时移: • 证明:
F[ x(t t0 )] X ( f )e j2πft0
F[ x(t t0 )]

x(t t0 )e j2πft dt
t0 • 令 t ,则 t t0 , d dt 代入上式得 ,
傅里叶级数
• 周期信号: x(t ) x(t nT )
周期为T,角频率=2/T,当满足狄里赫利(Dirichlet)条件时可分解为 如下三角级数—— 称为x(t)的傅里叶级数
x(t ) a0 (ak cos k t bk sin k t )
• 基频(第一阶圆频率):0 2 T
An
A0 2
n
1 2
1
1 4

3
o

3

12

6

4 2 3

3
ω
o

12

6

4
ω (b)
(a)
周期信号频谱举例2
举例:有一幅度为1,脉冲宽度为的周期 矩形脉冲,其周期为T,如图所示。求频 谱。
-T 1 f(t) 0 … T t
1 Fn T
T 2 T 2
f (t ) e
jnt
第六章 振动信号的处理和分析 (基本理论)
本章内容
• • • • • • • • 6-1 信号的分类 6-2 傅里叶变换 6-3 离散傅里叶变换(DFT) 6-4 快速傅里叶变换(FFT) 6-5 选带傅氏分析(ZOOM-FFT) 6-6 功率谱与功率谱密度分析 6-7 线性系统的输入与输出关系 6-8 拉普拉斯变换与Z变换
1 2 jnt dt e dt T 2



2

2
1 e jnt T jn

2

2
n n sin( ) sin 2 2 2 T n T n
2
n 0, 1, 2,
令Sa(x)=sin(x)/x (取样函数)
周期信号频谱举例2
显然1是该信号的直流分量。
1 cos t 的周期T1 = 8 2 3 4
1 2 cos 的周期T2 = 6 4 3 3
周期信号频谱举例1
画出f(t)的单边振幅频谱图、相位频谱图如图
1 1 2 f (t ) 1 cos t cos t 2 3 4 3 4 3
傅里叶积分变换(非周期信号)
非周期信号f(t)可看成是周期T→∞时的周期信号。 当周期T趋近于无穷大时,谱线间隔 趋近于无穷小,从而
信号的频谱变为连续频谱。
非周期信号的傅里叶变换
• 根据傅里叶级数复指数形式:
1 ck T

T /2
T /2
x(t )e
jk0t
dt
x(t )
X ( f ) 随频率 f 变化的图形
幅度谱中每条线代表某一频率分量的幅度——谱线 相位频谱(相位谱):
( f ) 随频率 f 变化的图形
X ( f ) :频率谱密度函数,或简称为频谱函数
非周期信号频谱为 f 的连续函数
傅里叶变换(FT)的重要性质
设 F[x(t)]=X(f), F[y(t)]=Y(f) 线性叠加:
傅里叶变换(FT)的重要性质
f t
相关文档
最新文档