大型电动机高阻抗差动保护原理

合集下载

大型电动机高阻抗差动保护原理、整定及应用

大型电动机高阻抗差动保护原理、整定及应用

大型电动机高阻抗差动保护原理、整定及应用大型电动机高阻抗差动保护是电力系统中常用的一种保护方式,其原理是通过检测电动机的差动电流,判断电动机是否存在故障,并及时采取保护措施,防止故障扩大。

本文将介绍大型电动机高阻抗差动保护的原理、整定和应用。

一、原理大型电动机高阻抗差动保护是一种基于电流差动原理的保护方式。

其原理是将电动机的回路电流分为正序和负序两部分,通过比较正序电流和负序电流的差值来判断电动机是否存在故障。

当电动机正常运行时,正序电流和负序电流的差值较小;而当电动机存在故障时,由于故障电流的存在,正序电流和负序电流的差值会显著增大。

因此,通过检测正序和负序电流的差值变化,可以判断电动机是否存在故障。

二、整定大型电动机高阻抗差动保护的整定包括设置保护定值和调整动作时间。

保护定值的设置是保证保护的可靠性和灵敏性的关键。

一般来说,正序电流和负序电流的差值超过一定的阈值时,会触发保护动作。

保护定值的选择需要考虑电动机的额定电流、负荷情况和系统的特点等因素。

调整动作时间是为了保证保护能够及时动作,以防止故障扩大。

动作时间的调整可以根据电动机的启动特性和负荷变化情况进行。

三、应用大型电动机高阻抗差动保护广泛应用于电力系统中的电动机保护。

其主要应用场景包括:1.电动机的起动保护:在电动机起动过程中,电动机的电流变化较大,容易引起差动保护的误动作。

因此,可以在电动机起动后延时一段时间再使差动保护装置动作,以避免误动作。

2.电动机的过负荷保护:当电动机负荷过大时,会导致电动机工作不正常,甚至烧坏。

通过监测电动机的差动电流,可以及时判断电动机是否存在过负荷情况,并采取相应的保护措施。

3.电动机的短路保护:电动机发生短路故障时,会引起电动机电流突变,通过差动保护装置可以快速检测到短路故障,并切断电动机的电源,以防止故障扩大。

大型电动机高阻抗差动保护是一种可靠且有效的电动机保护方式。

通过检测电动机的差动电流,可以及时判断电动机是否存在故障,并采取相应的保护措施。

功率大于2000kW的高压电机差动保护方式的选择

功率大于2000kW的高压电机差动保护方式的选择

功率大于2000kW的高压电机差动保护方式的选择【摘要】介绍了功率大于2000kW的高压电机变频器起动及软起动器起动时差动保护的选择以及这两种起动方式在实际应用中的电气接线,纵联差动保护与磁平衡差动保护的共同点及不同点,优点及缺点。

差动保护时选用的电流互感器精度、容量及变比的选择。

【关键词】纵联差动保护;磁平衡差动保护【中图分类号】TU856【文献标识码】A【文章编号】1002-8544(2016)22-0168-02《电力装置的继电保护和自动装置设计规范》中明确规定2000kW及以上的电动机,或电流速断保护灵敏系数不符合要求的2MW以下电动机,应装设纵联差动保护。

功率大于2000kW的高压电机,一般来说常用的起动方式有两种(1)变频器起动。

(2)软起动器起动。

一般如此大功率的电机原则上来说不推荐选择直接启动的启动方式。

下面我们来具体论述一下以上两种起动方式时,高压电机差动保护的电气接线。

1.变频器起动时高压电机差动保护的选择有两种方式磁平衡差动保护和普通纵联差动保护。

1.1 磁平衡差动保护时,差动保护的电气接线。

4TA为磁平衡差动线圈,放置于高压电机内部(电机订货要求中一定要写到,并明确电流互感器变比及保护级别、容量等),在电机本体上带有磁平衡差动电流互感器,然后把电流互感器信号接至高压综自保护装置中。

注意电动机综自保护装置一定要求是磁平衡差动保护装置(有些综自保护厂家磁平衡保护和电机普通纵联差动保护装置为一个保护装置,装置内部可以设置)。

具体接线如图一所示。

磁平衡差动保护不受电机起动方式的选择,选择任何起动方式的高压电机均可采用磁平衡差动保护,但是必须在电机订货时要求电机厂家在电机内部磁平衡差动线圈。

1.2 变频器起动时,普通纵联差动保护的电气接线。

由于电机采用变频器起动方式,变频器上侧及下侧电流有变化不一样大,故不能做作为纵联差动保护的取样电流。

这时差动电流的取样点必须取自于变频器下侧出口4TA处及电机本体中性点处5TA,具体详见图二。

高低速高压电动机差动保护应用

高低速高压电动机差动保护应用

高低速高压电动机差动保护应用经济在快速发展,社会在不断进步,为了做好高压电动机差动保护误动作分析工作,需要结合工作实际,不断制定更加完善的差动保护工作,以此才能提高工作效率,希望本文的进一步研究,能够为相关工作开展奠定良好基础。

标签:高压电动机;差动保护;分析引言工业生产中,在额定功率超过200千瓦时,需要运用高压电动机,同步电动机和异步电动机等是通常运用的电动机类型。

结合现场运用的功能重点用作拖动泵、压缩机等。

在运用这些高压电动机的过程中,不但要使工业生产得到满足,还需要对其进行科学管理,保证其可以安全、稳定运转。

1概述差动保护原理。

差动保護是反映被保护元件(或区域)两侧电流差而动作的保护装置,差动保护作为被保护元器件的内部故障的保护,电流互感器安装在被保护设备的两侧,在正常或外部发生故障时,流入差动保护的电流为不平衡电流,在适当选择好两侧电流互感器的变比和接线方式下,该不平衡电流值很小,并小于差动保护的动作电流,故保护不会动作;被保护设备内部发生故障时,流入差动保护装置的电流大于差动保护的动作电流,差动保护动作于跳闸。

差动保护原理简单,使用电气量单纯,保护范围明确,保护动作迅速,一直作为变压器、发电机、电动机、线路及母差等设备的主保护。

双速原理。

电机调速可以通过变极、变频,改变定子绕组电源电压、转子串联电阻,以及转子串联附加电动势等方式实现。

串联电阻,调速的调速电阻要消耗能量,效率低,达不到良好的效果;变压调速对于恒转矩调速范围太窄,而且增大了电动机转子绕组的电阻,结构复杂;变频调速和附加电动势调速都可以实现平滑调速,但是投资高,占地面积大;变极调速节省投资,容易实现。

2分析差动保护误动的常见原因选择电动机专用差点保护系统,确定差动继电器动作电流整定值为5A。

发动机刚刚启动时,为便于调整可在电机无异常、互感器极性标准的前提下,通过推出差动保护的形式对电机进行启动。

启动电机时CT信号灯亮起可发生一定的断线,启动完成后熄灭信号灯,此时可通过确定0.625A电流对CT进行断线处理,再次启动回路。

高阻抗母线差动保护的工作原理

高阻抗母线差动保护的工作原理

高阻抗母线差动保护的工作原理高阻抗母线差动保护是电力系统中常用的一种保护方式,其工作原理基于高阻抗差动元件的特性。

本文将从差动保护的基本原理、高阻抗差动元件的作用、差动保护的工作流程以及应用举例等方面进行详细介绍。

差动保护是电力系统中常用的一种保护方式,用于检测和判断电力系统中发生的故障。

其基本原理是通过比较电流的差值来判断系统中是否存在故障。

在母线差动保护中,通过比较母线两端的电流差值来判断母线是否发生故障。

当母线正常运行时,两端电流相等,差动保护装置不会动作;而当母线发生故障时,两端电流存在差值,差动保护装置会发出信号,触发保护动作。

高阻抗差动元件是实现差动保护的关键组成部分。

它是一种特殊的电流互感器,具有高阻抗特性。

其工作原理是通过在差动保护回路中串联一定阻抗,形成高阻抗回路。

当正常工作时,由于两端电流相等,高阻抗回路上的电压很小,保护装置不会动作;而当发生故障时,两端电流不相等,高阻抗回路上的电压增大,触发保护装置的动作。

差动保护的工作流程可以简单分为三个步骤:采集电流、比较电流差值和判断故障类型。

首先,差动保护装置通过电流互感器采集母线两端的电流信号,并将其传输到差动保护装置中。

其次,差动保护装置通过高阻抗差动元件比较两端电流的差值,计算出差动电流。

最后,差动保护装置根据差动电流的大小和方向判断故障的类型,并触发相应的保护动作。

高阻抗母线差动保护在电力系统中有着广泛的应用。

它可以有效地检测母线发生的故障,如短路、接地故障等。

同时,高阻抗差动元件具有很高的灵敏度,可以及时地对故障进行判断和处理,保证电力系统的安全运行。

此外,高阻抗母线差动保护还可以与其他保护装置进行配合,提高系统的可靠性和稳定性。

举个例子,某电力系统中的一条母线发生了接地故障。

当故障发生时,故障电流会导致母线两端的电流不相等,高阻抗差动元件会感知到差动电流,并将信号传输给差动保护装置。

差动保护装置根据差动电流的大小和方向判断故障类型,并触发相应的保护动作,如切断故障段或报警。

电机差动保护

电机差动保护

电机差动保护什么是差动保护和电流速断保护和零序电流保护差动保护的性能非常好,可以瞬时切除全线范围的故障,一般只用于元件保护,如变压器和发电机等。

其原理是比较元件两侧的电流大小和方向。

电流速断保护反映相间短路故障,在10~35KV配电线路和小容量变压器上应用广泛。

其动作电流按短路电流整定,数值大,只有线路始端故障时的短路电流才会大于其动作电流,即速断保护才会动作,所以其保护范围只限于线路前一部分。

零序电流保护反应接地短路故障,只有接地时才出现零序电流,引起该保护动作。

当然要构成该保护,需要用零序电流滤过器(电缆的话要用零序电流互感器)来获得零序电流。

差动保护有线路差动保护、变压器差动保护、母线差动保护等等。

差动保护是根据"电路中流入节点电流的总和等于零”原理制成的。

差动保护把被保护的电气设备看成是一个接点,那么正常时流进被保护设备的电流和流出的电流相等,差动电流等于零。

当设备出现故障时,流进被保护设备的电流和流出的电流不相等,差动电流大于零。

当差动电流大于差动保护装置的整定值时,保护动作,将被保护设备的各侧断路器跳开,使故障设备断开电源。

差动保护是输入的两端CT电流矢量差,当达到设定的动作值时启动动作元件。

保护范围在输入的两端CT之间的设备(可以是线路,发电机,电动机,变压器等电气设备)逆相序上面两位已经解释了,有功反向是逆功率而不是逆相序,一般用在发电机保护中。

电流差动保护是继电保护中的一种保护,forclear 说的差动保护和逆相序都是对的。

正相序是A超前B,B超前C各是120度。

反相序(即是逆相序)是A超前C,C超前B各是120度。

有功方向变反只是电压和电流的之间的角加上180度,就是反相功率,而不是逆相序。

主要用来保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。

在绕组变压器的两侧均装设电流互感器,其二次侧按循环电流法接线,即如果两侧电流互感器的同级性端都朝向母线侧,则将同级性端子相连,并在两接线之间并联接入电流继电器。

大型电动机高阻抗差动保护原理、整定及应用

大型电动机高阻抗差动保护原理、整定及应用

大型电动机高阻抗差动保护原理、整定及应用
大型电动机高阻抗差动保护是一种常用的保护方式,主要用于检测电动机定子绕组中的绝缘故障。

其原理可以分为两个部分,分别是差动元件和比值元件。

差动元件主要由一组可调的电流互感器组成,一般为两个或多个。

这些互感器将电动机定子绕组的电流传输到差动继电器中,通过比较这些电流的差值来判断电机是否存在绝缘故障。

如果两个或多个电流值之间存在差别,差动继电器就会起动,产生差动保护信号。

比值元件主要由一个可调的阻抗元件组成,用于控制差动继电器的灵敏度。

通常情况下,当差动元件传来的信号超过比值元件的设定值时,差动继电器就会工作,产生差动保护信号。

整定方面,大型电动机高阻抗差动保护的整定参数包括:差动元件的灵敏度、比值元件的阻抗设定值、电流互感器的比率和相位校正等。

这些参数需要通过检测和分析来确定,以保证差动保护的可靠性和灵敏性。

在应用方面,大型电动机高阻抗差动保护主要用于保护电动机的定子绕组,对于定子绕组的绝缘故障,如相间短路、相间接地短路等,能够提供快速、准确的保护。

此外,差动保护也可与其他保护装置,如过流保护、接地保护等配合使用,形成全面的电动机保护系统。

大型电动机高阻抗差动保护原理、整定及应用

大型电动机高阻抗差动保护原理、整定及应用

大型电动机高阻抗差动保护原理、整定及应用大型电动机高阻抗差动保护原理、整定及应用一、引言随着电力系统的发展和电动机的广泛应用,电动机保护也变得越来越重要。

其中差动保护是电动机保护中常用的一种方法,它可以有效地检测电动机的故障并及时采取保护措施。

本文将介绍一种常用的差动保护方案——大型电动机高阻抗差动保护,包括其原理、整定方法以及应用。

二、大型电动机高阻抗差动保护原理大型电动机高阻抗差动保护是一种基于电流差动原理的保护方案。

它通过比较电动机的输入和输出电流来检测电动机的故障。

具体原理如下:1. 故障前状态:电动机的输入和输出电流应该是相等的,差动电流为零。

2. 故障发生:当电动机发生故障时,比如转子绕组短路或绝缘损坏,会导致差动电流增大。

3. 保护动作:差动保护装置会监测输入和输出电流的差值,当差值超过设定的阈值时,会发出保护信号,触发断路器断开电路,以保护电动机不受进一步损坏。

三、大型电动机高阻抗差动保护整定方法1. 阻抗整定:大型电动机高阻抗差动保护的阻抗整定是非常关键的一步。

阻抗整定的目的是确定差动电流的阈值,使其能够准确地检测电动机的故障。

阻抗整定一般通过实验来进行,根据电动机的特性和运行状态来确定阈值。

2. 故障判据:大型电动机高阻抗差动保护的故障判据一般是根据电动机的额定电流和差动电流的比值来确定的。

当差动电流与额定电流的比值超过一定的阈值时,就判定为电动机故障。

3. 阈值设定:阈值设定是根据电动机的特性和运行条件来确定的。

一般来说,阈值设定应该略大于电动机在正常运行状态下的差动电流,以确保能够准确地检测到故障。

四、大型电动机高阻抗差动保护应用大型电动机高阻抗差动保护广泛应用于各种大型电动机的保护中,尤其是对于容易发生故障的电动机,如高压电机、重载电机等。

它可以有效地检测电动机的故障,避免因故障而导致设备损坏甚至事故发生。

大型电动机高阻抗差动保护还可以与其他保护装置相结合,形成多重保护,提高电动机的安全性和可靠性。

高压电机启动时差动保护跳闸初步分析

高压电机启动时差动保护跳闸初步分析

高压电机启动时差动保护跳闸初步分析摘要:在调试启动1CRF1140PO电机时,C相差动保护动作,1LGP0311开关跳闸,由此进行了差动保护跳闸的原因分析。

总结分析后所得:1CRF1140PO电机差动保护定值整定不合理,不能躲过电机启动时CT时间常数、CT误差最大因素产生不平衡电流影响,造成差动保护误动。

由此,本文主要针对1CRF1140PO电机启动时差动保护跳闸进行了简要性分析,希冀为后期工作者提供有效性建议。

关键词:1CRF1140PO电机;差动;保护;分析1初步结果分析1CRF1140PO启动时,电动机静止,其反电势尚未建立,电机呈现感性阻抗特征,在开关合闸瞬间,相当于电源电压全部加到电机的阻抗上,近似于短路状态,短路电流达到6~8倍额定电流,其电磁过程可以采用短路电流特征来描述。

启动电流(短路电流)波形近似如下图:图1 短路电流波形图电气人员对现场进行电机再次启动录波,如下图,此时两侧CT未饱和,C相启动电流为9.178A和9.228A,产生原因为两侧二次时间常数不一致引起,产生差动电压最大值为A相 25.63V,接近于27.5V。

初步结果:CRF跳闸原因根据第二次启动电流分析:主要是由两个CT二次时间常数不一致,CT未饱和情况下出现不平衡电流(差流),第一次跳闸动作值可能进入整定值边界圆内(0.95~1.05Un),是造成差动保护误动作。

1.1 一次设备故障排查CRF电机跳闸后,电气人员对历史试验数据进行检查,发现现场安装交接试验不合格,立即对一次设备进行检查和试验。

试验结果:绝缘测量合格,其他功能试验未做。

1.2差动保护误动作原因排查1.2.1 能够导致差动保护跳闸原因有:①差动保护装置SPAE010故障;②CT回路问题造成差动保护动作;③CT本体故障造成差动保护动作;④差动保护定值整定不合理造成误跳。

高阻抗差动保护装置SPAE010基本原理,是一种高阻抗制动型继电器,它可避免因CT饱和而产生误动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大型电动机高阻抗差动保护原理、整定及应用李德佳核电秦山联营有限公司 314300[摘要]本文阐述了大型电动机高阻抗差动保护原理及整定原则和整定实例。

分析了CT匝数比误差对高阻抗差动保护的影响,并介绍了匝数比误差的测量方法。

[关键词]高阻抗差动保护匝数比1 概述高阻抗差动保护的主要优点: 1、区外故障CT饱和时不易产生误动作。

2、区内故障有较高的灵敏度。

它主要作为母线、变压器、发电机、电动机等设备的主保护,在国外应用已十分广泛。

高阻抗差动保护有其特殊性,要保证该保护的可靠性,应从CT选型、匹配、现场测试、保护整定等多方面共同努力。

现在我国应制定高阻抗差动保护和相应CT的标准,结合现场实际情况编制相应的检验规程,使高阻抗差动保护更好的服务于电网,保证电网安全。

2 高阻抗差动保护原理及定值整定原则2.1高阻抗差动保护的动作原理2.1.1正常运行时: 原理图见图1,∵I1=I2 ∴ij=i1-i2=0. 因此,继电器两端电压:Uab= ij×Rj=0. Rj-继电器内部阻抗。

电流不流经继电器线圈,也不会产生电压,所以继电器不动作。

图中:TA1、TA2--电流互感器;Ru-- 保护电阻器;U>-- 高阻抗差动继电器。

2.1.2电动机启动时: 原理图见图2。

由于电动机启动电流较大,是额定电流的6~8倍且含有较大的非周期分量。

当TA1与TA2特性存在差异或剩磁不同,如有一个CT先饱和,假设TA2先饱和,TA2的励磁阻抗减小,二次电流i2减小。

由于 ij=i1-i2 导致ij上升,继电器两端电压Uab上升。

这样又进一步使TA2饱和,直至TA2完全饱和时,TA2的励磁阻抗几乎为零。

继电器输入端仅承受i1在TA2的二次漏阻抗Z02和连接电缆电阻Rw产生的压降。

Uab= ij(Rw+Z02)为了保证保护较高的灵敏度及可靠性,就应使Uab减少,也就是要求CT二次漏阻抗降低。

这种情况下,继电器的整定值应大于Uab,才能保证继电器不误动。

图中:TA1、TA2-电流互感器;Rj -继电器内部阻抗;Rw-TA2连接电缆电阻;Z02-TA2二次漏阻抗。

图2 启动时动作原理图(TA2饱和)2.1.3发生区内故障: 原理图见图3,i1=Id/n (n-TA1电流互感器匝数比) ij=i1-ie≈i1 Uab= ij×Rj≈i1Rj 此时,电流流入继电器线圈、产生电压,检测出故障,继电器动作。

由于TA1二次电流i1 可分为流向CT励磁阻抗Zm的电流ie和流向继电器的电流ij。

因此,励磁阻抗Zm越大,越能检测出更小的故障电流,保护的灵敏度就越高。

图3内部故障动作原理图n-电流互感器匝数比;Zm-TA1、TA2的励磁阻抗并联值;Z02-TA1的二次漏阻抗。

2.2 高阻抗差动保护的整定原则及实例2.2.1整定原则1)保证当一侧CT完全饱和时,保护不误动。

U≥US (1)US=IKMAX(Rin+Rm)/n (2)U-继电器整定值;US-保证不误动的电压值;IKMAX-启动电流值;Rin-CT二次线圈电阻值;Rm-从继电器安装处到CT安装处环路电阻值;n-CT的匝数比。

2)保证在区内故障时,CT能提供足够的动作电压:Uk≥2US (3)Uk-CT的额定拐点电压。

CT的额定拐点电压也称饱和起始电压:此电压为额定频率下的正弦电压加于被测CT二次绕组两端,一次绕组开路,测量励磁电流,当电压每增加10%时,励磁电流的增加不能超过50%。

图中:Uk-拐点电压;I0-拐点电压下的励磁电流。

3)校验差动保护的灵敏度: 在最小运行方式下,电动机机端两相短路时,灵敏系数应大于等于2。

Klm=I(2)d.min/Iprim≥2 (4)Iprim=n(Us/Rs+mIe+Iu) (5)Iprim-保证继电器可靠动作的一次电流;n、Us-同前所述;m-构成差动保护每相CT数目;Ie-在Us作用下的CT励磁电流;Iu-在Us作用下的保护电阻器的电流;Rs-继电器的内阻抗。

2.2.2整定实例电动机参数: P=7460KW; Ir=816A。

CT参数: 匝数比n=600; Rin=1.774Ω; Uk=170V。

CT二次侧电缆参数: 现场实测Rm=4.21Ω。

差动继电器(ABB-SPAE010)参数:整定范围0.4-1.2Un ;Un=50、100、200可选; Rs=6K。

计算Us: US=IKMAX(Rin+Rm)/n=10Ir(Rin+Rm)/n=10×816(1.774+4.21)/600=81.38V选取Us=82V校验Uk: ∵Uk=170V ∴Us在85V以下即可满足要求。

确定继电器定值: 选取Un=100;整定点为0.82;实际定值为82V。

校验灵敏度: 通过查CT及保护电阻器的伏安特性曲线可得在82V电压下的电流: Ie=0.03A Iu=0.006A Ip rim=n(Us/Rs+mIe+Iu)=600(82/6000+2×0.03+0.006)=47.8A。

由此可见,高阻抗差动保护的灵敏度相当高,这也是该保护的主要优点之一。

3 高阻抗差动保护应用3.1 高阻抗差动保护应用中应注意事项:2.3.1 CT极性及接线应正确;2.3.2 二次接线端子不应松动;2.3.3 不应误整定;2.3.4 CT回路应一点接地等。

2.3.5 还应注意: CT二次应专用; 高阻抗差动保护所用CT是一种特别的保护用CT。

为了避免继电器的误动作,对CT有三个要求: 励磁阻抗高、二次漏抗低和匝数比误差小。

高阻抗差动保护用的CT设计要点是: 依据拐点电压及拐点电压下的励磁电流来确定铁芯尺寸。

对于高阻抗差动保护用CT的特性匹配至关重要,在实际选用时应采用同一厂家,同一批产品中特性相近、匝数比相同的CT。

3.2 CT匝数比误差对高阻抗差动保护的影响3.2.1匝数比n为二次绕组的匝数与一次绕组匝数的比值。

匝数比的误差εt定义如下:εt=(n-Kn)/Kn (6) 式中,Kn-标称电流比。

国外标准中规定此种CT的匝数比误差为±0.25%。

3.2.2匝数比误差要小当电动机启动时(见图2),电流互感器TA2未饱和,CT的二次电流接近于匝数比换算得来的数值,这是由于TA2未饱和时励磁阻抗较高的原因。

一般情况下高阻抗差动保护用CT励磁阻抗为几十千欧姆的数量级。

如果匝数比的分散性很大,TA1和TA2的二次电流i1和i2不能互相抵消,该差值电流ij流经继电器线圈,即成为产生误动作的原因。

3.2.3匝数比误差规定为±0.25%,对于不同匝数比CT不尽合理。

匝数较大CT容易满足该规定并且能保证保护不发生误动作。

匝数较小CT即使满足该规定,在电动机启动时的差电压也较大,足以造成保护误动作。

下面列举两个例子:例1: 标称电流3600/1; Uk=600V; Rin=13Ω; Rm=3Ω;n=3600; Rs=6000Ω; Ikmax=10×3600。

继电器整定值: 10×3600(13+3)/3600=160va) 两侧CT匝数比均满足±0.25%。

假设: n1=3609(正误差); n2=3591(负误差)。

匝数比误差产生的不平衡电流: ij=(10×3600/3591-10×3600/3609)=0.05A继电器两端不平衡电压: Uj=ij×Rs=0.05×6000=300VUj大于继电器整定值,保护在这种情况下将不可避免的发生误动作。

b) 两侧CT匝数比相对误差满足±0.25。

假设:n1=3609; n2=3600。

匝数比误差产生的不平衡电流: ij=(10×3600/3600-10×3600/3609)=0.025A继电器两端不平衡电压: Uj=ij×Rs=0.025×6000=150VUj小于继电器整定值,可满足工程要求。

例2: 所有参数与整定计算实例相同。

a) 两侧CT匝数比均满足±0.25%。

设: n1=601(正误差);n2=599(负误差)。

匝数比误差产生的不平衡电流: ij=(10×816/599-10×816/601)=0.045A继电器两端不平衡电压: Uj=ij×Rs=0.045×6000=272VUj远大于继电器整定值(82V),保护将发生误动作。

b) 两侧CT匝数比相对误差满足±0.25%,假设: n1=601 n2=600匝数比误差产生的不平衡电流: ij=(10×816/600-10×816/601)=0.0226A继电器两端不平衡电压: Uj=ij×Rs=0.0226×6000=135VUj仍大于继电器整定值,保护将发生误动作。

通过上述两例足以说明对于高阻抗差动保护CT选择的苛刻条件,选择时应遵守CT匝数比误差相近的原则。

建议在整定原则中增加继电器整定电压应大于由于匝数比误差产生的差电压,以保证高阻抗差动保护的可靠性。

3.3 匝数比误差的测量测量的方法有两种:第一种: 在CT二次侧短路状态下,测量流经额定一次电流i1时的比值差f1,设此时励磁电流为i0,则 f1=-εt-i0/i1。

二次回路连接与二次绕组阻抗相等的负荷,在额定一次电流的1/2电流下测量比值差f2,这时仍设励磁电流为i0,则 f2=-εt-2i0/i1匝数比误差为: εt=f2-2f1第二种方法: 在测量CT伏安特性的同时测量一次绕组的电压。

一次绕组开路,二次绕组加电压,测量一次绕组的电压,如图5。

CT匝数比n=U1/U2; 匝数比误差εt=(U1/U2-Kn)/Kn。

⊙参考文献[1] 迟永久刘海涛郭斌高阻抗差动继电器用电流互感器及其设计. 低压电器 2002(2)48~51.[2] ABB公司高阻抗差动保护SPAE010用户手册及技术说明书.作者简介李德佳: (1964),男,高级工程师,主要研究方向为继电保护调试和运行。

相关文档
最新文档