消元法实验报告4
C++实验报告高斯消元法

高斯肖元法C++上机实验报告学生姓名: 学 号: 专业班级: 实验类型: 综合一 实验项目名称全选主元高斯消去法解线性方程组 二 实验原理设有n 元线性方程组(考虑便于C++程序数组表示,方程的下标从0开始),0000110,1100000110,111101,111,111n n n n n n n n n n a x a x a x b a x a x a x b a x a x a x b ---------+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩写为矩阵形式为Ax=b,其中A 为线性方程组的系数矩阵,x 为列向量,是方程组的解,b 也是列向量.一般来讲,可以假定矩阵A 是非奇异阵。
(n 阶矩阵A 的行列式不为零,即 |A|≠0,则称A 为非奇异矩阵)00010,10111,1,01,11,1n n n n n n a a a a a a A a a a ----⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,011n x x x x -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ ,011n b b b b -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦将系数矩阵A 和向量b 放在一起,形成增广矩阵B :00010,010111,11,01,11,11(,)n n n n n n n a a a b a a a b b A b a a a b -----⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦全选主元消去就在矩阵B 上进行,整个过程分为如下两个步骤: 第一步:消去过程。
对于k 从0开始到n-2结束,进行以下三步。
1. 首先,从系数矩阵A 的k 行k 列开始的子矩阵中选取绝对值最大的元素作为主元素。
例如:11,max 0i j ij k i n k j na a ≤<≤<=≠然后交换B的第k行与第1i行,第k列与第1k列,这样,这个子矩阵中具有最大绝对值的元素被交换到k行k列的位置上.2.其次,进行归一化计算。
计算方法为:/,1,,1/kj kj kkk k kka a a j k nb b a==+-⎧⎪⎨=⎪⎩3.最后进行消去计算:,,1,,1,1,,1 ij ij ik kji i ik ka a a a j i k nb b a b i k n=-=+-⎧⎪⎨=-=+-⎪⎩第二步,回带过程:111,111/,2,,1,0 n n n nni i ij jj ix b ax b a x i n-----=+=⎧⎪⎨=-=-⎪⎩∑三代码的实现整个程序分为5个独立文件,Matrix.h文件中包括矩阵类Matrix的定义,Matrix.cpp文件中包括该类成员函数的实现,LinearEqu.h文件中包括线性方程组类LinearEqu的定义,LinearEqu.cpp文件中包括该类的成员函数实现文件;7-9.cpp文件包括程序的主函数,主函数中定义了一个类LinearEqu的对象,通过这个对象求解一个四元线性方程组。
guess消元法

{
for(j=1;j<=n+1;j++)
{
cin>>a[i][j];
}
}
for(k=1;k<=n-1;k++)
{
for(i=k+1;i<=n;i++)
{
for(j=k+1;j<=n+1;j++)
{
a[i][j]=a[i][j]-(a[i][k]/a[k][k])*a[k][j];
《数值分析》实验报告
实验序号:实验一题目名称:Gauss消元法解方程组
学号:XXXXXXX姓名:XXX
任课教师:XXXX专业班级:算机科学与技术(师范)
1、实验目的:
编写用Gauss消元法解线形方程组的程序
2、实验分析:
计算方法分析:
Gauss消元法的基本做法就是把方程组转化成为一个如下图的等价的三角方程组,这个过程叫做消元。得到三角方程组后,就可以逐个求出Xn,Xn-1,…,X1,这个过程叫回代。
程序代码分析:
建立两个数组a和b,通过循环语句将n阶增广矩阵输入进去,通过对列的循环对每一列进行消去未知数,通过n小步n大步把矩阵化简成上三角形矩阵,最后通过迭代法解得方程组得解。
3、函数分析:
程序中只用到一个主函数,求解线形方程组得算法都放在主函数中,
利用以下函数进行求解:
a[i][j]=a[i][j]-a[i][k]/a[k][k]*a[k][j];
b[i]=b[i]-a[i][k]/a[k][k]*b[k];
迭代:
for(i=n-1;i>0;i--)
线性方程组的消元法

线性方程组的消元法线性方程组的消元法是解决线性方程组的常用方法之一,通过逐步消去未知数的系数,将方程组转化为更简单的形式,从而求得方程组的解。
本文将详细介绍线性方程组的消元法及其应用。
1. 消元法简介消元法是一种通过逐步消除未知数的系数,将线性方程组转化为更简单形式的方法。
它的基本思想是通过不断的代入与消去操作,将方程组转化为三角形式或最简形式,从而求得方程组的解。
2. 线性方程组的一般形式线性方程组的一般形式可以表示为:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙ其中,a₁₁、a₁₂、...、aₙₙ为未知数的系数,b₁、b₂、...、bₙ为常数项。
3. 消元法的步骤(1)选取主元:根据方程组的特点,选择一项作为主元,并将其系数置为1,并且使其所在的其他行对应的列的系数皆为0,这样可以简化计算过程并减少误差。
(2)代入消元:选择一个非主元进行代入,将其代入主元所在的其他方程中,从而消去该未知数。
(3)重复步骤(1)和(2),直至将所有的非主元都消去为止。
(4)最后得到一个三角形形式的线性方程组,可以通过回代法求解该方程组的解。
4. 消元法的应用消元法广泛应用于各个领域,特别是在科学和工程领域中具有重要作用。
以下是几个应用实例:(1)经济学中的输入产出模型:通过消元法可以分析不同产业之间的投入产出关系,从而得出经济模型的解释。
(2)物理学中的电路分析:通过消元法可以简化复杂的电路方程组,从而计算出电路中各个节点的电压和电流。
(3)化学反应平衡问题:通过消元法可以解决化学反应平衡过程中的复杂线性方程组,从而得到反应物和生成物的浓度。
5. 总结消元法是一种解决线性方程组的有效方法,通过逐步消除未知数的系数,将方程组转化为更简单的形式,从而求得方程组的解。
试验四 Gauuss列主元消去法解线性方程组实验报告

for(j=0;j<m+1;j++) scanf("%lf",&ab[i][j]); printf("您输入的系数增广矩阵为:\n"); for(i=0;i<m;i++) { for(j=0;j<=m;j++) printf(" %10.9f",ab[i][j]); printf("\n"); } for(i=0;i<m-1;i++)//i 是行 { Change(ab,m,i); for(k=i+1;k<m;k++) { f=ab[i][i]; g=ab[k][i]; e=-(g/f); for(t=0;t<m+1;t++) { ab[k][t]+=ab[i][t]*e; } } } printf("经行处理后原矩阵变为:\n"); for(k=0;k<m;k++) { for(t=0;t<=m;t++) printf(" %10.9f",ab[k][t]); printf("\n"); } printf("方程组的解为:\n"); ab[2][2]=ab[2][3]/ab[2][2]; ab[1][1]=(ab[1][3]-ab[1][2]*ab[2][2])/ab[1][1]; ab[0][0]=(ab[0][3]-ab[0][2]*ab[2][2]-ab[0][1]*ab[1][1])/ab[0][0]; for(i=0;i<m;i++) printf("x%d=%10.9f\n",i+1,ab[i][i]); }
高斯消去算法实验报告

高斯消去算法实验报告1. 实验背景高斯消去算法,也称为高斯消元法,是一种用于求解线性方程组的常用方法。
通过进行一系列的行变换,将方程组化简为阶梯矩阵,从而得到方程组的解。
本实验旨在使用高斯消去算法,解决给定的线性方程组。
2. 实验过程2.1 算法原理高斯消去算法的基本思想是通过进行行变换,将线性方程组化简为阶梯矩阵。
具体流程如下:1. 对于每一列,从对角线开始,选取主元(即该列中绝对值最大的元素),并将该主元所在的行与对角线所在的行交换位置。
这样可以避免除法中的误差积累。
2. 通过进行行变换,将主对角线以下的元素全部清零。
具体方法是,对于每一行i,通过消去第i+1行到最后一行的第i列元素,从而将下三角矩阵的元素清零。
3. 倒序遍历每一行,通过行变换,将主对角线以上的元素清零。
具体方法是,消去第i-1行到第1行的第i列元素,从而将上三角矩阵的元素清零。
4. 将矩阵化简为阶梯矩阵。
2.2 实验步骤1. 取得待解线性方程组的系数矩阵A和常数向量b。
2. 将矩阵A和向量b合并为增广矩阵Ab。
3. 通过高斯消去算法,将增广矩阵化简为阶梯矩阵。
4. 根据化简后的阶梯矩阵,求解线性方程组。
3. 实验结果以一个3阶线性方程组为例进行实验,方程组如下:2x + 3y + z = 93x + 2y + 4z = 124x + 3y + 6z = 18按照操作步骤,我们将系数矩阵A和常数向量b合并为增广矩阵Ab:markdownA = [[2, 3, 1],[3, 2, 4],[4, 3, 6]]b = [9, 12, 18]Ab = [[2, 3, 1, 9],[3, 2, 4, 12],[4, 3, 6, 18]]然后,通过高斯消去算法,将增广矩阵Ab化简为阶梯矩阵:markdownAb = [[2, 3, 1, 9],[0, 1.5, 2.5, 6],[0, 0, 0, 0]]根据化简后的阶梯矩阵,我们可以得到方程组的解:x = 1y = 2z = 0因此,该线性方程组的解为x=1,y=2,z=0。
数值分析实验报告高斯消元法和列主消元法

《计算方法》实验指导书 实验三、高斯消元法和列主消元法一、实验目的:1. 通过matlab 编程解决高斯消元发和列主消元发来解方程组的问题, 加强编程能力和编程技巧,要熟练应用matlab 程序来解题,练习从数值分析的角度看问题进而来解决问题。
更深一步体会这门课的重要性,练习动手能力,同时要加深对数值问题的理解,要熟悉matlab 编程环境。
二、实验要求:用matlab 编写代码并运行高斯消元法和列主消元发来解下面的方程组的问题,并算出结果。
三、实验内容:用高斯消元法和列主消元法来解题。
1.实验题目:用高斯消元法和列主消元法来解下列线性方程组。
⎪⎪⎩⎪⎪⎨⎧−=+−−−=+−−=+−−=−+−.142,16422,0,13143214321432432x x x x x x x x x x x x x x x 2.实验原理高斯消元法:就是把方程组变成上三角型或下三角形的解法。
上三角形是从下往上求解,下三角形是从上向下求解,进而求得结果。
而列主消元法是和高斯消元法相类似,只不过是在开始的时候找出x1的系数的最大值放在方程组的第一行,再化三角形再求解。
3.设计思想高斯消元法:先把方程组的第一行保留,再利用第一行的方程将其余几行的含有x1的项都消去,再保留第二行,同理利用第二行的方程把第二行以下的几行的含有x2项的都消去,以此类推。
直到最后一行只含有一个未知数,化为上三角形,求得最后一行的这个未知数的值,再回带到倒数第二个方程求出另一个解,再依次往上回带即可求出这个方程组的值。
而列主消元法与高斯消元法类似,只不过在最开始时找出x1项系数的最大值与第一行交换再进行与高斯算法相似的运算来求出方程组的解。
4.源代码高斯消元法的程序:f unction [RA,RB,n,X]=gaus(A,b)B=[A b]; n=length(b); RA=rank(A);RB=rank(B);zhica=RB-RA;if zhica>0,disp('请注意:因为RA~=RB,所以此方程组无解.')returnendif RA==RBif RA==ndisp('请注意:因为RA=RB=n,所以此方程组有唯一X=zeros(n,1); C=zeros(1,n+1);for p= 1:n-1for k=p+1:nm= B(k,p)/ B(p,p);B(k,p:n+1)= B(k,p:n+1)-m*B(p,p:n+1);endendb=B(1:n,n+1);A=B(1:n,1:n);X(n)=b(n)/A(n,n);for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);endelsedisp('请注意:因为RA=RB<n,所以此方程组有无穷多解.')endend在工作窗口输入程序:A=[1 -1 1 -3; 0 -1 -1 1;2 -2 -4 6;1 -2 -4 1];b=[1;0; -1;-1]; [RA,RB,n,X] =gaus (A,b)请注意:因为RA=RB=n,所以此方程组有唯一解.运行结果为:RA =4RB =4n =4X =-0.50000.5000.列主消元发的程序:function [RA,RB,n,X]=liezhu(A,b)B=[A b]; n=length(b); RA=rank(A);RB=rank(B);zhica=RB-RA;if zhica>0,disp('请注意:因为RA~=RB,所以此方程组无解.')returnendif RA==RBif RA==ndisp('请注意:因为RA=RB=n,所以此方程组有唯一解.')X=zeros(n,1); C=zeros(1,n+1);for p= 1:n-1[Y,j]=max(abs(B(p:n,p))); C=B(p,:);B(p,:)= B(j+p-1,:); B(j+p-1,:)=C;for k=p+1:nm= B(k,p)/ B(p,p);B(k,p:n+1)= B(k,p:n+1)-m*B(p,p:n+1);endendb=B(1:n,n+1);A=B(1:n,1:n);X(n)=b(n)/A(n,n);for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);endelsedisp('请注意:因为RA=RB<n,所以此方程组有无穷多解.')endend在工作窗口输入程序:A=[1 -1 1 -3; 0 -1 -1 1;2 -2 -4 6;1 -2 -4 1];b=[1;0; -1;-1]; [RA,RB,n,X]=liezhu(A,b)请注意:因为RA=RB=n,所以此方程组有唯一解.运行结果为:RA =4RB =4n =4X =-0.50000.5000实验体会:通过这次实验我了解了高斯消元法和列主消元方法的基本思想,虽然这两个程序的编写是有点困难的,但运行起来还是比较容易的,解决了不少实际问题的计算。
高斯消元实验报告

实验报告一Gauss消去法求解线性方程组实验一、实验内容分别用顺序Gauss消去法和列选主元gauss消去法求解方程组=二.算法原理对一般的形如的线性方程组,记增广矩阵.Guass消去法包括消元过程和回代过程,消去过程实际上是把通过有限步的初等变换(即把的某行的一个倍数加到另一行或变换的某两行),最终化成上三角阵,图示如下:而回带过程是自下而上求解上三角方程组在消元过程中将扔放在的位置上,具体算法过程(不做行交换的消元):三、变量说明:n 方程组的阶数.A[3][3] 系数矩阵A.B[3] 常数项Bm[3][3] 经过Guass消元法后的系数矩阵i,j,k 随机变动量x[3] 3个变量X1,X2,X3四.程序设计#include<stdio.h>#include<math.h>main(){int n=3,i,j,k=0;doubleA[3][3]={{0.2641,0.1735,0.8642},{0.9411,-0.0175,0.1463},{-0.8641,-0.4243,0.0711}};double B[3]={-0.7521,0.6310,0.2501};double m[3][3];double X[3]={0,0,0};double s;for(k=0;k<=n-1;k++){for(i=k+1;i<n;i++){m[i][k]=A[i][k]/A[k][k];for(j=k+1;j<n;j++)A[i][j]=A[i][j]-m[i][k]*A[k][j];B[i]=B[i]-m[i][k]*B[k];}}for(i=n-1;i>=0;i--){s=0;for(j=i;j<n;j++)s+=A[i][j]*X[j];X[i]=(B[i]-s)/A[i][i];}for(i=0;i<3;i++)printf("%f\n",X[i]);}五.上机结果六.上机体会。
高斯消元法与列主元消去法实验报告

实验报告:Gauss消元法小组成员:李岚岚、邱粉珊、缪晓浓、杨水清学号:0917020040、0917010078、0917010073、0917010112一、实验问题编写两个程序,分别利用Gauss消元法和列主元消去法求解方程组二、分析及其计算过程Gauss顺序消元法:源程序:function [x]=gaussl(A,b)[n1,n2]=size(A);n3=size(b);if n1~=n2|n2~=n3|n1~=n3disp('A的行和列的维数不同!');return;endif det(A)==0disp('系数矩阵A奇异');return;end%消元过程L=eye(n1);for j=2:n1for i=j:n1L(i,j-1)=A(i,j-1)/A(j-1,j-1);A(i,:)=A(i,:)-L(i,j-1)*A(j-1,:);b(i)=b(i)-L(i,j-1)*b(j-1);endend%回代过程x(n1)=b(n1)/A(n1,n1);for t=n1-1:-1:1for k=n1:-1:t+1b(t)=b(t)-A(t,k)*x(k);endx(t)=b(t)/A(t,t);end程序的运行以及结果:>>A=[1 2/3 1/3;9/20 1 11/20;2/3 1/3 1];>>b=[2 2 2];>> [x]=gaussl(A,b)x =1 1 1Gauss列主元消去法:源程序:function [x]=gaussll(A,b) [n1,n2]=size(A);n3=size(b);if n1~=n2|n1~=n3|n2~=n3disp('输入的方程错误!');return;endif det(A)==0disp('系数矩阵A奇异');return;endmax=zeros(n1);for m=1:n1%找主元for i=m:n1if abs(A(i,m))>maxmax=A(i,:);A(i,:)=A(m,:);A(m,:)=max;maxb=b(i);b(i)=b(m);b(m)=maxb;endend%消元过程L=eye(n1);for j=2:n1for i=j:n1L(i,j-1)=A(i,j-1)/A(j-1,j-1);A(i,:)=A(i,:)-L(i,j-1)*A(j-1,:);b(i)=b(i)-L(i,j-1)*b(j-1);endendend%回代过程x(n1)=b(n1)/A(n1,n1);for t=n1-1:-1:1for k=n1:-1:t+1b(t)=b(t)-A(t,k)*x(k);endx(t)=b(t)/A(t,t);end程序的运行以及结果:>>A=[-0.002 2 2;1 0.78125 0;3.996 5.5625 4]; >>b=[0.4 1.3816 7.4178];>>[x]= gaussll(A,b)x =1.9273 -0.6985 0.9004。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西京学院数学软件实验任务书
《数值分析》实验报告
实验一
一、实验目的与要求
1.掌握高斯列主元消去法解线性方程组的基本思路;
2.了解一些计算机的算法,会以某种汇编语言实现算法结果(本实验主要用matlab编程)
二、实验内容
1.编写用高斯列主元消元法解线性方程组的MATLAB程序,并求解下面的线性方程组,然后用逆矩阵解方程组的方法验证.
(1)
123
123
123
221
1
221
x x x
x x x
x x x
+-=
⎧
⎪
++=
⎨
⎪++=
⎩
(2)
123
123
123
21
1
21
x x x
x x x
x x x
-+=
⎧
⎪
++=
⎨
⎪+-=
⎩
2.列主元消元法及其matlab程序function [Ra,Rb,n,X]=GaussXQLineMain(A,b) %高斯列主元消元法,其中B为增广矩阵
B=[A b];
%读入b的长度
n=length(b);
%读出矩阵a,b秩
Ra=rank(A);
Rb=rank(B);
if (Rb-Ra)>0
disp('因为Ra不等于Rb,所以此方程组无解.') return
end
if Ra==Rb
if Ra==n
disp('因为Ra=Rb=n,所以此方程组有唯一解.') X=zeros(n,1);
C=zeros(1,n+1);
for p= 1:n-1
%找出列中最大的元素并指出他的位置
[Y,j]=max(abs(B(p:n,p)));
C=B(p,:);
B(p,:)= B(j+p-1,:);
B(j+p-1,:)=C;
for k=p+1:n
m= B(k,p)/ B(p,p);
B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1); end
end
b=B(1:n,n+1);A=B(1:n,1:n);
X(n)=b(n)/A(n,n);
for q=n-1:-1:1
X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);
end
else
disp('因为Ra=Rb<n,所以此方程组有无穷多解.') end
end
%调用格式
% clear;
% A=[1 2 3;4 5 6;7 8 9 ];
% b=[21;22;23];
% [Ra,Rb,n,X] =GaussXQLineMain(A,b)三、实验过程
方程组(1)过程
>> clear;
A=[1 2 -2;1 1 1;2 2 1 ];
b=[1;1;1];
[Ra,Rb,n,X] =GaussXQLineMain(A,b) 因为Ra=Rb=n,所以此方程组有唯一解.
Ra =
3
Rb =
3
n =
3
X =
-3.0000
3.0000
1.0000
方程组(2)过程
clear;
A=[2 -1 1;1 1 1;1 1 -2 ];
b=[1;1;1];
[Ra,Rb,n,X] =GaussXQLineMain(A,b)
因为Ra=Rb=n,所以此方程组有唯一解.
Ra =
3
Rb =
3
n =
3
X =
0.6666
0.3333
在MATLAB中利用逆矩阵法检验结果:
(1) 在command windows中直接运行命令:
A=[1 2 -2;1 1 1;2 2 1 ];
b=[1;1;1];
X=A\b
结果
X =
-3.0000
3.0000
1.0000
(2) 在command windows中直接运行命令:
A=[2 -1 1;-1 1 1;1 1 -2 ];
b=[1;1;1];
X=A\b
结果
X =
0.6666
0.3333
四、实验总结
通过本次实验再次熟悉了高斯列主元消元法的思想,加深了对matlab语言的理解,简洁明了,在实验过程中函数编写实现不了,最后参考matlab算法通过实验,学会了matlab函数的调用使得matlab编写的函数通用实用。