Gauss列主元消去法
Gauss列主元素消去法实验

Lab06.Gauss 列主元素消去法实验【实验目的和要求】1.使学生深入理解并掌握Gauss 消去法和Gauss 列主元素消去法步骤; 2.通过对Gauss 消去法和Gauss 列主元素消去法的程序设计,以提高学生程序设计的能力;3.对具体问题,分别用Gauss 消去法和Gauss 列主元素消去法求解。
通过对结果的分析比较,使学生感受Gauss 列主元素消去法优点。
【实验内容】1.根据Matlab 语言特点,描述Gauss 消去法和Gauss 列主元素消去法步骤。
2.编写用不选主元的直接三角分解法解线性方程组Ax=b 的M 文件。
要求输出Ax=b 中矩阵A 及向量b ,A=LU 分解的L 与U ,det A 及解向量x 。
3.编写用Gauss 列主元素消去法解线性方程组Ax=b 的M 文件。
要求输出Ax=b 中矩阵A 及向量b 、PA=LU 分解的L 与U 、det A 及解向量x ,交换顺序。
4.给定方程组(1) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11134.981.4987.023.116.427.199.103.601.3321x x x(2) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----15900001.582012151********.23107104321x x x x 先用编写的程序计算,再将(1)中的系数3.01改为3.00,0.987改为0.990;将(2)中的系数2.099999改为2.1,5.900001改为9.5,再用Gauss 列主元素消去法解,并将两次计算的结果进行比较。
【实验仪器与软件】1.CPU 主频在1GHz 以上,内存在128Mb 以上的PC ;2.Matlab 6.0及以上版本。
实验讲评:实验成绩:评阅教师:200 年 月 日Lab06.Gauss 列主元素消去法实验第一题:1、算法描述:Ⅰ、Gauss 消去法由书上定理5可知 设Ax=b ,其中A ∈R^(n(1)如果()0(1,2,....,1)k kka k n ≠=-,则可通过高斯消去法将Ax=b 约化为等价的 角形线性方程组,且计算公式为:① 消元计算(k=1,2,….,n-1)()()(1)()()(1)()()/,1,...,,,,1,...,,,1,...,.k k ik ik kk k k k ij ij ik kj k k k iiik k m a a i k n a a m a i j k n b b m b i k n ++==+=-=+=-=+② 回带公式()()()()()1/,()/,1,...,2,1.n n n n nn ni i i i iii j ii j i x b a x ba x a i n =+==-=-∑(2)如果A 为非奇异矩阵,则可通过高斯消去法将方程组Ax=b 约化方程组为上三角矩阵以上消元和回代过程总的乘除法次数为332333nn nn +-≈,加减法次数为32353263nnn n+-≈以上过程就叫高斯消去法。
Gauss列主元消去法、QR(MATLAB)

Gauss列主元消去法、QR(MATLAB)Gauss列主元消去法是一种线性方程组的求解方法,也称Gauss消去法。
其基本思想是将方程组转化为上三角矩阵,然后通过反向代入求解。
该方法的优点在于计算精度高,求解速度快,但缺点是需要大量的计算,尤其是在矩阵阶数较高时。
具体来讲,Gauss列主元消去法的步骤如下:步骤一:将系数矩阵A进行LU分解,其中L是下三角矩阵、U是上三角矩阵。
设$A=LU$,则原方程组可以写成$LUx=b$。
步骤二:通过初等矩阵左乘系数矩阵A,将每一列的主元变为该列所有元素中绝对值最大的那个元素。
这个过程称为选主元,可以避免计算中的数值不稳定问题。
步骤三:将选主元后的系数矩阵A进行LU分解,得到$L^{'}$、$U^{'}$。
步骤五:通过反向代入求解$U^{'}x=y$,得到$x$的解。
Gauss列主元消去法的实现通常通过矩阵的变换来实现。
对于$n$阶矩阵$A=[a_{ij}]$,通过一系列的行变换,可以将其变为上三角矩阵。
其中的变换可以表示为:$$ R_{i} \leftrightarrow R_{j} $$其中,$R_{i}$和$R_{j}$分别表示矩阵$A$中的第$i$行和第$j$行,$k$是一个非零常数。
这些变换被称为初等行变换。
在MATLAB中,可以使用已经实现好的{\color{blue}\texttt{gauss}}函数来求解线性方程组。
该函数实现的算法是Gauss列主元消去法。
其调用格式为:x = gauss(A,b)其中,$A$是系数矩阵,$b$是结果向量。
函数返回结果向量$x$。
如果$A$或$b$不合法,则函数会返回一个空向量。
除了Gauss列主元消去法,还有一种常用的求解线性方程组的方法是QR分解法。
步骤二:通过正交矩阵左乘系数矩阵$A$,使其变为一个上三角矩阵。
这个过程称为正交相似变换。
步骤三:将$b$进行正交相似变换,得到$Q^{T}b$。
高斯列主元消去法

如果在高斯顺序消去法消去过程进行到第i 步时,现选取ri a )(n r i ≤≤中绝对值最大的元素,设为第j 行的元素ji a ,把矩阵的第i 行和第j 行互换,这时ii a 变为ji a ,然后将第i+1行至第n 行中的每一行减去第i 行乘以ii ki a a (k 代表行号),依次进行消元。
Gauss 列主元消去法的算法步骤如下:将方程组写成以下的增广矩阵的形式:⎪⎩⎪⎪⎨⎧43212423222114131211............n n n n a a a a a a a a a a a a对k=1,2,3,...,n-1,令∑==nks sk pk a a max ;交换增广矩阵的第k 行与第p 行;对j=k+1,k+2,...,n,计算kk jkkm jm jm a a a a a ⋅-=(m=看,k+1,...,n )kk jkk j j a a b b b ⋅-=算法结束。
三角分解法程序如下:建立相应的M 文件,其函数名为LU,程序如下:function y=LU(A,B);n=length(A);A=[A B];for k=1:n-1;for i=k:n;if (abs(A(i,k))==max(abs(A(k:n,k)))) P(k)=i;temp=A(k,:);A(k,:)=A(i,:);A(i,:)=temp;endendfor j=k+1:n;A(j,k)=A(j,k)/A(k,k);A(j,k+1:n+1)=A(j,k+1:n+1)-A(j,k)*A(k,k+1:n+1);endendP(n)=n;L(1,1)=1;L(2:n,1)=A(2:n,1);L(1,2:n)=0;U(1,1)=A(1,1);U(2:n,1)=0;U(1,2:n)=A(1,2:n);for i=2:n;L(i,1:i-1)=A(i,1:i-1);L(i,i)=1;L(i,i+1:n)=0;U(i,1:i-1)=0;U(i,i:n)=A(i,i:n);endx(n) = A(n,n+1)/U(n,n);for k = n-1:-1:1x(k)=A(k,n+1);for p=n:-1:k+1;x(k) = x(k)-U(k,p)*x(p); endx(k)=x(k)/U(k,k);endxLUPend在程序命令行输入:a=[0.101 2.304 1.5355;-1.347 3.712 4.623;-2.835 1.072 5.643];b=[1.183,2.137,3.035]';LU(a,b)运行结果为:x =3.1160 -1.1960 2.3305 L =1.0000 0 00.4751 1.0000 0-0.0356 0.7313 1.0000 U =-2.8350 1.0720 5.64300 3.2027 1.94180 0 0.3359 P =3 2 3。
2-2 Gauss列主元消去法

S2 若ann 0,则输出“ A是奇异矩阵”;停机 . S3 置xn an,n1 / ann ;
对i n 1, n 2,...1,
ai,n1 n aij x j
置xi
j i 1
aii
S4 输出x1, x2,..., xn ;停机.
作业:
P50 习题3
k in
aik
;
S12 若aik ,k 0,则输出“ A是奇异矩阵”;停机 .
S13 若ik k,则
akj aik , j j k,...,n 1;
S14 对i k 1,..., n
置aik aik / akk ; 对j k 1,..., n 1
置aij aij aik akj.
§2-2 Gauss列主元消去法
一、Gauss列主元消去法的引入 例1. 用3位浮点数运算,求解线性方程组
0.0001xx11
x2 x2
1 2
解: 本方程组的精度较高的解为
x* (1.00010001 ,0.99989999 )T
用Gauss消去法求解
A ( A,b)
0.000100 1
1 1
21
0.000100
m2110 000
0
回代后得到
1
1
1.00 104 1.00 104
x1 0.00 , x2 1.00
与精确解相比,该结果显然是错误的 究其原因,在求行乘数时用了很小的数0.0001作除数
如果在求解时将1,2行交换,即
A ( A,b)
1 0.000100
1 1
a(2) i2
,
交换第2行和第i2行,
2in
然后进行消元,得[ A(3) , b(3) ].
列主元素Gauss消去法Jacobi迭代法原理及计算方法

一、 列主元素Gauss 消去法、Jacobi 迭代法原理及计算方法1. 列主元素Gauss 消去法:1.1 Gauss 消去法基本原理设有方程组Ax b =,设A 是可逆矩阵。
高斯消去法的基本思想就是将矩阵的初等行变换作用于方程组的增广矩阵[]B A b = ,将其中的A 变换成一个上三角矩阵,然后求解这个三角形方程组。
1.2 列主元Gauss 消去法计算步骤将方程组用增广矩阵[]()(1)ijn n B A b a ⨯+== 表示。
1). 消元过程对1,2,,1k n =-(1) 选主元,找{},1,,k i k k n ∈+ 使得 ,max k i k ik k i na a ≤≤= (2) 如果,0k i k a =,则矩阵A 奇异,程序结束;否则执行(3)。
(3) 如果k i k ≠,则交换第k 行与第k i 行对应元素位置,k kj i j a a ↔,,,1j k n =+ 。
(4) 消元,对,,i k n = ,计算/,ik ik kk l a a =对1,,1j k n =++ ,计算.ij ij ik kj a a l a =-2). 回代过程(1) 若0,nn a =则矩阵奇异,程序结束;否则执行(2)。
(2) ,1/;n n n nn x a a +=对1,,2,1i n =- ,计算,11/n i i n ij j ii j i x a a x a +=+⎛⎫=- ⎪⎝⎭∑2. Jacobi 迭代法2.1 Jacobi 迭代法基本原理Jacobi 迭代法的基本思想是对n 元线性方程组b Ax =,.,n n R b R A ∈∈将其变形为等价方程组f Bx x +=,其中.,,n n n n R x R f R B ∈∈∈⨯B 成为迭代矩阵。
从某一取定的初始向量)0(x 出发,按照一个适当的迭代公式 ,逐次计算出向量f Bx x k k +=+)()1( ( 1,0=k ),使得向量序列}{)(k x 收敛于方程组的精确解.(1)输入1,,,,)0(=k n xb A ε,. (2) )(1,1)0()1(∑≠=-=n j i i j ij i iii x a b a x )1,0(n i = (3)判断 ε≤--≤≤)0()1(10max i i n i x x ,若是,输出1)1(2)1(1,,n x x x ,若否,置1+=k k ,)1()0(i i x x =,)2,1(n i =。
数值分析4 高斯主元素消去法

§2高斯主元素消去法⎪⎩⎪⎨⎧=++-=++=++00.357.404.100.200.224.563.200.100.100.200.10120.0321321321x x x x x x x x x 解:clear alla=[0.0120 1.00 2.00;1.00 2.63 5.24;-2.00 1.04 4.57]; b=[1.00;2.00;3.00];x=a\b方程组的三位有效数字的解:Tx )266.0,476.0,645.0(*-=Gauss 消去法求解(取三位有效数字):[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==-==00.300.5003.811627.80000.100.200.10120.016432916603.811627.80000.100.200.10120.000.357.404.100.200.224.563.200.100.100.200.10120.006.21673.83323121l l l b A 解出Tx )60.0,197.0,25.0(--≈。
【注】1)设Ax=b,其中A 为n 阶非奇异矩阵,可以应用高斯消元法。
2)消元过程中,即使0)(≠k kk a ,用其作除数)/()()(k kk k ik ik a a l =会导致计算中间结果数量级严重增长和舍入误差的累积、扩大,最后使得计算结果不可靠。
3)应避免采用绝对值很小的主元素)(k kk a ;对一般的系数矩阵,最好保持乘数1≤ik l ,因此,在高斯消去法中应引进选主元技巧,以便减少计算过程中舍入误差对求解的影响。
clear alla=[0.0120 1.00 2.00;1.00 2.63 5.24;-2.00 1.04 4.57]; b=[1.00;2.00;3.00];x_value=vpa(a\b,15)%10位有效数字的近似解a=[a,b];eps=1e-6;[n,m]=size(a);Gauss,x=vpa(x,15) %对比高斯消去法的结果一、列主元素消去法基本思想:在每轮消元之前,选列主元素(绝对值最大的元素),使乘数(即消元因子)1≤ik l步骤:设已进行k-1轮消元,得矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=)()()()()2(2)2(2)2(22)1(1)1(1)1(12)1(11)(k nn k nkk kn k kkn kn kk a a a a a a a a a a a A一落千丈 1 23S1:选列主元素: )()(0max k ik ni k k k i a a ≤≤= (1)S2:换行:如果)(0k k i a →0,则方程组解不唯一,停止运算; 否则,如果i0=k , 则可进行下一轮消元;如果k i ≠0,则r i0 r k ,然后进行下一轮消元。
高斯列主元消元法解线性方程组

高斯列主元消元法解线性方程组一、题目:用Gauss 列主元消去法解线性方程组Ax b =,其中,A=17.031 -0.615 -2.991 1.007 -1.006 0.000-1.000 34.211 -1.000 -2.100 0.300 -1.7000.000 0.500 13.000 -0.500 1.000 -1.5004.501 3.110 -3.907 -61.705 12.170 8.9990.101 -8.012 -0.017 -0.910 4.918 0.1001.000 2.000 3.000 4.500 5.000 21.803⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 0.230 -52.322 54.000 240.236 29.304 -117.818b ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭T X=(0.907099 -1.961798 3.293738 -4.500708 3.029344 -5.255068)二、原理及步骤分析设nn ij R a A ⨯∈=][)1(,nn Rb b b b ∈=],,,[)1()2(2)1(1 。
若约化主元素),,2,1(0)(n k a k kk =≠,则通过高斯消元法将方程b AX =约化为三角形方程组求解。
如果在消元过程中发现某个约化主元0)(=k kk a , 则第K 次消元就无法进行。
此外,即使所有约化主元全不为零,虽然可以完成方程组的求解,但也无法保证结果的可靠性,因为计算过程中存在舍入误差。
为减少计算过程中的舍入误差对解的影响,在每次消元前,应先选择绝对值尽可能大的元作为约元的主元,如果在子块的第一列中选取主元,则相应方法称为列主元消元法。
相应过程为:(1)选主元:在子块的第一列中选择一个元)(k k i k a 使)(max k ik ni k kk i a a k ≤≤=并将第k 行元与第k i 行元互换。
课件:5.2(b) Gauss列主元消去法

L L11L21 Ln11为单位下三角矩阵 U A(n)为上三角矩阵
即 且
1
1,1 ln,1
ln1,2 ln,2
ln1,2 ln,3
1 ln,n1
1
a(1) 11
U A(n)
a(1) 12
a(2) 22
a(1) 1n
a(2) 2n
a(n) nn
1 2 3
解: 这个方程组和例1一样,若用Gauss消去法计算会有 小数作除数的现象,若采用换行的技巧,则可避免
108
A (A,b) 1
2
2
3 1
3.712 4.623 2
1.072
5.64
3
3
108 很小,绝对值最大
的列元素为a13 2, 因此1,3行交换
r1 r3
2 1
例2所用的方法是在Gauss消去法的基础上,利用换行 避免小主元作除数,该方法称为Gauss列主元消去法
二、Gauss消元过程与系数矩阵的分解 1.Gauss消去法消元过程的矩阵描述
( A(1) ,b(1) )
a(1) 11
a(1) 21
a(1) 12
a(1) 22
a(1) 1n
a(1) 2n
主元
A (A,b)
0.000100 1
1 1
1 2
l21 10000
0.000100 0
1 1.00 104
1 1.00 104
回代后得到
x1 0.00 , x2 1.00
与精确解相比,该结果相当糟糕 究其原因,在求乘数时用了很小的数0.0001作除数
如果在求解时将1,2行交换,即
A (A,b)
det Ak 0 k 1,2,, n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贵州师范大学数学与计算机科学学院学生实验报告
课程名称: 数值分析 班级: 数本(一)班 实验日期: 年 月 日
学 号: 090704020098(81) 姓名: 吴胜 指导教师: 杨一都
实验成绩: 一、实验名称
实验五:线性方程组的数值解法 二、实验目的及要求
1. 让学生掌握用列主元gauss 消去法、超松弛迭代法求解线性方程组.
2. 培养Matlab 编程与上机调试能力. 三、实验环境
每人一台计算机,要求安装Windows XP 操作系统,Microsoft office2003、MATLAB6.5(或7.0). 四、实验内容
1. 编制逐次超松弛迭代(SOR 迭代)函数(子程序),并用于求解方程组
⎪⎪⎩⎪⎪
⎨⎧=-++=+-+=++-=+++-1
4141
4144321
432143214321x x x x x x x x x x x x x x x x
取初始向量T x )1,1,1,1()0(=,迭代控制条件为 5
)1()(10
2
1||||--⨯≤
-k k x x
请绘制出迭代次数与松弛因子关系的函数曲线,给出最佳松弛因子.SOR 迭代
的收敛速度是否一定比Gauss-Seidel 迭代快?
2. 编制列主元 Gauss 消去法函数(子程序),并用于解
⎪⎩⎪
⎨⎧=++-=-+-=+-6
15318153312321
321321x x x x x x x x x 要求输出方程组的解和消元后的增广矩阵. 注:题2必须写实验报告
五、算法描述及实验步骤
Gauss 消去法: 功能 解方程组b Ax = .
输入 n ,n n ij a A ⨯=)(,T
n b b b b ),,,(21 =.
输出 方程组的解T
n x x x x ),,,(21 =或失败信息.
步1 对1,,2,1-=n k 执行步2→步4 . 步2 调选列主元模块 .
步3 若0=kk a ,则=x “消去法失败”,结束 . 步4 对n k k i ,,2,1 ++=执行步5→步6 .
步5 对n k k j ,,2,1 ++=执行ij kj kk ik ij a a a a a +⨯-⇐/ . 步6 i k kk ik i b b a a b +⨯-⇐/ . 步7 nn n n a b x /⇐ .
步8 对1,,2,1 --=n n i 执行ii n
i j j ij
i i a x a
b x /)(1
∑+=-
⇐ .
步9 输出T
n x x x x ),,,(21 = .
选列主元模块: 功能 选列主元 .
输入 n k k i b n k k j i a i ij ,,1,,;,,1,,, +=+= . 输出 n k k i b n k k j i a i ij ,,1,,;,,1,,, +=+= . 步1 kk a m ⇐;k l ⇐ .
步2 对n k k i ,,2,1 ++=执行若m a ik >则ik a m ⇐;i l ⇐ . 步3 若k l ≠,则交换kj a 和lj a ,n k k j ,,1, +=;交换k b 和l b . 步4 返回主模块 .
六、调试过程及实验结果
>> A=[12,-3,3;-18,3,-1;1,1,1]; >> b=[15;-15;6]; >> x=Gauss1(A,b) Ab =
-18.0000 3.0000 -1.0000 -15.0000 0 1.1667 0.9444 5.1667 0 0 3.1429 9.4286
index =
1
x =
1.0000
2.0000
3.0000
七、总结
由于数)1(-k kk a 在Gauss 消去法中有着突出的作用,第k 步消元时,要用)
1(-k kk a 作除数,如
果)1(-k kk a =0消元会失败,即使主元)
1(-k kk a ≠0,但很小时,舍入误差也会使计算结果面目全非,
避免这种缺陷的基本方法就是选主元。
通过选主元,就可避免绝对值小的数作除数,从而避免舍入误差的恶性增长,使得Gauss 列主元消去法是解中小规模的线性方程组和某些大型稀疏线性方程组的有效方法。
八、附录(源程序清单)
function [x,index]=Gauss1(A,b) [n,m]=size(A);x=zeros(n,1); index=1 for k=1:n-1 a_max=0;
for i=k:n
if abs(A(i,k))>a_max a_max=abs(A(i,k));r=i; end end
if a_max<1e-10
index=0;return ; end if r>k for j=k:n
z=A(k,j);A(k,j)=A(r,j);A(r,j)=z; end
z=b(k);b(k)=b(r);b(r)=z; end
for i=k+1:n
m=A(i,k)/A(k,k); for j=k:n
A(i,j)=A(i,j)-m*A(k,j); end
b(i)=b(i)-m*b(k); end end
if abs(A(n,n))==0 index=0;return ; end
Ab=[A,b]
x(n)=b(n)/A(n,n); for i=n-1:-1:1
for j=i+1:n
b(i)=b(i)-A(i,j)*x(j); end
x(i)=b(i)/A(i,i);
end。