二次函数与图形面积(1)
人教版初中数学九上 微专题10 二次函数的应用(一)——图形面积问题

1.如图,在平面直角坐标系中,OA=12 cm,OB=6 cm,点 P 从点 O 开始 沿 OA 边向点 A 以 1 cm/s 的速度移动,点 Q 从点 B 开始沿 BO 边向点 O 以 2 cm/s 的速度移动.点 P,Q 同时出发,当其中一点到达终点时,另一点也随 之停止运动.设运动时间为 t s,△ POQ 的面积为 y cm2.当△ POQ 的面积最
解:有最大值和最小值. ∵18-3x≥3,解得x≤5, ∴4≤x≤5. ∵S=-3x2+18x=-3(x-3)2+27, ∴当x=4时,S有最大值,最大值是24; 当x=5时,S有最小值,最小值是15.
3.如图,张大爷用 32 m 长的篱笆围成一个矩形菜园,菜园一边靠墙(墙长 为 15 m),平行于墙的一面开一扇宽度为 2 m 的门,张大爷还在菜园内开辟 出一个小区域存放化肥,两个区域用篱笆隔开,并有一扇宽 2 m 的门相 连.(注:所有门都用其他材料) (1)设平行于墙的一边长度为 y m,垂直于墙的一边长度为 x m,直接写出 y 与 x 之间的函数解析式,并写出自变量 x 的取值范围; (2)设此时整个菜园的面积为 S m2(包括化肥存放处),则 S 的最大值为多 少?
大时,t 的值为 1.5 .
2.如图,某农场准备围建一个中间隔有一道篱笆的矩形花圃,一边靠墙,已 知墙长 a=6 m.现有长为 18 m 的篱笆,设花圃的一边 AB 的长为 x m,面积 为 S m2. (1)S 关于 x 的函数解析式为 S=-3x2+18x ,x 的取值范围为 4≤x<6 ; (2)若边 BC 的长不小于 3 m,这个花圃的面积有最大值和最小值吗?如果 有,求出最大值和最小值;如果没有,请说明理由.
解:(1)由题意,得y=36-3x(7≤x<12). (2)由题意,得-3x2+36x(7≤x<12),
初中数学中考二轮6二次函数中的面积问题(1)

中考压轴题:二次函数中的面积问题学生姓名年级学科授课教师日期时段核心内容二次函数中求面积最值,图形平移或折叠面积问题课型一对一/一对N教学目标1.会利用函数的图象性质来研究几何图形的面积最值问题;2.掌握几种求图形面积的常见解题方法与技巧,如:割补法、平行等积变换法等。
3.掌握图形平移或折叠变换过程中找等量关系列函数解析式求图形面积问题的一般方法.重、难点割补法求三角形面积,动态问题一般解题思路。
课首沟通1、上次的作业给我看看,完成了没有?还有不会的题吗?2、在初中学习二次函数过程中,是否还存在思维障碍和知识点?3、面对二次函数图象中的图形平移得到面积问题能不能自我总结出一般法则呢?知识导图导学一:二次函数中求面积的最值知识点讲解 1:直接公式法求解图形面积S△ = a ha d (d表示已知点到直线的距离)2、割补(和差)法以动点作垂直(平行)x轴的直线,即铅垂高,再分别过点A,C作PF的高,即和为水平宽。
S△ = ×水平宽×铅垂高如下图:或S△ =3、平行线等积变换①等底等高的两个三角形面积相等.②底在同一条直线上并且相等,该底所对角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等.如图,AD∥BC中,AC与BD交点O,则S△ABC= S△DBC,S△AOB =S△COD例 1. (2015潍坊中考改编)如图,在平面直角坐标系中,抛物线y=mx2-8mx+4m+2(m>0)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2-x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线,直线AD的交点分别为P,Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值.【学有所获】图形面积的求法常见有三种,分别是:(1)(2)(3)[学有所获答案] (1) 直接公式求法(2) 割补法(3) 平行线等积变换法我爱展示1.(2014海珠一模)如图,已知抛物线y=x2+bx+c与轴交于A,B两点(点A 在点B的左侧)与轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D,点E为y轴上一动点,CE的垂直平分线交抛物线于P,Q两点(点P在第三象限)(1)求抛物线的函数表达式和直线BC的函数表达式;(2)当△CDE是直角三角形,且∠CDE=90°时,求出点P的坐标;(3)当△PBC的面积为时,求点E的坐标.2.(2015越秀期末考试)如图,已知抛物线y=x2+ax+4a与x轴交于点A,B,与y轴负半轴交于点C且OB=OC,点P为抛物线上的一个动点,且点P位于x轴下方,点P与点C不重合.(1)求该抛物线的解析式;(2)若△PAC的面积为,求点P的坐标;(3)若以A,B,C,P为顶点的四边形面积记作S,则S取何值时,对应的点P有且只有2个?导学二:二次函数中的图形平移、折叠问题知识点讲解 1:二次函数、一次函数图象平移法则将()的图像如何平移到的图像。
二次函数与图形面积问题

二次函数与图形面积问题1、阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部的线段的长度叫△ABC的“铅垂高”(h).我们可行出生种计算三角形面积的新方示:y=a(x-1)2+4 ,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图2,抛物线顶点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)求△ABC的铅垂高CD及S △ ABC(3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使a=-1 ,且S△PAB=9/8 S△CAB若存在,求出P点的坐标;若不存在,请说明理由.2、如图,已知抛物线y=ax2+bx+c经过点A(2,3),B(6,1),C(0,-2).(1)求此抛物线的解析式,并用配方法把解析式化为顶点式;(2)点P是抛物线对称轴上的动点,当AP⊥CP时,求点P的坐标;(3)设直线BC与x轴交于点D,点H是抛物线与x轴的一个交点,点E(t,n)是抛物线上的动点,四边形OEDC的面积为S.当S取何值时,满足条件的点E只有一个?当S取何值时,满足条件的点E有两个?3、如图,已知平面直角坐标系xOy中,点A(m,6),B(n,1)为两动点,其中0<m<3,连接OA,OB,OA⊥OB。
(1)求证:mn=-6;(2)当S△AOB=10时,抛物线经过A,B两点且以y轴为对称轴,求抛物线对应的二次函数的关系式;(3)在(2)的条件下,设直线AB交y轴于点F,过点F作直线l交抛物线于P,Q两点,问是否存在直线l,使S△POF:S△QOF=1:3?若存在,求出直线l对应的函数关系式;若不存在,请说明理由。
4、如图1,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(3,1),二次函数y=x2的图象记为抛物线l1。
(1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的一个抛物线的函数表达式:______ (任写一个即可);(2)平移抛物线l1,使平移后的抛物线过A,B两点,记为抛物线l2,如图2,求抛物线l2的函数表达式;(3)设抛物线l2的顶点为C,K为y轴上一点,若S△ABK=S△ABC,求点K的坐标;(4)请在图3上用尺规作图的方式探究抛物线l2上是否存在点P,使△ABP为等腰三角形,若存在,请判断点P共有几个可能的位置(保留作图痕迹);若不存在,请说明理由。
22_3 第1课时 二次函数与图形面积问题【人教九上数学学霸听课笔记】

(2)S=72-12(6-t)·2t=t2-6t+72(0≤t≤6).
(3)因为S=t2-6t+72=(t-3)2+63,
所以当t=3时,S有最小值,最小值为63.
谢 谢 观 看!
与 围成一个矩形场地ABCD,求该矩形场地的最大面积.
应
用 解:设矩形场地的面积为S m2,平行于墙的
一边BC的长为x m.由题意,得
图22-3-1
S=x·12(80-x)=-12(x-40)2+800,
所以当 x=40 时,S 最大值=800,12(80-x)=20,符合题意.
探 究
所以当所围成的矩形场地ABCD的长为40 m,宽为20 m时,其
故当所围成的矩形场地ABCD的长为30 m,宽为25 m时,其面积最
大,最大面积为750 m2.
探 究
变式 在美化校园的活动中,某兴趣小组想借助如图J22-3
与 -1所示的直角墙角(两边足够长),用28 m长的篱笆围成一个
应
用 矩形花园ABCD(篱笆只围AB,BC两边),在P处有一棵树与墙
CD,AD的距离分别是15 m和6 m,要将这棵树围在花园内(含
1.用一条长为 40 cm 的绳子围成一个面积为 S cm2 的矩形,S 的
小 检
值不.可.能.为( D )
测 A.20
B.40
C.100
D.120
随 [解析] 设矩形的一边长为x cm,则S=x(20-x)=-x2+20x=-
堂
小 (x-10)2+100.
检 测
可见S的最大值是100,
所以S的值不可能为120.
探 归纳总结
究 与
应用二次函数解决面积最值问题的“三个关键点”
应 用
二次函数应用 图形面积问题

二次函数应用图形面积问题
1、在创建文明城市的活动中,政府想借助如图所示的直角墙角(两边足够长),用30m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB x
200m,求AB的
=m.(Ⅰ)若花园的面积是2
长;(Ⅱ)当AB的长是多少时,花园面积最大?最大面积是多少?
2、如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园
a=,所ABCD,其中AD MN,已知矩形菜园的一边靠墙,另三边一共用了200米木栏.(1)若30
围成的矩形菜园的面积为1800平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.
3、某养鸡专业户用篱笆及一面墙(该墙可用最大长度为36米)围成一个矩形场地ABCD来供鸡室外活动,该场地中间隔有一道与AB平行的篱笆()
EF,如图,BE、EF上各留有1米宽的门(门不需要篱笆),该养鸡专业户共用篱笆58米,设该矩形的一边AB长x米,AD AB
>,矩形ABCD的面积为s 平方米.(1)求出S与x的函数关系式,直接写出自变量x的取值范围;
(2)若矩形ABCD的面积为252平方米,求AB的长.
4、如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的矩形
花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数表达式.(2)如果要围成面积为45m2的花圃,AB的长是多少米?(3)能围成面积为50m2的花圃吗?若能,请说明围法;若不能请说明理由.。
二次函数中的面积问题

二次函数——面积问题(一)〖知识要点〗一.求面积常用方法:1. 直接法(一般以坐标轴上线段或以与轴平行的线段为底边)2. 利用相似图形,面积比等于相似比的平方3. 利用同底或同高三角形面积的关系4. 割补后再做差或做和(三边均不在坐标轴上的三角形及不规则多边形需把图形分解) 二. 常见图形及公式抛物线解析式y=ax2 +bx+c (a≠0)抛物线与x 轴两交点的距离AB=︱x1–x2︱=抛物线顶点坐标(-, ) 抛物线与y 轴交点(0,c )“歪歪三角形中间砍一刀”,即三角形面积等于水平宽与铅垂高乘积的一半. 〖基础习题〗 1、若抛物线y=-x2–x+6与x 轴交于A 、B 两点,则AB= ,此抛物线与y 轴交于点C ,则C 点的坐标为 ,△ABC 的面积为.2、若抛物线y=x2 + 4x 的顶点是P ,与X 轴的两个交点是C 、D 两点,则△PCD 的面积是_____________.3、已知抛物线与轴交于点A ,与轴的正半轴交于B 、C 两点,且BC=2,S △ABC=3,则=,B C 铅垂高水平宽ha图1 C BA O y x DB A O y x P=.〖典型例题〗● 面积最大问题1、二次函数的图像与轴交于点A (-1,0)、B (3,0),与轴交于点C ,∠ACB=90°.(1)求二次函数的解析式;(2)P 为抛物线X 轴上方一点,若使得△PAB 面积最大,求P 坐标(3)P 为抛物线X 轴上方一点,若使得四边形PABC 面积最大,求P 坐标(4) P 为抛物线上一点,若使得,求P 点坐标。
● 同高情况下,面积比=底边之比2.已知:如图,直线y=﹣x+3与x 轴、y 轴分别交于B 、C ,抛物线y=﹣x2+bx+c 经过点B 、C ,点A 是抛物线与x 轴的另一个交点.(1)求B 、C 两点的坐标和抛物线的解析式;(2)若点P 在直线BC 上,且,求点P 的坐标.3.已知:m 、n 是方程x2﹣6x+5=0的两个实数根,且m <n ,抛物线y=﹣x2+bx+c 的图象经过点A (m ,0)、B (0,n ).(1)求这个抛物线的解析式;(2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(注:抛物线y=ax2+bx+c (a≠0)的顶点坐标为(3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标. yx B A C O三角形面积等于水平宽与铅垂高乘积的一半4.阅读材料:如图,过△ABC的三个顶点分别作出水平垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可以得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图,抛物线顶点坐标为点C(1,4)交x轴于点A,交y轴于点B(0,3)(1)求抛物线解析式和线段AB的长度;(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB;(3)在第一象限内抛物线上求一点P,使S△PAB=S△CAB.法一:同底情况下,面积相等转化成平行线法二:同底情况下,面积相等转化成铅垂高相等变式一:如图2,点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.变式二:抛物线上是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明点动+面积5.如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s,连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥BC.(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由.(3)如图2,把△APQ沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.形动+面积6.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?。
二次函数与图形面积教案
⼆次函数与图形⾯积教案课题:⼆次函数与图形⾯积撰写:陈天灵审核:______ 授课⽇期:__⽉__⽇教学课时:第 6 周第 1 课教学⽬标知识与技能⽬标通过本节学习,巩固⼆次函数y=ax2+bx+c(a≠0)的图象与性质,理解顶点与最值的关系,会求解最值问题。
过程与⽅法⽬标通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为⼆次函数的最值问题,通过动⼿动脑,提⾼分析解决问题的能⼒,并体会⼀般与特殊的关系,了解数形结合思想、函数思想。
情感、态度与价值观⽬标通过学⽣之间的讨论、交流和探索,建⽴合作意识,提⾼探索能⼒,激发学习的兴趣和欲望,体会数学在⽣活中⼴泛的应⽤价值。
教学重点利⽤⼆次函数y=ax2+bx+c(a≠0)的图象与性质,求⾯积最值问题教学难点对函数图象顶点、端点与最值关系的理解与应⽤教学过程环节教学内容调整意见复习旧知导⼊新课1.⼆次函数y=a(x-h)2+k的图象是⼀条抛物线,它的对称轴是直线x=h,顶点坐标是 (h,k) 。
2.⼆次函数的⼀般式是,它的图像的对称轴是,顶点坐标是 . 当a>0时,开⼝向向上,有最低点,函数有最⼩值,是;.当a<0时,开⼝向向下,有最⾼点,函数有最⼤值,是。
3.⼆次函数y=2(x-3)2+5的对称轴是直线x=3, 顶点坐标是 (3 ,5) 。
当x= 3时,y有最⼩值,是 5 .4.5详见课件。
⾃学指导阅读教材P49“问题”,解决下⾯问题。
1、问题1中是通过什么⽅法来求出⼩球在运动中的最⼤⾼度?2.归纳:⼀般地,当a>0(a<0)时,抛物线y=ax2+bx+c的的顶点是最低 ( ⾼_)点,当x=________时,⼆次函数y=ax2+bx+c有最⼤(⼩)值________.阅读教材P49-P50“探究1”,解决下⾯问题1.“探究1”中,场地⾯积S与边长l之间是什么关系?你能写出它们的关系式cbxaxy+ +=2 abx2-=直线) 44,2(2abacab--abac442 -abac442 -吗?2.当l取何值时,S最⼤?3.当场地⾯积S最⼤时,该场地是什么图形?合作探究⽤长为12cm的铁丝围成⼀个矩形,设矩形⼀边长为xcm,⾯积为ycm2,问何时矩形的⾯积最⼤?解:∵周长为12cm, ⼀边长为xcm ,∴另⼀边为(6-x)cm∴ y =x(6-x)(0< x<6)=-x2+6x=-(x2 -6x +9 -9)=-(x-3) 2+9∵ a=-1<0, ∴ y有最⼤值当x=3cm时,y最⼤值=9 cm2答:矩形的两边都是3cm,即为正⽅形时,矩形的⾯积最⼤。
人教九年级数学上册《二次函数与图形面积问题》课件
第1课时 二次函数与图形面积问题
重难互动探究
探究问题 求几何图形的最大(小)面积 例 [教材探究1变式题] 一条隧道的截面如图22-3-2所 示,它的上部是一个以AD为直径的半圆O,下部是一个矩形 ABCD.
图22-3-2
第1课时 二次函数与图形面积问题
(1)当AD=4米时,求隧道截面上部半圆O的面积; (2)已知矩形ABCD相邻两边之和为8米,半圆O的半径为r米. ①求隧道截面的面积S(平方米)关于半径r(米)的函数关系 式(不要求写出r的取值范围); ②若2米≤CD≤3米,求隧道截面的面积S的最大值(π取3.14, 结果精确到0.1平方米).
与x间的函数关系,再求解.
解: 不妨设矩形纸较短边长为 a,设 DE=x,则 AE=a -x.
那么两个正方形的面积和为 y=x2+(a-x)2 =2x2-2ax+a2. 当 x=--2×22a=12a 时, y 最小=2×12a2-2a×12a+a2=12a2. 即点 E 选在矩形纸较短边的中点时,剪下的两个正方形的 面积和最小.
[解析] (1)已知AD=4米,即半圆O的半径为2米,直接根 据圆的面积公式计算;(2)①隧道的截面积由两部分组成, 即半圆面积和矩形面积;②注意自变量的取值范围,在实际问 题中求最大(小)值,要注意自变量的范围是否符合实际意义.
第1课时 二次函数与图形面积问题
解:(1)当 AD=4 米时,S 半圆=12π·A2D2=12π×22=2 π(平方米),
数学
新课标(RJ) 九年级上册
22.3 实际问题与二次函数
第1课时 二次函数与图形面积问题
第1课时 二次函数与图形面积问题
新知梳理
► 知识点 用二次函数求几何图形的最大(小)面积 在解答有关二次函数求几何图形的最大(小)面积的问题时 ,应遵循以下规律: (1)利用几何图形的面积(或体积)公式得到关于面积( 或体积)的二次函数关系式; (2)由已得到的二次函数关系式求解问题; (3)结合实际问题中自变量的取值范围得出实际问题的答 案.
二次函数应用几何图形的最大面积问题教学课件
求解极值点
通过求导数并令其为0,找到函 数的极值点。
确定最大面积
根据极值点和单调性,确定几 何图形的最大面积对应的点。
05
练习题与答案解析
练习题
01
02
03
题目1
一个矩形ABCD的面积为 12,其中AB=2,求BC的 最大值。
题目2
一个直角三角形ABC的面 积为6,其中∠C=90°, AC=3,求BC的最大值。
详细描述
首先设定三角形的底和高为二次函数 的变量,然后根据二次函数的性质, 找到使面积最大的底和高的值。
利用二次函数求圆形面积的最大值
总结词
通过设定圆的半径为二次函数的变量 ,利用二次函数的性质求圆的最大面 积。
详细描述
首先设定圆的半径为二次函数的变量 ,然后根据二次函数的性质,找到使 面积最大的半径的值。
02
几何图形可以由二次函数图像与x 轴、y轴的交点确定,进而形成三 角形、矩形、平行四边形等。
二次函数的最值与几何图形面积的关系
二次函数的最值出现在顶点处,此时 对应的x值为函数的零点或对称轴。
几何图形面积的最大值或最小值出现 在二次函数最值处,可以通过求导数 或配方法找到最值点。Βιβλιοθήκη 02常见几何图形面积公式
题目3
一个等腰三角形ABC的面 积为10,其中AB=AC, ∠B=45°,求BC的最大值 。
答案解析
解析1
设BC=x,则矩形的面积可以表 示为2x=12,解得x=6。由于AB 已经给定为2,所以BC的最大值
为6。
解析2
设BC=x,则直角三角形的面积 可以表示为1/2×3x=6,解得 x=4。由于AC已经给定为3,所
17二次函数与图形面积问题教案
二次函数与图形面积问题一、教学目标(一)知识与技能:1.通过探究实际问题与二次函数关系,让学生掌握利用顶点坐标解决最大值(或最小值)问题的方法;2.通过学习和探究“矩形面积”问题,渗透转化的数学思想方法.(二)过程与方法:通过研究生活中实际问题,体会数学知识的现实意义,体会建立数学建模的思想,进一步认识如何利用二次函数的有关知识解决实际问题.(三)情感态度与价值观:通过将“二次函数的最大值”的知识灵活用于实际,让学生亲自体会到学习数学的价值,从而提高学生学习数学的兴趣,并获得成功感.二、教学重点、难点重点:探究利用二次函数的最值(或增减性)解决实际问题的方法.难点:如何将实际问题转化为二次函数的问题.三、教学过程知识预备1.二次函数y =a (x -h )2+k 的图象是一条______,它的对称轴是_______,顶点坐标是_______.2.二次函数y =ax 2+bx +c 的图象是一条_______,它的对称轴是_____________,顶点坐标是________________.当a >0时,抛物线开口向___,有最___点,即当x =____时,y 最小值=______;当a <0时,抛物线开口向___,有最___点,即当x =____时,y 最大值=_______.问题 从地面坚直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是h =30t -5t 2(0≤t ≤6).小球运动的时间是多少,小球最高?小球运动中的最大高度是多少?分析:可以借助函数图象解决这个问题,画出函数h =30t -5t 2(0≤t ≤6).可以看出,这个函数图象是一条抛物线的一部分.这条抛物线的顶点是这个函数的图像的最高点,也就是说,当t 取顶点的横坐标时,这个函数有最大值.解:由函数h =30t -5t 2(0≤t ≤6)的图象性质可知.当t ===3时,h 有最大值==45.也就是说,小球运动时间是3s 时,小球最高.小球运中的最大高度是45m .探究1用总长为60m 的篱笆墙围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化,当l 是多少米时,场地的面积S 最大?解:矩形场地的周长是60m ,一边长为l m ,所以另一边长为(-l )m .场地的面积 S=l (30-l ) (0<l <30)即 S=-l 2+30l (0<l <30)因为,a =-1<0,所以,当 l ===15时,S 有最大值==225.也就是说,当l 是15m 时,场地的面积S 最大.练习已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最ab 2-)5(230-⨯-a b ac 442-)5(4302-⨯-260ab 2-)1(230-⨯-a b ac 442-)1(4302-⨯-大,最大值是多少?解:设直角三角形的一边为x ,则另一边为(8-x ),面积为y .则y 与x 的函数关系式为 y =x (8-x ) (0<x <8) 即 y =-x 2+4x (0<x <8)∵ a =-<0,∴ 当x ==4时,y 最大=8.答:当两条直角边都为4时,这个直角三角形的面积最大,最大值为8.课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思教学过程中,强调学生自主探索和合作交流,引导学生设计有助于学生设计表格,经历计算、观察、分析、比较的过程,直观地看出变化情况.212121ab 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
何时窗户通过的光线最多
y
10
典题精讲
解 : 1由4y
2.窗户面积S
7x
2xy x2
x
2
15得,
x 15 7 x
y
x
15 x7x 24 Nhomakorabeax
.
2
4 2
7 2
x2
15 2
x
7 2
x
15 14
2
225 56
.
或用公式 :当x
b 2a
15 14
1.07时,
y最大值
4ac b2 4a
人教版
九年级 数学 上册
1
22.3
二次函数与图形面积
(第1课时)
2
学习目标
1.掌握图形面积问题中的相等关系的寻找方法, 并会应用函数关系式求图形面积的最值.
2.会应用二次函数的性质解决实际问题.
3
复习导入
1. 二次函数y=2(x-3)2+5的对称轴是 x=3 ,顶点坐标 是 (3,5) .当x= 3 时,y的最小值是 5 .
2 0 2
x 6
13
课堂作业
3. 如图,半圆A和半圆B均与y轴相切于点O,其 直径CD,EF均和x轴垂直,以O为顶点的两条抛 物线分别经过点C,E和点D,F,则图中阴影部
分的面积是 / 2 。
14
课堂小结
1.主要学习了如何将实际问题转化为数学问题, 特别是如何利用二次函数的有关性质解决实际问 题的方法. 2.利用二次函数解决实际问题时,根据面积公式 等关系写出二次函数表达式是解决问题的关键.
s
200 100
O 5 10 15 20 25 30
l
即l是15m时,场地的面积S最大. (S=225㎡)
6
探索新知
解决这类题目的一般步骤
(1)列出二次函数的解析式,并根据自变量的 实际意义,确定自变量的取值范围; (2)在自变量的取值范围内,运用公式法或通 过配方求出二次函数的最大值或最小值.
7
8
典题精讲
1.将一条长为20cm的铁丝剪成两段,并以每一段
铁丝的长度为周长各做成一个正方形,则这两个正
方形面积之和的最小值是
25 2
或12.5cm2.
9
典题精讲
2.某建筑物的窗户如图所示,它的上半部是 半圆,下半部是矩形,制造窗框的材料总长(图
中所有的黑线的长度和)为15m.当x等于多少
时,窗户通过的光线最多(结果精确到0.01m)? 此时,窗户的面积是多少?
2. 二次函数y=-3(x+4)2-1的对称轴是 x=-4 ,顶点坐标 是 (-4,-1).当x= -4 时,函数有最__大_ 值,是 -1 .
3.二次函数y=2x2-8x+9的对称轴是 x=2 ,顶点坐标 是 (2,1) .当x= 2 时,函数有最___小____ 值,是 1 .
4
举例讲解
问题:用总长为60m的篱笆围成矩形场地,矩形面积S随 矩形一边长l的变化而变化.当l是多少时,场地的面积S最 大? 分析:先写出S与l的函数关系式,再求出使S最大的l的值. 矩形场地的周长是60m,一边长为l,则另一边长为 (60 ml),场地的面积: S=l(30-l) (即0<Sl=<-l32+03)0l
探索新知
1.由于抛物线 y = ax 2 + bx + c 的顶点是最低(高)点,所
以当 x b 时,二次函数 y = ax 2 + bx + c 有最小(大) 值 2a
y 4ac b2 . 4a
2.列出二次函数的解析式,并根据自变量的实际意义, 确定自变量的取值范围.
3.在自变量的取值范围内,求出二次函数的最大值或最 小值.
225 56
4.02.
11
课堂作业
1.如图,抛物线的顶点P的坐标是(1,-3), 则此抛物线对应的二次函数有( B ) (A)最大值1 (B)最小值-3 (C)最大值-3 (D)最小值1
12
课堂作业
2. 根据图中的抛物线, 当x <2 时,y随x的增大而增大, 当x >2 时,y随x的增大而减小, 当x =2 时,y有最大值。 y
15
2
请同学们画出此函数的图象
5
举例讲解
可以看出,这个函数的图 象是一条抛物线的一部分, 这条抛物线的顶点是函数 图象的最高点,也就是说, 当l取顶点的横坐标时,这 个函数有最大值.
因此,当l b 30 15时 2a 2 (1)
S有最大值 4ac b2 302 225. 4a 4 (1)