定积分的基本概念
定积分概念、性质

17世纪,从实际需要中人们提出许多问题,归结起来有两类:速度问题、切线问题。导数研究了事物变化的速度,定积分则研究相反的问题:事物变化的累积和。如面积、路程、电量多少、变量作功等等。 本章将重点学习定积分的概念、几何意义及微积分基本定理。
前 言
引例2——变速直线运动的路程
分割区间
取近似值
作和
取极限
(1)细分区间
ti-1
ti
(2) 取近似值
(3)作和
(4)取极限
T1
T2
v
t
曲边梯形面积A:
变速运动的路程 S:
记为
记为
二、定积分的概念(演示)
定积分定义
如果当最大的子区间的长度 时,此和式有极限,则此极限叫作f(x)在 [a,b]上的定积分,
几何意义也很明显
再根据闭区间上的联系函数的介值定理可得
如果变速直线运动物体的运动方程是 S=S(t),则在时间段[T1,T2]内所发生的位移变化为S(T2)-S(T1)
如果物体的运动方程为V=V(t),则由定积分可知
连续函数 在区间 上的定积分等于它的一个
则有
微积分基本公式(二)——牛顿—莱布尼兹公式
证明思路
记作
例2 求下列定积分
解 因为 在 上连续, 是它的一个原函数
所以
或
解 原式
几何意义
解 原式
几何意义
解 原式
解 原式
x
y
y=x2
1
A
0
如果右边的和式有极限(n→∞),则极限值即为整个曲边梯形的面积,即:
如图所示: 1)将区间[0,1]n等分。
定积分不定积分

定积分不定积分
定积分与不定积分是数学中的重要概念,它们的基本概念是定积分与不定积分的对比。
1、定积分:它是指对某区间上一个复合函数在其上求和的操作,它可以完成求定积分,这是一个求极限的过程,当把某个函数积分的过程越来越好的时候,可以使函数的值接近某个极限,从而得到定积分的结果。
2、不定积分:它是指对某区间上某函数不断增加或减少的积分过程,它可以完成求不定积分,这是一个寻找极值的过程,当函数一次性地积分,那么就会得到函数在某个区间上的最大值或最小值,从而得到不定积分的结果。
总之,定积分与不定积分是互为对立的概念,其针对的是相同的函数,但是它们分别根据对该函数的求积分过程,来进行极限求解或极值求解,从而得出不同的结果。
- 1 -。
掌握定积分概念及基本性质

供需关系研究
通过定积分,可以研究市 场供需关系的变化。
投资回报分析
在金融领域,定积分可以 用来分析投资回报率的变 化。
05
掌握定积分的重要性
在数学中的地位
连接微积分两大核心概念
定积分与微积分息息相关,是微积分理论体系的重要组成部分, 掌握了定积分,就等于掌握了微积分的一半。
深化对极限概念的理解
定积分与极限概念紧密相连,掌握定积分有助于更深入地理解极限 的内涵和应用。
详细描述
牛顿-莱布尼兹公式是计算定积分的核心公式,它表示为∫baf(t)dt=F(b)-F(a),其中∫baf(t)dt表示函数f(t) 在区间[a, b]上的定积分,F(x)表示f(t)的原函数,即满足F'(x)=f(x)的函数。该公式通过选取合适的分割和 近似方式,将定积分转化为一系列小矩形面积之和,最后求和得到定积分的值。
为后续课程奠定基础
定积分是学习复变函数、实变函数等后续课程的基础,对于数学专 业的学生来说至关重要。
在其他学科中的应用价值
物理学中的应用
在物理学中,定积分常用于计算 面积分,例如在计算电磁场、引
力场等物理量的分布时。
工程学科中的应用
在工程学科中,定积分常用于解 决与几何形状、物理量分布等有 关的实际问题,如机械工程、土
定积分的几何意义
定积分的几何意义是函数图像与x轴所夹的面积。具体来说,将定积分表示的函 数图像与x轴围成的面积,即为定积分的值。
定积分的几何意义还可以理解为曲线与x轴所夹的“曲边梯形”的面积。这个曲 边梯形的高就是函数值,底就是x轴上的区间。
定积分的物理意义
定积分的物理意义是表示某个物理量在某个时间段或某个 区间内的累积效应。例如,物体的质量分布不均匀,其质 心位置可以通过对质量分布函数进行定积分来求解。
定积分的知识点总结

定积分的知识点总结一、定积分的基本概念定积分是微积分学中的重要概念,可以用来计算曲线下的面积,曲线的弧长,质心等物理量。
定积分的基本思想是将曲线下的面积划分为无穷多个微小的矩形,然后求和得到整体的面积。
定积分的符号表示为∫。
对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b]f(x)dx其中,a和b为区间的端点,f(x)为函数在该区间上的取值。
定积分表示在区间[a, b]上的函数f(x)所确定的曲线下的面积。
二、定积分的计算方法1. 黎曼和定积分的计算基本思想是将曲线下的面积划分为很多个小矩形,然后对这些小矩形的面积求和。
这就是定积分的计算方法。
在实际计算中,根据黎曼和的定义,我们可以将区间[a, b]等分为n个小区间,每个小区间长度为Δx=(b-a)/n,然后在每个小区间上取一个样本点xi,计算f(xi)Δx的和:∑[i=1,n]f(xi)Δx当n趋近于无穷大时,这个和就可以逼近定积分的值。
这就是黎曼和的基本思想。
2. 定积分的几何意义定积分可以用来计算曲线下的面积,也可以用来计算曲线的弧长。
对于一个函数f(x),其在区间[a, b]上的定积分表示的是曲线y=f(x)和x轴之间的面积。
这个面积就是曲线下的面积。
如果函数f(x)在区间[a, b]上非负且连续,那么函数y=f(x)、直线x=a、x=b以及x轴所围成的区域的面积就是∫[a, b]f(x)dx。
3. 定积分的物理意义定积分还可以用来计算物理量,比如质量、质心等。
在物理学中,可以用定积分来计算物体的质量、质心等物理量。
对于一个连续的物体,将其质量密度函数表示为ρ(x),则物体的质量可以表示为定积分:M=∫[a, b]ρ(x)dx三、定积分的性质1. 线性性定积分具有线性性质,即∫[a, b](c1f1(x)+c2f2(x))dx=c1∫[a, b]f1(x)dx+c2∫[a, b]f2(x)dx。
其中c1、c2为常数,f1(x)、f2(x)为函数。
定积分的概念和基本思想

定积分的概念和基本思想一、定积分的概念和基本思想1、定积分的概念一般地,如果函数$f(x)$在区间$[a,b]$上连续,用分点$a=x_0<x_l<$$\cdots<$$x_{i-l}<x_i<$S\cdots<$$x_n=b$将区间$ la, b] S等分成$n$ 个小区间,在每个小区间$[x_{iT},x_i]$上任取一点$ C _i (i=l, 2, \cdots, n)$,作和式$\underset{i=l}{\overset{n}{\sum}}f(4 _i)Ax=$$\underset{i=l}{\overset {n} {\sum ))\frac(b-a} {n}f(C_i)$,当Sn-8$时,上述和式无限接近某个常数,这个常数叫做函数$f (x) $在区间$[a,b]$上的定积分,记作$\int_{a} * (b}f (x) (\rm d}x$,即$\int_{a}*{b}f(x){\rmd}x=$$\underset(n~* °°}{\lim}\underset{i=l}{\overset{n}{\sum}}\frac{b_ a}{n}f(g_i)$,这里,$a$与$b$分别叫做积分下限与积分上限,区间$[a,b]$叫做积分区间,函数$f(x)$叫做被积函数,$x$叫做积分变量,$f(x) {\rm d}x$叫做被积式。
(1)定积分$\int_{a}*{b}f(x) {\rm d}x$不是一个函数式,而是一个数值(极限值),它只与被积函数以及积分区间有关,而与积分变量无关,即$\int_{a}*{b}f(x){\rm d}x=$S\int_{a}*{b}f(t)(\rm d}t=$$\int_{a}*{b}f(u){\rm d}u$o(2)定义中区间的分法和$ g _i$的取法是任意的。
2、定积分的基本思想定积分的基本思想就是以直代曲,即求曲边梯形的而积时,将曲边梯形分割成一系列的小曲边梯形,用小矩形近似代替,利用矩形面积和逼近的思想方法求出曲边梯形的面积。
定积分的基本概念

方法与手段导入幻灯幻灯幻灯幻灯详讲详讲详讲幻灯下面就是根据这个思想用计算机对其划分过程进行了模拟,通过观察我们可以发现其面积在分割份数特别多的时候已经非常的接近我们的曲边梯形面积了。
事实上我们如果对其切割的份数取极限,让切割的份数趋于无穷,这个极限值就是我们要求的曲边梯形的面积值。
好,下面,我们把曲边梯形的求解过程用数学的方法描述一下。
解决步骤:大化小:在区间[a,b]中任意插入n −1个分点a =x 0<x 1<x 2<⋯<x n−1<x n−1=b ,用直线x =x i 将一个曲边梯形分成n 个小的曲边梯形;常带变:在第k 个窄边梯形上任取ξk ∈[x k−1,x k ]作以[x k−1,x k ]为底,f(ξk )为高的小矩形,并以此小矩形面积近似代替相应窄曲边梯形面积∆S k ,得∆S k ≈f (ξk )∆x k (∆x k =x k −x k−1,k =1,2,⋯n) 近似和:S =∑∆S k n k=1≈∑f(ξk )∆x k n k=1取极限:令λ=max {∆x 1,∆x 2⋯,∆x n } S =lim λ→0∑∆S k n k=1=lim λ→0∑f(ξk )∆x k n k=1这样我们就可以求出曲边梯形的面积,我们再看一个定积分问题例子。
(2)变速直线运动的路程:设某物体做直线运动,已知()v v t =在区间[1T ,2T ]上t 的连续函数,且()0v t ≥,求在这段时间内物体所经过的路程s 。
考虑:当()0y f x C ==≥,()0v v t C ==≥时(其中C 为常数),上面问题的求解。
在解决这个问题之前我们先分析一下这个问题与上个问题之间的关系,我们可以发现其实求路程和求面积本身是同一类问题,变化的无非是函数名,区间名称,本质上是一样的,我们其实只需做一个按照上面的思路做一个变量替换就可以了,具体的解决步骤是。
解决步骤: 详讲 总结λ→0是个障碍,我们能不能把λ→0替换掉?其实把[0,1]区间n 等分,λ=1n →0,其实就是n →+∞,lim n→+∞∑(k n )21n n k=1,要求这个极限我需要先求∑(k n )21n n k=1,化简一下可以得到1n 3∑k 2n k=1,∑k 2n k=1=?,∑k 2n k=1=16n(n +1)(2n +1),lim n→+∞∑(k n )21n n k=1=lim n→+∞n(n+1)(2n+1)6n 3=13。
定积分知识点总结

北京航空航天大学李权州一、定积分定义与基本性质1.定积分定义 设有一函数f(x)给定在某一区间[a,b]上. 我们在a 与b 之间插入一些分点b x x x x a n =<<<<=...210. 而将该区间任意分为若干段. 以||||π表示差数)1,...,1,0(1-=-=∆+n i x x x i i i 中最大者.在每个分区间],[1+i i x x 中各取一个任意的点i x ξ=.)1,...,1,0(1-=≤≤+n i x x i i i ξ而做成总和∑-=∆=10)(n i i i x f ξσ然后建立这个总和的极限概念:σπ0||||lim →=I 另用""δε-语言进行定义:0>∀ε,0>∃δ,在||||πδ<时,恒有εσ<-||I则称该总和σ在0→λ时有极限I .总和σ在0→λ时的极限即f(x)在区间a 到b 上的定积分,符号表示为⎰=badx x f I )(2.性质 设f(x),g(x)在[a,b]上可积,则有下列性质 (1) 积分的保序性如果任意)(),(],,[x g x f b a x ∈,则⎰⎰≥babadx x g dx x f ,)()(特别地,如果任意,0)(],,[≥∈x f b a x 则⎰≥badx x f 0)((2) 积分的线性性质⎰⎰⎰±=±bababadx x g dx x f dx x g x f )()())()((βαβα特别地,有⎰⎰=bab ax f c dx x cf )()(.设f(x)在[a,b]上可积,且连续,(1)设c 为[a,b]区间中的一个常数,则满足⎰⎰⎰+=bccabadx x f dx x f dx x f )()()(实际上,将a,b,c 三点互换位置,等式仍然成立. (4)存在],[b a ∈θ,使得)()()(θf a b dx x f ba-=⎰二、达布定理1.达布和分别以i m 和i M 表示函数f(x)在区间],[1+i i x x 里的下确界及上确界并且做总和∑∑=+=+-=-=ni i i i ni i i i x x m f S x x M f S 1111)(),(,)(),(ππ),(f S π称为f(x)相应于分割π的达布上和,),(f S π称为f(x)相应于分割π的达布下和特别地,当f(x)连续时,这些和就直接是相应于任意分割法的积分和的最小者和最大者,因为在这种情形下f(x)在没一个区间上都可以达到其上下确界.回到一般情况,有上下界定义知道i i i M f m ≤≤)(ξ将这些不等式逐项各乘以i x ∆(i x ∆是正数)并依i 求其总和,可以得到),(),(f S f S πσπ≤≤推论1 设f(x)在[a,b]上有界. 设有两个分割π,'π,'π是在π的基础上的加密分割,多加了k 个新分店,则||,||),(),'(),(||,||),(),'(),(πωππππωπππk f S f S f S k f S f S f S +≤≤-≥≥这里m M m M ,,-=ω分别为f 在[a,b]上的上、下确界. 推论2 设f(x)在[a,b]上有界. 对于任意两个分割',ππ,有)(),(),()(a b M F S f S a b m -≤≤-ππ2.达布定理定义 设f(x)在[a,b]上有界,定义。
定积分的概念

定积分与微积分定理1.定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=将区间[,]a b 等分成n 个小区间,每个小区间长度为x ∆(b axn-∆=),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=,作和式:11()()nnn i i i i b aS f x f nξξ==-=∆=∑∑如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。
记为:()baS f x dx =⎰其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。
说明:(1)定积分()baf x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()baf x dx ⎰,而不是n S .(2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和:1()ni i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b af x dx f n ξ→∞=-=∑⎰ (3)曲边图形面积:()baS f x dx =⎰;变速运动路程21()t t S v t dt =⎰;变力做功 ()baW F r dr =⎰2.定积分的几何意义(说明:一般情况下,定积分()baf x dx ⎰的几何意义是介于x 轴、函数()f x 的图形以及直线,x a x b ==之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积去负号.(可以先不给学生讲).分析:一般的,设被积函数()y f x =,若()y f x =在[,]a b 上可取负值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教 学 内 容
方法与手段
定积分的概念
大家好,这节课我们开始学习定积分的概念,主要分
为三个内容:
定积分概念引入 定积分的定义 定积分的几何性质 首先我们来看第一部分 一、定积分概念引入
说起定积分的思想,其萌芽是特别早的,可以追溯至古代,最具有代表人物就是阿基米德(公元前287年—公元前212年),我们比较熟悉的就是他的浮力原理,其实阿基米德还和高斯、牛顿并列为世界三大数学家,是个非常牛的牛人,有兴趣的可以找找这个人的一些资料,当时他就开始思考定积分问题。
那么到底定积分问题是什么样子的呢我们先看一个例子。
1曲边梯形的面积问题: 我们知道矩形面积:S ah = 梯形的面积:()
2
a b S h +=
曲边梯形的面积:设()y f x =在区间[a,b]上非负连续,由直线x=a,x=b,y=0及曲线()y f x =所围成的面积。
导入 幻灯 幻灯 幻灯 幻灯 详讲 详讲 详讲 幻灯
那么这样的问题怎么求呢
首先,我们考虑用一个矩形去近似计算其面积。
a,b 的区间长度代表其宽,b点的函数值代表其高。
我们可以得到一个近似的面积值。
好,现在我们将[a,b] 区间分为两个,同样我们用这两个区间的长度代表其宽,两个区间的右端点代表其高,然后计算这两个矩形的面积求和,作为曲边梯形的面积,可以发现,通过切分,其面积更接近曲边梯形的面积。
我们就有这样的思考,是不是切分的越多,其面积越近似我们再将其分为四份,我们发现好像面积越来越接近真实面积。
下面就是根据这个思想用计算机对其划分过程进行了模拟,通过观察我们可以发现其面积在分割份数特别多的时候已经非常的接近我们的曲边梯形面积了。
事实上我们如果对其切割的份数取极限,让切割的份数趋于无穷,这个极限值就是我们要求的曲边梯形的面积值。
好,下面,我们把曲边梯形的求解过程用数学的方法描述一下。
解决步骤:
大化小:在区间中任意插入个分点
,用直线将一个曲边梯形分成个小的曲边梯形;详讲总结
常带变:在第个窄边梯形上任取作以为底,为高的小矩形,并以此小矩形面积近似代替相应窄曲边梯形面积,得
近似和:
取极限:令
这样我们就可以求出曲边梯形的面积,我们再看一个定积分问题例子。
(2)变速直线运动的路程:设某物体做直线运动,已知()
=在区间[1T,2T]上t的连续函数,且()0
v t≥,求在v v t
这段时间内物体所经过的路程s。
考虑:当()0
==≥时(其中C为
v v t C
y f x C
==≥,()0
常数),上面问题的求解。
在解决这个问题之前我们先分析一下这个问题与上个问题之间的关系,我们可以发现其实求路程和求面积本身是同一类问题,变化的无非是函数名,区间名称,本质上是一样的,我们其实只需做一个按照上面的思路做一个变量替换就可以了,具体的解决步骤是。
解决步骤:
大化小:在区间中任意插入个分点
,将其分成个小段
,在每个小段物体经过的路程为
;
常带变:任取,以代替第个时间段的速度,则:
近似和:
取极限:令
问题的共性:
解决问题的方法步骤相同:
“大化小,常代变,近似和,取极限”
所求量的极限结构式相同:特殊乘积和式的极限,下面我们从数学的角度对其做个总结就可以得到其定积分定义。
二、定积分的定义
1 定义:
设函数在上有定义,在中任意插入个分点,把区间分成个小区间,各个小区间的长度依次为:
在每个小区间上任取一点,作函数值
与小区间长度的乘积分,并做和数。
在每个记,如果不论怎么分法,也不论上怎么取法,只要当时,和数总趋于确定的极限,则称这个极限值为函数在上的定积分,记作。
其中称为积分区间,为积分下限,为积分上限,为积分变量;称为被积函数,称为被积表达式。
积分符号呢就像一个拉长的S。
我们要求一个定积分,对曲边梯形来说就是求他的面积,对匀变速直线运动来说就是他的路程,也就是要求后面这个和式的极限,那么什么情况下这个极限存在呢有两个定理,具体的证明,可以参考数学分析。
定理 1 设在区间上连续,则在上可积。
定理2设在区间上有界,且只有有限个间断
点,则在上可积。
也就是我们的被积函数,要么连续,要么有界且有有限个间断点,那么这样的极限就一定存在。
下面我们看一个例子,做个练习。
例利用定义计算定积分。
首先,根据定理1,这个定积分是可以求出来的。
分析:定积分的定义说的什么呢给一个被积函数,给一个积分区间,也就是积分上下限,我们可以转化的求一个和式的极限。
对于这个问题,我们的被积函数是积分区间是
根据定积分的定义我们也就是要求,又由于定积分定义说不论我们怎么个分法,我们不妨将其等分,那么等于多少呢由于在我们很容易算出,我们把区间n等分,那么第k个区间在是什么,是不是,定积分定义还告诉我们是在第k个区间的任意一个取法,那么我们不妨取区间的右端点,即,好,那么我们看看现在要求的问题变成了什么,我们观察这个极限,是个障碍,我们能不能把替换掉其实把区间n等分,
,其实就是,,要求这个极限我需要先求,化简一下可以得到,
,,。
这样我们就求出了定积分的值。
思考如果我们不知道这个定积分到底存不存在对于这个问题我们如何求这个留给大家下去去做,如果会求,也许你能总结出定积分存在的充分必要条件。
下面我们开始学习定积分的几何意义,也有同学可能会说,教员这个我知道,前面不是说了啊,就是被积函数,与积分区间,还有y=0围成的面积啊。
注意我们前面求的曲边梯形的面积是假设这个函数是大于等于0的。
好下面我们就讨论一下一般情况。
三、定积分的几何性质
我们已经知道对于,当时,就是、x=a、x=b和y=0所围成的面积。
那么当时呢可以根据定义,做个简单的推导,就可以知道的几何意义就是围成面积的负值。
下面我们看这样一个定积分:
A1,A2,A3,A4对应其各个区域块围成的面积,那个这个积分值是
Y=0上面的面积和- Y=0下面的面积和,也就是:
(A2+ A4)-(A1+A3)
思考:奇函数对称积分区间的几何特征和积分值,还有偶函数在对称积分区间的几何特征和积分值。
好,这就是我们这一节课的内容,下一节课我们介绍定积分的性质。