典型环节及其阶跃响应

合集下载

自动控制实验报告一-典型环节及其阶跃响应

自动控制实验报告一-典型环节及其阶跃响应

实验一典型环节及其阶跃响应班级:学号:姓名:一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响;2.学习典型环节阶跃响应的测量方法,并学会根据阶跃响应曲线计算典型环节的传递函数;二、实验仪器1.EL-AT-II型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。

再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。

若改变系统的参数,还可进一步分析研究参数对系统性能的影响。

2.时域性能指标的测量方法:超调量Ó %:1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。

2)测试计算机与实验箱的通信是否正常,通信正常继续。

如通信不正常查找原因使通信正常后才可以继续进行实验。

3)连接被测量典型环节的模拟电路。

电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。

检查无误后接通电源。

4)在实验课题下拉菜单中选择实验一[典型环节及其阶跃响应] 。

5)鼠标单击实验课题弹出实验课题参数窗口。

在参数设置窗口中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果。

6)用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:Y M AX - Y∞Ó %=——————×100%Y∞T P与T S:利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P与T S。

四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应:1.比例环节的模拟电路及其传递函数:G(s)=-R1/R22.惯性环节:G(s)= -K/TS+1 K=R2/R1 ,T=R2C;3.积分环节G(S)= 1/TS T=RC4.微分环节G(S)=-RCS5.比例+微分环节G(S)= -K(TS+1) K=R2/R1 T=R2C6.比例+积分环节G(S)=K(1+1/TS) K=R2/R1 T=R2C五、实验步骤1.启动计算机,在桌面双击图标【自动控制实验系统】运行软件。

典型环节与及其阶跃响应

典型环节与及其阶跃响应

实验一: 典型环节与及其阶跃响应一、实验目的1、掌握控制模拟实验的基本原理和一般方法。

2、掌握控制系统时域性能指标的测量方法。

二、实验仪器1、EL-AT-III 型自动控制系统实验箱一台2、计算机一台三、实验原理控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。

再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。

若改变系统的参数,还可进一步分析研究参数对系统性能的影响。

四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应1、比例环节的模拟电路及其传递函数G(S)= −R2/R12、惯性环节的模拟电路及其传递函数G(S)= −K/TS+1K=R2/R1T=R2C3、积分环节的模拟电路及传递函数G(S)=1/TST=RC4、微分环节的模拟电路及传递函数G(S)= −RCS5、比例+微分环节的模拟电路及传递函数G(S)= −K(TS+1)K=R2/R1T=R1C五、实验结果及分析(注:图中黄色为输入曲线、紫色为输出曲线)1、比例环节(1)模拟电路图:(2)响应曲线:2、惯性环节(1)模拟电路图:(2)响应曲线:(3)传递函数计算:实验值:X1=1029ms=1.029s=4TT=0.257sK=Y2/1000=2.017G(S)=-2.017/(0.257S+1) 理论值:G(S)=-2/(0.2S+1)结论:实验值与理论值相近。

3、积分环节(1)模拟电路图:(2)响应曲线:(3)传递函数计算:实验值:5000/(2110/2/2)=9.1G(S)=-9.1/S=-1/0.11S 理论值:G(S)=-1/0.1S结论:实验值与理论值相近。

4、微分环节(1)模拟电路图:(2)响应曲线:5、比例+微分环节(1)模拟电路图:(2)响应曲线:实验二:二阶系统阶跃响应一、实验目的1、研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn 对系统动态性能的影响。

典型环节及其阶跃响应

典型环节及其阶跃响应

图1-1 运放的反馈连接 典型环节及其阶跃响应
比例环节:
参数设置:Z1=100K Ω Z2=100K Ω 单位阶跃响应波形如下:
波形分析如下: 惯性环节:
图 1-2 惯性环节模拟电路
参数设置:R1=100K Ω R2=100K C1=1f 单位阶跃响应波形如下:
分析波形如下:
积分环节
参数设置:R1=100K C1=1f
单位阶跃响应波形如下:
波形分析如下:
微分环节
微分环节模拟电路参数设置:C1=1f C2=0.01f R2=100K
单位阶跃响应波形如下:
波形分析如下:
比例微分环节
比例微分模拟电路
参数设置:R1=100K R2=100K C1=1f C2=0.01f 单位阶跃波形如下
波形分析如下:
比例积分环节
比例积分环节模拟电路
参数设置:R1=100K R2=200K C1=1f
单位阶跃波形如下
波形分析如下:
比例积分微分环节
比例积分微分模拟电路
参数设置1:R1=100K R2=200K C1=1f C2=0.1f 单位阶跃波形如下
单位阶跃波形如下
波形分析如下:。

典型环节及其阶跃响应

典型环节及其阶跃响应

比例环节
惯性环节
积分环节
微分环节
四、实验步骤
1. 在桌面双击图标 [自动控制理论] 运行软件。 2. 测试计算机与实验箱的通信是否正常, 通信正常继续。如 通信不正常查找原因使通信正常后才可以继续进行实验。
3. 连接被测量典型环节的模拟电路(图1-1)。电路的输入 U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、 D/A卡的AD1输入(电源开关OFF)。检查无误后接通电源。
实验一 典型环节及其阶跃响应
一、实验目的
1. 掌握控制模拟实验的基本原理和一般方法。 2. 学习典型环节模拟电路的构成,了解电路参数 对环节特性的影响。
3. 掌握控制系统时域性能指标的测量方法,并学
会由阶跃响应曲线计算典型环节的传递函数。
二、实验仪器
1. EL-CAT-III型自动控制系统实验箱一台
理论值 比例环节 惯性环节 实测值
R1=R2=100K C=1uf K=1 T=0.1S
积分环节 微分环节 比例+微分环节 比例+积分环节 比例环节
R1=100K R2=200K C=1uf K=2 T=1S
惯性环节 积分环节 微分环节 比例+微分环节 比例+积分环节
五、实验报告
1. 由阶跃响应曲线计算出惯性环节、积分环节的传递函数, 并与由电路计算的结果相比较。
4. 在实验课题下拉菜单中选择实验一[典型环节及其阶跃响 应] 。
5. 鼠标双击实验课题弹出实验课题参数窗口。在参数设 置窗口中设置相应的实验参数后鼠标单击确认等待屏 幕的显示区显示实验结果。
6. 观测计算机屏幕显示出的响应曲线及数据,记录波形及数 据(由实验报告确定)。
参数

实验一 典型环节及其阶跃响应

实验一 典型环节及其阶跃响应

实验一典型环节及其阶跃响应
概述:
在控制系统中,典型环节是指能够用数学模型描述的一类基本功能模块,包括比例环节、积分环节和微分环节等。

它们在工程中应用十分广泛,可用于控制系统的建模和分析。

本文将介绍比例环节、积分环节和微分环节的定义及其阶跃响应。

一、比例环节
比例环节是指将输入信号按一定比例进行放大或缩小的环节。

用数学式子表示为y=kx,其中k为比例常数,x为输入信号,y为输出信号。

比例环节的作用是调整输入信号与输出信号之间的比例关系。

比例环节的阶跃响应:在阶跃信号的作用下,比例环节的输出将按比例变化。

阶跃信
号是指输入信号在某一时刻瞬间从0跳变到一个确定的值。

对比例环节而言,其阶跃响应
可以表示为:
$$
y(t)=K_{p} u(t)
$$
其中,$K_{p}$为比例放大的增益,$u(t)$为阶跃函数。

二、积分环节
总结:
比例环节、积分环节和微分环节是控制系统中常用的三种典型环节。

它们可以按照不
同的方法进行组合和调整,形成复杂的系统结构,实现对输入信号的更为精细的控制。


实际应用中,需要针对具体问题进行具体分析,选择合适的环节组合方案,以实现最佳的
控制效果。

自动控制原理实验典型环节及其阶跃响应,二阶系统阶跃

自动控制原理实验典型环节及其阶跃响应,二阶系统阶跃

实验一、典型环节及其阶跃响应实验目的1、学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。

2、学习典型环节阶跃响应的测量方法,并学会由阶跃响应曲线计算典型环节的传递函数。

实验内容构成下述典型环节的模拟电路,并测量其阶跃响应。

比例环节的模拟电路及其传递函数示图2-1。

G(S)=-R2/R1惯性环节的模拟电路及其传递函数示图2-2。

G(S)=-K/TS+1 K=R2/R1 ,T=R2*C积分环节的模拟电路及其传递函数示图2-3。

G(S)=1/TS T=RC微分环节的模拟电路及其传递函数示图2-4。

G(S)=-RCS比例加微分环节的模拟电路及其传递函数示图2-5。

G(S)=-K(TS+1) K=R2/R1 T=R2C比例加积分环节的模拟电路及其传递函数示图2-6。

G(S)=K(1+1/TS) K=R2/R1,T=R2C软件使用1、打开实验课题菜单,选中实验课题。

2、在课题参数窗口中,填写相应AD,DA或其它参数。

3、选确认键执行实验操作,选取消键重新设置参数。

实验步骤1、连接被测量典型环节的模拟电路及D/A、A/D连接,检查无误后接通电源。

2、启动应用程序,设置T和N。

参考值:T=0.05秒,N=200。

3、观测计算机屏幕示出的响应曲线及数据记录波形及数据(由实验报告确定)。

实验报告1、画出惯性环节、积分环节、比例加微分环节的模拟电路图,用坐标纸画出所有记录的惯性环节、积分环节、比例加微分环节的响应曲线。

2、由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由电路计算的结果相比较。

实验二二阶系统阶跃响应一、实验目的1、研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频ωn 对系统动态性能的影响,定量分析ζ和ωn与最大超调量Mp和调节时间 ts 之间的关系。

2、进一步学习实验仪器的使用方法。

3、学会根据系统阶跃响应曲线确定传递函数。

二、实验原理及电路典型二阶系统的闭环传递函数为其中ζ和ωn对系统的动态品质有决定的影响。

典型环节及其阶跃响应分析实验报告

典型环节及其阶跃响应分析实验报告
实验预习疑问等项目。
实验一典型环节及其阶跃响应分析
一、实验目的:
1.熟悉MATLAB桌面和命令窗口,初步了解MATLAB软件的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验内容:
按下列各典型环节的传递函数,观察并记录其单位阶跃响应波形。
3积分环节
方框图:
传递函数:
阶跃响应:
利用MATLAB软件,编写程序画出传递函数分别是 的单位阶跃响应。
4比例+积分环节
方框图:
传递函数:
阶跃响应:
利用MATLAB软件,编写程序画出传递函数分别是 的单位阶跃响应。
5比例+微分环节
方框图:
传递函数:
阶跃响应:
利用MATLAB软件,编写程序画出传递函数分别是 的单位阶跃响应。
实验预习评分:
二、实验原始(数据)记录
实验时间:年月日(星期第节)
实验同组人:
1.比例环节。
传递函数: ,单位阶跃响应数学表达式:Uo(t) = K。
当 时,阶跃响应曲线
当 时,阶跃响应曲线
2.惯性环节。
传递函数: ,单位阶跃响应数学表达式:
当 时,阶跃响应曲线
当 时,阶跃响应曲线
3.积分环节
传递函数: ,单位阶跃响应数学表达式:
(疑问)分析等项目。
主要实验步骤:1、分别列出五个典型环节(比例环节、惯性环节、积分环节、比例积分
环节、比例微分环节)的方框图、传递函数、阶跃响应曲线。
2、观察并记录其单位阶跃响应的波形。
3、使用MATLAB绘制出波形曲线。

典型环节及其阶跃响应实验报告

典型环节及其阶跃响应实验报告

一、实验目的1. 了解并掌握典型环节的原理和特点。

2. 熟悉阶跃响应实验方法,分析典型环节阶跃响应的特性。

3. 通过实验,提高对自动控制理论的认识和实际操作能力。

二、实验原理1. 典型环节:比例环节、惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节等。

2. 阶跃响应:当系统输入信号从零突然跃变到某一值时,系统输出信号随时间的变化规律。

3. 阶跃响应特性:上升时间、调整时间、超调量、稳态误差等。

三、实验仪器1. 自动控制系统实验箱2. 计算机3. 数据采集卡4. 信号发生器5. 示波器四、实验内容1. 比例环节阶跃响应实验(1)搭建比例环节实验电路,包括比例环节电路、运算放大器、反馈电阻、输入电阻等。

(2)调整电路参数,使比例环节的传递函数为G(s) = K。

(3)在输入端施加阶跃信号,利用数据采集卡和示波器观察输出波形,记录上升时间、调整时间、超调量等特性。

2. 惯性环节阶跃响应实验(1)搭建惯性环节实验电路,包括惯性环节电路、运算放大器、反馈电阻、输入电阻等。

(2)调整电路参数,使惯性环节的传递函数为G(s) = Kτs/(τs+1)。

(3)在输入端施加阶跃信号,利用数据采集卡和示波器观察输出波形,记录上升时间、调整时间、超调量等特性。

3. 积分环节阶跃响应实验(1)搭建积分环节实验电路,包括积分环节电路、运算放大器、反馈电阻、输入电阻等。

(2)调整电路参数,使积分环节的传递函数为G(s) = 1/s。

(3)在输入端施加阶跃信号,利用数据采集卡和示波器观察输出波形,记录上升时间、调整时间、超调量等特性。

4. 比例积分环节阶跃响应实验(1)搭建比例积分环节实验电路,包括比例积分环节电路、运算放大器、反馈电阻、输入电阻等。

(2)调整电路参数,使比例积分环节的传递函数为G(s) = K(1+τs)/s。

(3)在输入端施加阶跃信号,利用数据采集卡和示波器观察输出波形,记录上升时间、调整时间、超调量等特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、实验原理
模拟实验的基本原理
控制系统模拟实验采用复合网络法来模拟各种典型环节, 即利用运算放大器不同的输入网络和反馈网络模拟各种典型 环节,然后按照给定系统的结构图将这些模拟环节连接起来, 便得到了相应的模拟系统。再将输入信号加到模拟系统的输 入端,并利用计算机等测量仪器,测量系统的输出,便可得 到系统的动态响应曲线及性能指标。若改变系统的参数,还 可进一步分析研究参数对系统性能的影响。
五、实验注意事项
1、实验必带物品:实验指导书、实验预习报告、纸、笔 2、实验连线过程中应手持导线插头轻拔轻插,严禁直接拉扯导线 2、实验开始前应先测试计算机与试验箱的通信是否正常,如不正常应查找 原因,通信正常后方可继续试验 3、实验过程中要更换线路应先关闭实验机箱电源,严禁带电操作 4、实验预习报告同实验报告一同装订,按班收起后统一于每周四前上交 5、实验完成请清理桌面、整理导线、关闭电脑和实验箱并将实验卡片交 实验指导老师签字认可方能离开实验室,否则实验无效。
框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实 验结果。 (6)用软件上的游标测量响应曲线上的数据,并准确记录。 (7)改变被测电路的电阻或电容,观察响应曲线的变化 (8)根据实验数据画出被测量典型环节的响应曲线。 (9)对实验结果和实验中的现象进行简练明确的分析并作出结论或评价
四、实验报告
G(S)= −K(TS+1) K=R2/R1,T=R2C
三、实验内容
构成下述典型一阶系统的模拟电路,并测量其阶跃响应:
6.比例积分环节的模拟电路及其传递函数如图1-6。
G(S)= −K(1+1/TS) K=R2/R1,T=R2C
三、实验步骤
(1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。 (2)检查USB线是否连接好,打开实验机箱电源。 (3)点击按钮 ,出现256位通讯码表示通讯正常,如不正常须找出
三、实验内容
构成下述典型一阶系统的模拟电路,并测量其阶跃响应:
4.微分环节的模拟电路及其传递函数如图1-4。
G(S)= − RCS
理想微分环节的输出与输入量的变化速度成正比。在阶跃输入作用下的 输出响应为一理想脉冲(实际上无法实现)
三、实验内容
构成下述典型一阶系统的模拟电路,并测量其阶跃响应:
5.比例微分环节的模拟电路及其传递函数如图1-5。
由于惯性环节中含有一个储能原件,当输入量突然变化时,输出量不能跟 着变化,而是按指数规律变化。
三、实验内容
构成下述典型一阶系统的模拟电路,并测量其阶跃响应: 3.积分环节的模拟电路及其传递函数如图1-3。
G(S)=-1/TS T=RC
只要有一个恒定的输入量作用于积分环节,其输出量就与时间 成正比地无限增加。(输出量取决于输入量对时间的积累,输入量作 用一段时间后,即使输入量变化,输出量仍会保持在已达到的数值)
三、实验内容
构成下述典型一阶系统的模拟电路,并测量其阶跃响应:
1.比例环节的模拟电路及其传递函数如图1-1。
G(S)= −R2/R1
输出量不失真,无惯性地跟着输入量变化,而且两者成比例关系
三、实验内容
构成下述典型一阶系统的模拟电路,并测量其阶跃响ห้องสมุดไป่ตู้: 2.惯性环节的模拟电路及其传递函数如图1-2。 G(S)= − K/TS+1 K=R2/R1,T=R2C 其中:k:放大系数(环节增益) T:时间常数,表征了环节的惯性
原因后再继续试验。 (4)关闭实验机箱电源,连接被测量典型环节的模拟电路。电路的输入 U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。 检查无误后接通电源。
三、实验步骤
(5)在实验项目的下拉列表中选择实验一[典型环节及其阶跃响应] 。 鼠标单击按钮 ,弹出实验课题参数设置对话框。在参数设置对话
(1)根据实验记录画出各典型环节的响应曲线并与理论上的曲线对比, 对不同之处进行简练明确的分析并作出结论或评价。 (2)由阶跃响应曲线计算出惯性环节和积分环节的传递函数,并与计算 的理论结果相比较。 (3)根据各环节的特性,分析各典型环节在控制系统中的作用。 (4)对实验结果和实验中的现象进行分析,对实验全过程中的经验、 教训、体会、收获等进行必要的小结。
二阶系统阶跃响应预习
1、预习实验原理部分,掌握时域性能指标的测量方法。 2、按照实验指导书中二阶系统的模拟电路,计算出R1取100K, R2分别取50K和100k,C分别取1µf和0.1µf,且r(t)=-2时 的性能指标tp 、ts和σ%的理论值 。并画出响应曲线。
典型环节及其阶跃响应
自动控制原理实验 2011年9月
预 习
复习运算放大器的功能及特性。 预习实验指导书的实验原理部分,了解模拟实验的基本原理。 根据实验指导书的各典型环节模拟电路,算出各环节的传递函数。 根据实验指导书上所标注的数据,画出输入阶跃信号为-1V时的响应曲线。
一、实验目的
1、学习构成典型环节的模拟电路,掌握控制模拟实验 的基本原理和一般方法,了解电路参数对环节特性的影响 2、掌握控制系统时域性能指标的测量方法。并学会由 阶跃响应曲线计算典型环节的传递函数。
相关文档
最新文档