第五章(典型环节的频率特性)

合集下载

自动控制原理简明教程 第五章 频率响应法

自动控制原理简明教程 第五章 频率响应法

这时,求扰动输入下的误差传递函数 en(s) ,
先求 E(s) 0 C(s) 1GG((s)s) N(s)

e(n s)
NE((ss))
1
G(s) G(s)
则 ess(2 t) An e(n j)sin(t en( j))
幅频特性
相频特性
二.频率特性的物理意义及求解方法
R
ur
C uc
RC网络微分方程为:
优点:
(1).可以根据系统的开环频率特性判断闭环系 统的稳定性,而不必求解特征方程。
(2).很容易研究系统的结构,参数变化对系统性 能的影响,并可指出改善系统性能的途径,便于
对系统进行校正。
(3).提供了一种通过实验建立元件或系统数 学模型的方法。
(4).可以方便地设计出使系统噪声小到规定 程度的系统。
一.比例环节
传递函数为G(s)=k
频率特性为 G( jw) ke j 0
幅频特性为 A(w)=k
相频特性为 (w) 0
极坐标图和伯德图为:
L(w)(dB)
20lgk
(w)(度) 0.1 1 10 100
w
0
w
-30
Bode图
j
w=0
w
0k
w
极坐标图
二.积分环节和微分环节
积分环节: G(s) C(s) R(s) 1/ s
w? ?
450 W=1/T
1 W=0 w
对数幅频特性:L(w) 20lg 1 T 2w2 1
20lg T 2w2 1
当wT≥1时,L(w)≈-20lgwT
当wT≥1时,L(w)可用一条斜率为-20dB/dec的渐近 直线来表示。
当wT≤1时,L(w)≈0,是一条与0分贝线重合的直线。 两直线交于横坐标w=1/T的地方。

自动控制原理 第5章 频率法_2-1

自动控制原理 第5章 频率法_2-1

1 2
)
(5-28)
M (w )
0.2 0.5
1
0.9
0
Mr
wr
wn w c
w
振荡环节的幅频特性
2 2
1 Tw 1 2 2 2 1 T w 2
这是一个标准圆方程,其圆心坐标是 1 ,0 , 2 半径为 1 。且当ω 由 0 时, G( jw ) 由 0 90 , 2 说明惯性环节的频率特性在 G( jw ) 平面上是实轴下 方半个圆周。
20
1 T

(w ) 45
0
的交点为
工程上常用简便的作图法来得到L(w曲线,方法如下:
w
1 T
L(w ) 20 lg
1 T w
2
2
0 (dB)
即当频率很低时, L(w可用零分贝线近似; 低频渐近线
w
1 T
L(w ) 20 lg
1 T w
2
2
20 lg wT (dB)
当 w 10 时,20 lg G( j10) 20 lg 10 20(dB)

8
设 w'
10w
'
,则有
(5-36)
dB L(w )
60
20 lg w 20 lg 10w 20 20 lg w
可见,积分环节的对数幅频特 性是一条在w=1(弧度/秒)处 穿过零分贝线(w轴),斜率为 -20dB/dec的直线。 几何 意义 积分环节的相频特性是
(1) 幅相曲线 振荡环节的传递函数为: ( s) G
1 T w j 2Tw 1
2 2

第五章 频率特性法 (2)

第五章  频率特性法 (2)
1 1
斜率 (dB/dec) 0 -20 -40 0,-20 ,
特殊点 ω L( )=lgK ω =1, L( )=0 ω ω =1, L( )=0 ω
φ(ω) 0o -90o -180o
s2 1 Ts+1
1+τs
ωn 2 s2+2ζ ωns+ωn
2
转折ω = 1 0o -90o ~ 频率 T 转折ω = 1 0o~90o 0,20 频率 , τ 0,-40 转折 ω =ω n 0o~-180o , 频率
一、典型环节的频率特性 二、控制系统开环频率特性
第二节 典型环节与系统的频率特性
一 典型环节的频率特性
1.比例环节 .
传递函数和频率特性 G(s)=K G(jω)=K 幅频特性和相频特性 A(ω)=K φ(ω)=0o (1) 奈氏图 奈氏图是实轴上的 点 奈氏图是实轴上的K点。 是实轴上的 比例环节的奈氏图
第二节 典型环节与系统的频率特性
(1) 奈氏图
振荡环节的奈氏图
Im
ω=0 =∞
A(ω)=1 A(ω)=0 (ω)=0o φ(ω)=-180o 1 A(ω)= 2ζ 率特性曲线因ζ值 率特性曲线因 值 φ(ω)=-90o 不同而异. 的不同而异
ω ∞
0
1
ω=0
Re
ω=ωn 振荡环节的频
ω= ωn
ξ=0.8 ξ=0.6 ξ=0.4
积分环节的伯德图
40 20 0 -20 0.1 1
L(ω)/dB -20dB/dec
10
ω
Φ(ω)
0 0.1 1 10
φ(ω)=-90o
ω
-90
第二节 典型环节与系统的频率特性
3.微分环节 .

自动控制原理第五章-频率响应法

自动控制原理第五章-频率响应法

Im
(K,0°)
0
Re
图5.5 比例环节乃氏图
南京工业职业技术学机械学院——自动控制原理
L( )
0
( )
dB K>1
K=1 K<1
lg
0
lg
图5.6 比例环节的Bode图
作用:比例环节只改变原系统的幅值(K<1,降低;K > 1, 抬高),不改变原系统的相位。
南京工业职业技术学机械学院——自动控制原理
➢ 乃氏图的绘制—— “三点法”
G(jω)= A(ω)ejφ(ω) →
A(ω):起止位置 φ(ω) :起止方向
起点:ω→0,[A(0),φ(0)] 终点: ω→∞,[A(∞),φ(∞)] 与负实轴的交点:令φ(ω) =-180°→ ωx
相位截止频 率或相位剪
切频率
则交点为[A(ωg),-180°]
注意:由φ(0) → φ(∞)的变化范围可判断乃氏图所在 的 象限。
2 ( )
1 ( )
图5.8 积分、微分环节Bode图
南京工业职业技术学机械学院——自动控制原理
3. 纯微分环节
G(s) s
G( j) j e j90
传递函数与积分 环节互为倒数
Im
A()
(1)乃氏图 ( ) 90
起点:[0, 90°];终点: [∞, 90°]
0
Re
图5.9 微分环节乃氏图
I ( )
T 1 2T
2
联立消去ω可以得到实部和虚部 的关系式:
[R( ) 0.5]2 [I( )]2 0.52
故,惯性环节的乃氏图是圆心为点(0.5,j0)上,半径为 0.5的半园(ω=0~∞)。
(2)Bode图

第五章频率特性法

第五章频率特性法

教学内容
1、频率特性的概念 2、典型环节频率特性
3、开环幅相曲线绘制方法,重点:开环对数频率特性曲线
4、频域稳定判据,奈奎斯特判据,对数频率稳定判据 5、稳定裕度的概念 6、闭环系统的频域指标
5-1 频率特性

频率特性法:用频率特性作为数学模型来分析和设 计系统的方法。 优点:①具有明确的物理意义; ②计算量很小,采用近似作图法,简单、直 观,易于在工程技术中使用; ③可以采用实验的方法求出系统或元件的频 率特性。
1 1 (T1 )
2

1 1 (T2 )
2
k
相频特性: ( ) tan1 T1 tan1 T2
1.确定开环幅相曲线的起点和终点
0时, G ( j 0) k (0) 0 时, G ( j 0) 0 (0) -180
式中, φ=-arctgωτ。
式(5.3)的等号右边 , 第一项是输出的暂态分量 , 第
二项是输出的稳态分量。 当时间t→∞ 时, 暂态分量趋 于零, 所以上述电路的稳态响应可以表示为
1 1 limuo (t ) sin( t ) U sin t (5.4) 2 2 t 1 j 1 j 1 U
0
ω 0 1/T ∞
∠G(jω ) 0º -90º -180º
│G(jω │ 1 1/2ζ 0
U(ω ) 1 0 0
V(ω )
-0.5
ζ =0.2— 0.8
0 -1/2ζ 0
-1.5 -0.5 0 0.5 1 1.5 -1
振荡环节的幅相曲线
: 0 , G ( j )曲 线 有 单 调 衰 减 和 谐 两 振种形式。

自动控制原理(第三版)第五章频率响应法

自动控制原理(第三版)第五章频率响应法
频段的两条直线组成的折线近似表示, 如图5-18的渐近线所
示。 这两条线相交处的交接频率ω=1/T, 称为振荡环节的无阻尼
自然振荡频率。在交接频率附近, 对数幅频特性与渐近线存在
一定的误差, 其值取决于阻尼比ζ的值, 阻尼比越小, 则误差越大, 如表5-4所示。当ζ<0.707时, 在对数幅频特性上出现峰值。根
一个单位长度。设对数分度中的单位长度为L, ω0为参考点, 则 当ω以ω0为起点, 在10倍频程内变化时, 坐标点相对于ω0的距离
为表5-1中的第二行数值乘以L。
第五章 频 率 响 应 法
图 5-4 对数分度和线性分度
第五章 频 率 响 应 法
表 5-1 10倍频程内的对数分度
第五章 频 率 响 应 法
第五章 频 率 响 应 法
图 5-7 比例环节的伯德图
第五章 频 率 响 应 法
2. 积分环节 积分环节的频率特性为
其幅频特性和相频特性为
(5.18)
(5.19)
由式(5.19)可见,它的幅频特性与角频率ω成反比, 而相频特性恒
为-90°。对数幅频特性和相频特性为
(5.20)
第五章 频 率 响 应 法
T), 则有
因此有
这表明φ(ω)是关于ω=1/T, φ(ω)=-45°这一点中心对称的。 用
MATLAB画出的惯性环节的伯德图如图5-14所示(T=1)。
第五章 频 率 响 应 法
图 5-14 MATLAB绘制的惯性环节的伯德图
第五章 频 率 响 应 法
5. 一阶微分环节 一阶微分环节的频率特性为 幅频特性和相频特性为
即 所以, 惯性环节的奈氏图是圆心在(0.5, 0), 半径为0.5的半圆 (
见图5-12)。 对数幅频特性和相频特性为

自动控制原理第5章-频域分析

自动控制原理第5章-频域分析
(4)频率特性主要适用于线性定常系统,也可以有条件 地推广应用到非线性系统中。
第5章 控制系统的频域分析
§5.1 频 率 特 性
一、频率特性概述
1、 RC网络的频率特性
T
du0 (t) dt
u0 (t)
ui (t)
其传递函数为:
G(s) U0(s) 1 Ui (s) Ts 1
在复数域内讨论RC网络,并求输出电压
(T)2 1
——RC网络的频率特性
G( j)
1
(T)2 1 —幅频特性
() arctan T —相频特性
第5章 控制系统的频域分析
比较
G( j)
1
jT 1

G(s) 1 Ts 1
可见,只要用jω代替该网络的传递函数G(s)中的复变 量S,便可得其频率特性G(jω)。结论具有一般性。
2、线性定常系统的频率特性
设 ui (t) Um sin t
U U e •
j00 复阻抗 Z R 1 jRC 1
i
m
第5章 控制系统的频域分析
jC
jC



U0
1

I
jC
1 Ui
jC Z
1
jC
jCUi jCR 1
1
jT

U 1
i
于是有:

U0

Ui
1
jT 1

(T RC)
G( j)
U0

Ui
1
e j () G( j) e j ()
第5章 控制系统的频域分析
5.2.2 典型环节的频率特性
1、积分环节
传递函数: G(s) 1

北航机电控制工程基础(自动控制原理)第五章2-典型环节频率特性

北航机电控制工程基础(自动控制原理)第五章2-典型环节频率特性

北京航空航天大学
二、积分环节 Integral links 1、伯德图
机电控制工程基础
K G (s) s
Fundamentals of Mechatronic Control Engineering
K G ( j ) j
K A( )
K ( ) 0 arctan j 0 2
幅值
机电控制工程基础
袁松梅教授 Tel:82339630
下半个圆对应于正频率部分,而上 半个圆对应于负频率部分。
Email:yuansm@
北京航空航天大学
四、振荡环节Oscillation link 2、伯德图 讨论 0
机电控制工程基础
1 时的情况。当K=1时,频率特性为:
K Kn G( s ) 2 2 2 T s 2Ts 1 s 2 n s n 2
G( s) K , G( j ) K
相频特性: ( )
1、伯德图
幅频特性:A( ) K ;
0

L( ) / dB
20log K 20log K 20log K
K 1
对数幅频特性:
K 1 lg
0 K 1
( )
180
0 L( ) 20 lg K 0 0
1.0 -45 100 -89.4
1 1 当 0时, (0) 0;当 时, ( ) ;当 时, () 。 T T 4 2
当时间常数T 变化时,对数幅频特性和对数相频特性的形状都不变,仅仅是根据转折 频率1/T 的大小整条曲线向左或向右平移即可。而当增益改变时,相频特性不变,幅 频特性上下平移。
K P ( ) 1 T 2 2 KT Q ( ) 1 T 2 2 Q ( ) T P( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特性可用分段直 线近似表示。 (4)容易将频率实验数据用分段直线拟合,从而 得到对数频率特性或传递函数。 3. 对数幅相特性曲线(Nichols图)
由对数幅频特性和对数相频特性合并而成。
可以方便求出系统闭环频率特性及有关特征 参数,作为评估系统性能的依据。
§5.1典型环节的频率特性 一、比例环节 比例环节的传递函数为:G(s)=K=const 频率特性表达式为: G( j ) K const
2、根据系统的频率性能间接地揭示了系统的动 态特性和稳态特性,可以简单迅速地判断某 些环节或参数对系统性能的影响,指出系统 改进的方向。
3、频率特性可以由实验确定,这对于难以建立 动态模型的系统很有好处。
频率特性的求解:
1 c ( t ) L [G(s) R(s)] 来求取 方法1:利用关系式 从输出的稳态响应中可得到谐波输出的幅值和相位。
结论
Ar=1 ω=0.5
给稳定的系统输入一个正弦,其稳态输出是与输入 同频率的正弦,幅值随ω而变,相角也是ω的函数。
ω=1
ω=2
ω=2.5
ω=4
相角问题
AA ① 稳态输出 迟后于输入的 角度为: B φ= 360o A ②该角度与ω有 关系 , ∴为φ(ω) ③该角度与初始 角度无关 , ∴ …
B B
在极坐标系中画出该向量。 ω从-∞→+∞变换时该向量在极坐标系中形成 的曲线,称为Nyquist曲线。 实频特性是ω的偶函数,虚频特性是ω的奇函数。为什么?
惯性环节G(jω)
φ(ω) = -artan0.5 ω
G(s) =
1 0.5s+1 A(ω)=
ω
0 0
1
0.5
0.97
1
2
4
1 0.25 ω2+1 5 8 20
若无重极点,上式可写为
n ai b1 b2 C ( s) s j s j i 1 s pi
c(t ) b1e
j
b2e
j
j
ai e
i 1
j
n
pi t
若系统稳定,pi都具有负实部,则稳态分量为:
lim c(t ) b1e
t
b2 e
(1)任何信号都可以分解为叠加的谐波信号;
(2)频率特性是一种图解方法,根据开环频率特性判断闭环频 率特性; (3)对于某些无法求解的微分方程或传函,可通过实验测出其 频率特性,进而求传函; (4)频率特性主要是用于线性定常系统,频率特性与输入正弦 信号的幅值与相位无关。 本章涉及数学基础:傅里叶变换
b1 G ( s )
M M ( s j ) G ( j ) ( s j )( s j ) 2j s j
M M b2 G ( s ) ( s j ) G ( j ) ( s j )( s j ) 2j s j
G(jω)是一复数,可写为
( ) G ( j )
Cm X
总结:
频率特性可以分成:
j ( )
相频特性
G ( j ) A( ) e
幅频特性
G( j ) A()e
j ( )
A( ) cos jA( ) sin
虚频特性
实频特性
研究频率特性的意义 1、频率特性是控制系统在频域中的一种数学模 型,是研究自动控制系统的另一种工程方法。
对于正弦输入,其输入的稳态响应仍然是一个同 上式表明:
频率正弦信号。但幅值降低,相角滞后。
输入输出为正弦函数时,可以表示成复数形式,设 输入为Xej0,输出为Yejφ,则输出输入之复数比为:
A( ) —幅值频率特性 Ye j Y j j ( ) e A( )e j0 Xe X ( ) —相角频率特性
频率特性的定义: 线性定常系统(或元件)的频率特性是指:在零 初始条件下稳态输出的正弦信号与输入正弦信号的复 数比。
1 G ( j ) 1 j 幅频特性和相频特性数据
(rad s 1 )
0
1 0
1 2 1 2 3 4 5
0.89 0 0.70 7 0.44 7 0.31 6 0.24 3 0.19 6 -26.5 -45.0 -63.4 -71.6 -76.0 -78.7
十倍频程 十倍频程
2 0 l g | G ( j ω ) | ( d B )
0.1 0.2 0.3 1
十倍频程
十倍频程
2 3 10
十倍频程
20 30 100
ω(rad/s)
频率的对数分度
对数幅频特性: 指G(jω)的对数值20lg|G(jω)|和频率ω的关系曲线。 即纵坐标 对数相频特性: 指G(jω)的相角值φ(ω)和频率ω的关系曲线。 纵坐标是的单位是“ °”。采用线性刻度。
P() A() cos () Q() A() sin ()
A( ) P ( ) 2 Q ( ) 2
Q( ) ( ) arctan P( )
二、频率特性与传递函数的关系
线性定常系统的传递函数表达式为
C ( s) N ( s) N ( s) G( s) R( s) D( s) ( s p1 )(s p2 ) ( s pn ) M 输入为r(t)=Msin(ωt), R( s) 2 s 2 N ( s) M C ( s) 2 ( s p1 )(s p2 ) ( s pn ) s 2
j2 ( )
L( ) 20 lg A( ) 20 lg A1 ( ) 20 lg A2 ( ) 20 lg An ( ) L1 ( ) L2 ( ) Ln ( )
Gn ( j) An ()e

jn ( )
() 1 () 2 () n ()
系统频率响应与正弦输入信号的关系称为频率 特性。
是一种图解分析法,不仅可以反映系统的稳态性 能,而且可以用来研究系统的稳定性的暂态性能。 具有明确的物理意义。数学基础是傅利叶变换。
§5.1 频率特性的概念

设系统结构如图,由劳斯判据知系统稳定。
40
给系统输入一个幅值不变频率不断增大的正弦, 曲线如下:
方法2:将传递函数中的S换成
j 求取
方法3:实验法来求取
三、频率特性的几种图示方法 1. 幅相频率特性曲线 它是在复平面上以极坐标的形式来描述的。又称极坐 标图,又称Nyquist曲线。 系统的频率特性可表示为: G( j) A()e j ( ) 对某一固定频率ω1
G( j1 ) A(1 )e j (1 )
第五章 线性系统的频域分析
§5.1
频率特性的概念
§5.2 典型环节的频率特性 §5.3 系统的开环频率特性 §5.4 乃奎斯特稳定判据和系统的相对稳定性 §5.5 利用开环频率特性分析系统性能 §5.6 利用闭环频率特性分析系统性能
本章重点
1.开环频率特性的绘制(包括极坐标图和对数坐 标图); 2. 乃奎斯特稳定性判据及其在Bode图中的应用; 3. 对数频率特性和闭环系统性能的关系; 4. 开环频率特性指标; 5. 闭环频率特性指标。
j [t ( )]
A( )M sin[t ( )]
得到线性系统的幅频特性和相频特性:
A() G( j)
() G( j)
频率特性和传递函数的关系为
G ( j ) G ( s ) s j
系统的频率特性也是输入信号的傅氏变换和输 出信号的傅氏变换之比。 C ( j ) G( j ) R( j ) 其中 R( j ) r (t )e
G( j) A()e j ( )
G( j) A()e j ( )
M b1 A( )e j ( ) 2j
M b2 A( )e j ( ) 2j
css (t ) b1e
jt
b2e
jt
A( )M
e
j [t ( )]
e 2j
一、频率特性的定义 例:如图所示电气网络的传递函数为
U 2 ( s) 1 Cs 1 1 U1 ( s) R 1 Cs RCs 1 s 1
u1
R
i
C
u2
若输入为正弦信号: u1 U1m sin t 其拉氏变换为:
U 1m U1 ( s) 2 s 2
U1m 1 2 输出拉氏变换为: U 2 ( s) s 1 s 2
稳定后输出 C(t)=CmSin(t+)
三要素: 频率: 不变
幅值: M Cm 关系为: 幅角: 0 关系为:
0 G(s) |S j
Cm A( ) G(s) S j X
系统频率响应与正弦输入信号之间的关系称为频率特性。
幅频特性 相频特性
可见:A( ) G ( j )
L() 20lg A()
L(ω)称为对数幅值,单位是dB(分贝)。
采用对数坐标图的优点: (1)将低频段展开,将高频段压缩。 (2)当系统由多个环节串联而成时,简化运算。
G( j) G1 ( j)G2 ( j)Gn ( j)
G1 ( j) A1 ()e j1 ( ) G2 ( j) A2 ()e
其拉氏反变换为:
U1m U1m u2 e sin(t arctan ) 2 2 2 2 1 1
t
其稳态响应为:
lim u2
t
U1m 1 2 2
sin(t arctan ) U1m
1 1 sin(t ) 1 j 1 j
时域分析: 频域分析:
输入
c(t ) L1[G(s) R(s)]
r(t)=X Sint
系统
输出(稳定后)
相关文档
最新文档