实验四典型环节和系统频率特性的测量综述

合集下载

自动控制原理-控制系统的频率特性实验报告

自动控制原理-控制系统的频率特性实验报告

肇庆学院工程学院 自动控制原理实验报告_12 _年级_ 电气一班 组员:王园园、李俊杰 实验日期 2014/6/9 姓名:李奕顺 学号:2130 老师评定___________ 实验四:控制系统的频率特性一、实验原理1.被测系统的方块图:见图4-1图4-1 被测系统方块图系统(或环节)的频率特性G (j ω)是一个复变量,可以表示成以角频率ω为参数的幅值和相角:) G(j ω) G(j ω) G(j ω= (4—1)本实验应用频率特性测试仪测量系统或环节的频率特牲。

图4-1所示系统的开环频率特性为:) E(j ω) B(j ω)E(j ω)B(j ω) E(j ω) B(j ω) (j ωG ) (j ωG 21==⋅(4—2)采用对数幅频特性和相频特性表示,则式(4—2)表示为:)E(j ω)B(j ωlg20) )H(j ω (j ωG ) (j ωG 20lg 21=⋅) E(j ωlg 20) B (j ωlg 20-= (4—3)) E(j ω) B(j ω)E(j ω)B(j ω) H(j ω) (j ωG ) (j ωG 21-==(4—4)将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化,并施加于被测系统的输人端[r(t)],然后分别测量相应的反馈信号[b(t)]和误差信号[e(t)]的对数幅值和相位。

频率特性测试仪测试数据经相关运算器后在显示器中显示。

根据式(4—3)和式(4—4)分别计算出各个频率下的开环对数幅值和相位,在半对数座标纸上作出实验曲线:开环对数幅频曲线和相频曲线。

根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频确定频率特性(或传递函数)。

所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的频率特牲(或传递函数)所画出的理论相频曲线在一定程度上相符,如果测量所得的相位在高频(相对于转角频率)时不等于- 90°(q-p)[式中p和q分别表示传递函数分子和分母的阶次],那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。

系统频率特性地测试

系统频率特性地测试

自动控制原理实验实验报告实验四系统频率特性的测试学号22012309 姓名时间2014年10月23日评定成绩审阅教师目录一、实验目的··3二、实验原理··3三、预习与回答··3四、实验设备··4五、实验线路图··4六、实验步骤··4七、实验数据··4八、实验分析及思考题··5九、实验总结··7一、实验目的:(1)明确测量幅频和相频特性曲线的意义;(2)掌握幅频曲线和相频特性曲线的测量方法;(3)利用幅频曲线求出系统的传递函数;二、实验原理:在设计控制系统时,首先要建立系统的数学模型,而建立系统的数学模型是控制系统设计的重点和难点。

如果系统的各个部分都可以拆开,每个物理参数能独立得到,并能用物理公式来表达,这属机理建模方式,通常教材中用的是机理建模方式。

如果系统的各个部分无法拆开或不能测量具体的物理量,不能用准确完整的物理关系式表达,真实系统往往是这样。

比如“黑盒”,那只能用二端口网络纯的实验方法来建立系统的数学模型,实验建模有多种方法。

此次实验采用开环频率特性测试方法,确定系统传递函数。

准确的系统建模是很困难的,要用反复多次,模型还不一定建准。

另外,利用系统的频率特性可用来分析和设计控制系统,用Bode 图设计控制系统就是其中一种。

幅频特性就是输出幅度随频率的变化与输入幅度之比,即)()(ωωio U U A =。

测幅频特性时,改变正弦信号源的频率,测出输入信号的幅值或峰峰值和输输出信号的幅值或峰峰值。

测相频有两种方法:(1)双踪信号比较法:将正弦信号接系统输入端,同时用双踪示波器的Y1和Y2测量系统的输入端和输出端两个正弦波,示波器触发正确的话,可看到两个不同相位的正弦波,测出波形的周期T 和相位差Δt ,则相位差0360⨯∆=ΦTt 。

频率特性实验报告

频率特性实验报告

一、实验目的1. 理解频率特性的基本概念和测量方法。

2. 掌握使用Bode图和尼奎斯特图分析系统频率特性的方法。

3. 了解频率特性在系统设计和稳定性分析中的应用。

二、实验原理频率特性描述了系统对正弦输入信号的响应,通常用幅频特性和相频特性来表示。

幅频特性表示输出信号幅度与输入信号幅度之间的关系,相频特性表示输出信号相位与输入信号相位之间的关系。

频率特性的测量通常通过以下步骤进行:1. 使用正弦信号发生器产生不同频率的正弦信号。

2. 将信号输入被测系统,并测量输出信号的幅度和相位。

3. 根据测量数据绘制幅频特性和相频特性曲线。

三、实验设备1. 正弦信号发生器2. 示波器3. 信号分析仪4. 被测系统(如电路、控制系统等)四、实验步骤1. 准备实验设备,确保各设备连接正确。

2. 设置正弦信号发生器,产生一系列不同频率的正弦信号。

3. 将正弦信号输入被测系统,并使用示波器或信号分析仪测量输出信号的幅度和相位。

4. 记录不同频率下的幅度和相位数据。

5. 使用绘图软件绘制幅频特性和相频特性曲线。

五、实验结果与分析1. 幅频特性分析通过绘制幅频特性曲线,可以观察到系统对不同频率信号的衰减程度。

一般来说,低频信号的衰减较小,高频信号的衰减较大。

根据幅频特性,可以判断系统的带宽和稳定性。

2. 相频特性分析通过绘制相频特性曲线,可以观察到系统对不同频率信号的相位延迟。

相频特性曲线通常呈现出滞后或超前特性。

根据相频特性,可以判断系统的相位裕度和增益裕度。

3. 系统稳定性分析根据幅频特性和相频特性,可以判断系统的稳定性。

如果系统的相位裕度和增益裕度都大于零,则系统是稳定的。

否则,系统可能是不稳定的。

六、实验结论通过本次实验,我们成功地测量了被测系统的频率特性,并分析了其幅频特性和相频特性。

实验结果表明,被测系统在低频段表现出较小的衰减,而在高频段表现出较大的衰减。

相频特性曲线显示出系统在低频段滞后,在高频段超前。

根据频率特性分析,可以得出被测系统是稳定的。

频率特性法实验报告

频率特性法实验报告

一、实验目的1. 了解频率特性法的基本原理和测试方法。

2. 掌握用频率特性法分析系统性能的方法。

3. 熟悉实验仪器和实验步骤。

二、实验原理频率特性法是控制系统分析和设计的重要方法之一。

它通过研究系统在正弦信号作用下的稳态响应,来分析系统的动态性能和稳态性能。

频率特性主要包括幅频特性和相频特性,它们分别反映了系统在正弦信号作用下的幅值和相位变化规律。

三、实验仪器与设备1. 微型计算机2. 自动控制实验教学系统软件3. 超低频信号发生器4. 示波器5. 信号调理器6. 被测系统(如二阶系统、三阶系统等)四、实验内容与步骤1. 实验内容(1)测量被测系统的幅频特性(2)测量被测系统的相频特性(3)绘制幅频特性曲线和相频特性曲线(4)分析系统性能2. 实验步骤(1)连接实验电路,确保各设备正常工作。

(2)使用超低频信号发生器产生正弦信号,频率范围可根据被测系统特性选择。

(3)将信号发生器的输出信号送入被测系统,同时将信号发生器和被测系统的输出信号送入示波器。

(4)调整信号发生器的频率,记录不同频率下被测系统的输出幅值和相位。

(5)将实验数据输入计算机,利用自动控制实验教学系统软件进行数据处理和绘图。

(6)分析系统性能,包括系统稳定性、动态性能和稳态性能。

五、实验结果与分析1. 幅频特性曲线根据实验数据,绘制被测系统的幅频特性曲线。

从曲线中可以看出,随着频率的增加,系统的幅值逐渐减小,并在一定频率范围内出现峰值。

峰值频率对应系统的谐振频率,峰值幅度对应系统的谐振增益。

2. 相频特性曲线根据实验数据,绘制被测系统的相频特性曲线。

从曲线中可以看出,随着频率的增加,系统的相位逐渐变化,并在一定频率范围内出现相位滞后或相位超前。

3. 系统性能分析根据幅频特性和相频特性曲线,可以分析被测系统的性能。

(1)稳定性分析:通过分析相频特性曲线,可以判断系统是否稳定。

如果系统在所有频率范围内都满足相位裕度和幅值裕度要求,则系统稳定。

系统频率测试实验报告(3篇)

系统频率测试实验报告(3篇)

第1篇一、实验目的1. 了解系统频率特性的基本概念和测试方法。

2. 掌握使用示波器、频谱分析仪等设备进行系统频率测试的操作技巧。

3. 分析测试结果,确定系统的主要频率成分和频率响应特性。

二、实验原理系统频率特性是指系统对正弦输入信号的响应,通常用幅频特性(A(f))和相频特性(φ(f))来描述。

幅频特性表示系统输出信号幅度与输入信号幅度之比,相频特性表示系统输出信号相位与输入信号相位之差。

频率测试实验通常包括以下步骤:1. 使用正弦信号发生器产生正弦输入信号;2. 将输入信号输入被测系统,并测量输出信号;3. 使用示波器或频谱分析仪观察和分析输出信号的频率特性。

三、实验设备1. 正弦信号发生器2. 示波器3. 频谱分析仪4. 被测系统(如放大器、滤波器等)5. 连接线四、实验步骤1. 准备实验设备,将正弦信号发生器输出端与被测系统输入端相连;2. 打开正弦信号发生器,设置合适的频率和幅度;3. 使用示波器观察输入信号和输出信号的波形,确保信号正常传输;4. 使用频谱分析仪分析输出信号的频率特性,记录幅频特性和相频特性;5. 改变输入信号的频率,重复步骤4,得到一系列频率特性曲线;6. 分析频率特性曲线,确定系统的主要频率成分和频率响应特性。

五、实验结果与分析1. 幅频特性曲线:观察幅频特性曲线,可以发现系统存在一定频率范围内的增益峰值和谷值。

这些峰值和谷值可能对应系统中的谐振频率或截止频率。

通过分析峰值和谷值的位置,可以了解系统的带宽和选择性。

2. 相频特性曲线:观察相频特性曲线,可以发现系统在不同频率下存在相位滞后或超前。

相位滞后表示系统对输入信号的相位延迟,相位超前表示系统对输入信号的相位提前。

通过分析相位特性,可以了解系统的相位稳定性。

六、实验总结1. 通过本次实验,我们掌握了系统频率特性的基本概念和测试方法。

2. 使用示波器和频谱分析仪等设备,我们成功地分析了被测系统的频率特性。

3. 通过分析频率特性曲线,我们了解了系统的主要频率成分和频率响应特性。

自动控制原理实验四_系统频率特性的测试

自动控制原理实验四_系统频率特性的测试

东南大学自动控制实验室实验报告课程名称:自动控制原理实验实验名称:系统频率特性的测试院〔系〕:自动化学院专业:自动化**:**:实验室:实验组别:同组人员:实验时间:2021/11/24评定成绩:审阅教师:目录一.实验目的和要求2二.实验原理2三.实验方案与实验步骤3四.实验设备与器材配置4五.实验记录4六.实验分析4七.预习与答复5八.实验结论5一.实验目的和要求实验目的:〔1〕明确测量幅频和相频特性曲线的意义〔2〕掌握幅频曲线和相频特性曲线的测量方法〔3〕利用幅频曲线求出系统的传递函数报告要求:〔1〕画出系统的实际幅度频率特性曲线、相位频率特性曲线,并将实际幅度频率特性曲线转换成折线式Bode图,并利用拐点在Bode图上求出系统的传递函数。

〔2〕用文字简洁表达利用频率特性曲线求取系统传递函数的步骤方法。

〔3〕利用上表作出Nyquist图。

〔4〕实验求出的系统模型和电路理论值有误差,为什么.如何减小误差.〔5〕实验数据借助Matlab作图,求系统参数。

二.实验原理在设计控制系统时,首先要建立系统的数学模型,而建立系统的数学模型是控制系统设计的前提和难点。

建模一般有机理建模和辨识建模两种方法。

机理建模就是根据系统的物理关系式,推导出系统的数学模型。

辨识建模主要是人工或计算机通过实验来建立系统数学模型。

两种方法在实际的控制系统设计中,常常是互补运用的。

辨识建模又有多种方法。

本实验采用开环频率特性测试方法,确定系统传递函数,俗称频域法。

还有时域法等。

准确的系统建模是很困难的,要用反复屡次,模型还不一定建准。

模型只取主要局部,而不是全部参数。

另外,利用系统的频率特性可用来分析和设计控制系统,用Bode图设计控制系统就是其中一种。

幅频特性就是输出幅度随频率的变化与输入幅度之比,即,测幅频特性时,改变正弦信号源的频率测出输入信号的幅值或峰峰值和输输出信号的幅值或峰峰值测相频有两种方法:〔1〕双踪信号比较法:将正弦信号接系统输入端,同时用双踪示波器的Y1和Y2测量系统的输入端和输出端两个正弦波,示波器触发正确的话,可看到两个不同相位的正弦波,测出波形的周期T和相位差Δt,则相位差。

实验四 典型系统的频率特性测试

实验四 典型系统的频率特性测试

自动控制原理实验报告实验名称:典型系统的频率特性测试班级:姓名:学号:实验四典型系统的频率特性测试一、实验目的1、加深理解系统及元件频率特性的物理概念2、掌握测量典型一阶系统和二阶系统频率特性曲线的方法3、掌握软件仿真求取一阶和二阶系统开环频率特性的方法4、了解从频率特性求系统传递函数及参数的方法二、实验容1、搭建一阶惯性环节,绘制其频率特性曲线2、搭建典型二阶环节,绘制其频率特性曲线3、用软件仿真求取一阶和二阶系统频率特性曲线,跟实验结果比较三、实验步骤1、一阶惯性环节的频率特性(1)用Matlab函数绘制系统的幅相曲线和对数频率特性曲线,记录理想幅频曲线和相频曲线。

程序如下:sys=tf(1,[0.005,1]);nyquist(sys);title('系统的奈氏图');figurebode(sys);title('系统的波特图');(2)在simulink下创建惯性环节的幅相曲线和对数频率特性曲线仿真系统。

改变正弦输入函数的频率,测试并记录输出与输入幅值之比,相位之差,保存仿真结果(3)在实验箱中搭建模拟电路,输入正弦波信号,观测输入输出正弦波曲线。

调节正弦波频率和幅值,绘制该一阶惯性环节的幅频曲线和相频曲线,与软件仿真对比2、二阶系统的频率特性曲线(1)用Matlab函数绘制二阶系统的幅相曲线和对数频率特性曲线,记录理想幅频曲线和相频曲线。

程序仿真:sys=tf(200,[1,10,200]);nyquist(sys);title('系统的奈氏图');figurebode(sys);title('系统的波特图');(2)在simulink下创建二阶环节的幅相曲线和对数频率特性曲线仿真系统。

改变正弦输入函数的频率,测试并记录输出与输入幅值之比,相位之差,保存仿真结果(3)在实验箱中搭建模拟电路,输入正弦波信号,观测输入输出正弦波曲线。

典型环节和系统频率特性的测量

典型环节和系统频率特性的测量

实验三 典型环节和系统频率特性的测量一、实验目的1. 了解典型环节和系统的频率特性曲线的测试方法;2. 根据实验求得的频率特性曲线求取传递函数。

二、实验设备同实验一。

三、实验内容1. 惯性环节的频率特性测试;2. 二阶系统频率特性测试;3. 无源滞后—超前校正网络的频率特性测试;4. 由实验测得的频率特性曲线,求取相应的传递函数;5. 用软件仿真的方法,求取惯性环节和二阶系统的频率特性。

四、实验原理1. 系统(环节)的频率特性设G(S)为一最小相位系统(环节)的传递函数。

如在它的输入端施加一幅值为Xm 、频率为ω的正弦信号,则系统的稳态输出为)sin()()sin(ϕωωϕω+=+=t j G Xm t Y y m由式①得出系统输出,输入信号的幅值比相位差)()(ωωj G Xmj G Xm Xm Ym == (幅频特性) )()(ωωφj G ∠= (相频特性)式中)(ωj G 和)(ωφ都是输入信号ω的函数。

2. 频率特性的测试方法 2.1 李萨茹图形法测试 2.1.1幅频特性的测试 由于 mmm m X Y X Y j G 22)(==ω 改变输入信号的频率,即可测出相应的幅值比,并计算 mmX Y A L 22log 20)(log 20)(==ωω (dB ) 其测试框图如下所示:图3-1 幅频特性的测试图(李萨茹图形法)注:示波器同一时刻只输入一个通道,即系统(环节)的输入或输出。

2.1.2相频特性的测试图3-2 幅频特性的测试图(李萨茹图形法)令系统(环节)的输入信号为:t X t X m ωsin )(= (3-1) 则其输出为 )sin()(φω+=t Y t Y m (3-2)对应的李萨茹图形如图3-2所示。

若以t 为参变量,则)(t X 与)(t Y 所确定点的轨迹将在示波器的屏幕上形成一条封闭的曲线(通常为椭圆),当t=0时,0)0(=X 由式(3-2)得 )sin()0(φm Y Y = 于是有 mm Y Y Y Y 2)0(2sin )0(sin )(11--==ωφ (3-3) 同理可得mX X 2)0(2sin )(1-=ωφ (3-4) 其中)0(2Y 为椭圆与Y 轴相交点间的长度; )0(2X 为椭圆与X 轴相交点间的长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档