青岛二中2020-2021学年高二上学期数学周考十(文A+)
2020-2021学年山东省新高考测评联盟上学期高二10月联考数学试题(解析版)

2020-2021学年山东省新高考测评联盟上学期高二10月联考数学试题一、单选题1.点()3,4,5P -关于xOz 平面对称的点的坐标是( )A .()3,4,5B .()3,4,5--C .()3,4,5--D .()3,4,5--【答案】B【解析】本题根据关于坐标平面对称的点的坐标直接求解即可.【详解】解:因为点(,,)x y z 关于xOz 平面对称的点的坐标是(,,)x y z -,所以点()3,4,5P -关于xOz 平面对称的点的坐标是()3,4,5--,故选:B.【点睛】本题考查求点关于坐标平面对称的点的坐标,是基础题.2.如图所示,一个水平放置的平面图形的直观图是一个底角为45°的等腰梯形,已知直观图OA B C '''的面积为4,则该平面图形的面积为( )A 2B .42C .82D .22【答案】C 【解析】由原图的面积是直观图面积的22.【详解】已知直观图OA B C '''的面积为4, 所以原图的面积为22482=,故选:C【点睛】本题主要考查了斜二测画法,切要掌握原图的面积是直观图面积的22倍,属于基础题.3.如图所示,在三棱锥A BCD -中,点F 在棱AD 上,且3AF FD =,E 为BC 中点,则FE 等于( )A .113224AC AB AD --+ B .113224AC AB AD +- C .112223AC AB AD -+- D .112223AC AB AD -+ 【答案】B【解析】根据空间向量的线性运算求解即可.【详解】 ()1311324224EF EB BA AF AB AC AB AD AC AB AD =++=--+=--+, 所以,113224FE EF AC AB AD =-=+- 故选:B【点睛】本题主要考查了空间向量的线性运算,属于基础题.4.已知αβ⊥且l αβ=,m α⊂则“m β⊥”是“m l ⊥”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】本题先判断充分性满足,再判断必要性满足,最后给出答案.【详解】解:充分性:因为l β⊂,m β⊥,所以m l ⊥,所以充分性满足;必要性:因为αβ⊥且l αβ=,m α⊂,m l ⊥,所以m β⊥,所以必要性满足.所以“m β⊥”是“m l ⊥”的充要条件故选:C【点睛】本题考查充要条件的判断、线面垂直与线线垂直的判断,是基础题5.现有同底等高的圆锥和圆柱,已知圆柱的轴截面是边长为2的正方形,则圆锥的侧面积为( ) A .3πB .3π2C .5π2D .5π 【答案】D【解析】由已知条件知,圆锥的高h 和底面直径2r 都为2,即可求圆锥的母线长l ,利用圆锥侧面积公式S rl π=求面积即可.【详解】同底等高的圆锥和圆柱,圆柱的轴截面是边长为2的正方形,知:圆锥的高h 和底面直径2r 都为2, ∴圆锥的母线长为:225l h r =+=,有侧面积5S rl ππ==.故选:D【点睛】本题考查了圆锥侧面积的求法,结合圆柱、正方形的性质,并应用了圆锥侧面积公式S rl π=,属于简单题.6.在我们身边,随处都可以看到各种物体的影子.现有一边长为5米的正方形遮阳布,要用它搭建一个简易遮阳棚,正方形遮阳布所在平面与东西方向的某一条直线平行.设正南方向射出的太阳光线与地面成60°角,若要使所遮阴影面的面积最大,那么遮阳布所在平面与阴影面所成角的大小为( )A .30°B .45°C .60°D .75°【答案】A【解析】由题意画出图像,虚线表示光线,AB 边表示遮阳布,5AB c ==, 设,,ABC BC a AC b θ∠===,在ABC 中,求出53sin 5cos 3a θθ=+,再利用辅助角公式得到()103sin 60a θ=+︒,要使面积最大,则a 最大即可得出结果. 【详解】如图,虚线表示光线,AB 边表示遮阳布,即5AB c ==,设,,ABC BC a AC b θ∠===,那么遮阳布所在平面与阴影面所成角的大小为θ,则60C ∠=°,作AD BC ⊥交BC 于点D , 那么如图构成的ABC 中有:则1sin 53cos 5cos 2sin 603c a c θθθθ=+⨯=+︒, 由辅助角公式得:()10360a θ=+︒, 要使面积最大,则a 最大,当6090θ+︒=︒,即30θ=︒.故选:A.【点睛】本题主要考查了辅助角公式以及解三角形的问题.属于中档题. 72ABCD 沿对角线AC 折起,使得2BD =,则异面直线AB 和CD 所成角的余弦值为( )A .12B .2C .32D 6【答案】A【解析】分别取AC ,BD ,BC 中点为E ,F ,G ,则有//FG CD ,//EG AB ,得到FGE ∠为异面直线AB 与CD 所成的角,然后根据正方形的边长和BD 的长度,利用中位线及直角三角形中线定理求得EF ,FG ,EG 的长度求解.【详解】如图所示:分别取AC ,BD ,BC 中点为E ,F ,G ,连接BD ,EF ,EG ,FG ,DE ,EB ,则//FG CD ,//EG AB ,所以FGE ∠为异面直线AB 与CD 所成的角, 22FG =,2EG =, 在等腰直角三角形ABC 中, 因为2AB BC ==所以2AC =.因为 点E 为AC 的中点, 所以112BE AC ==, 同理可得,1DE =.因为2222BE DE BD +==,所以BED 是等腰直角三角形.又因为 点F 为BD 的中点, 所以1222EF BD ==在EFG 中,2FG EG EF ===,所以EFG 是等边三角形,所以 60FGE ∠=,所以 1cos cos602FGE ∠==. 故选:A .【点睛】本题主要考查异面直线所成角的求法,还考查了转化化归的思想和空间想象,运算求解的能力,属于中档题.8.如图所示,在三棱锥P ABC -中,BC ⊥平面PAC ,PA AB ⊥,4PA AB ==,且E 为PB 的中点,AF PC ⊥于F ,当AC 变化时,则三棱锥P AEF -体积的最大值是( )A .23B .2C 42D .523【答案】C【解析】由题意知P AEF E PAF V V --=且216||||316||E PAF AC BC V AC -⋅=⋅+,令||AC a =,结合换元法、二次函数最值求P AEF -体积的最大值即可.【详解】在三棱锥P ABC -中,BC ⊥平面PAC ,4PA AB ==知:222||||||16AC BC AB +==,而1||||2||2PAC SAC PA AC =⋅⋅=, 而P AEF E PAF V V --=且1||32E PAF PAF BC V S -=⋅⋅,又222||||||PAF PAC PA S S PA AC =⋅+∵E 为PB 的中点,知:21||16||||32316||E PAF PAF BC AC BC V S AC -⋅=⋅⋅=⋅+∴设||AC a =,则||BC =216316E PAF V a -=⋅+,令21616m a =+≥,有161633E PAF V -==令11(0,]16x m =∈,163E PAF V -=而由二次函数2()512481f x x x =-+-的性质知:364x =时有最大值为18,∴E PAF V -最大值为1633=, 故选:C【点睛】 本题考查三棱锥的体积计算,结合换元法、二次函数最值求三棱锥体积最值,注意换元过程中定义域的等价变化.二、多选题9.下面关于空间几何体叙述不正确的是( )A .底面是正多边形的棱锥是正棱锥B .棱柱的侧面都是平行四边形C .直平行六面体是长方体D .直角三角形以其一边所在直线为轴旋转一周形成的几何体是圆锥【答案】ACD【解析】在A 中,棱锥顶点在底面投影必须是底面正多边形的中心,即可判断A ;在B 中,棱柱的侧面都是平行四边形是正确的;在C 中,直平行六面体底面是平行四边形侧棱垂直于底面即可,即可判断C ;在D 中,以直角三角形斜边所在的直线为旋转轴时,所形成的几何体不是圆锥,即可判断D【详解】对于A :底面是正多边形且棱锥顶点在底面投影必须是底面正多边形的中心的棱锥是正棱锥,故选项A 不正确;对于B :棱柱的侧面都是平行四边形是正确的,故选项B 正确;对于C :直平行六面体底面是平行四边形侧棱垂直于底面,不一定是长方体,故选项C 不正确;对于D :以直角三角形斜边所在的直线为旋转轴时,所形成的几何体是两个同底的圆锥,故选项D 不正确;故选:ACD【点睛】本题主要考查了棱锥、棱柱、和和圆锥的结构特征,属于基础题.10.设{},,a b c 是空间的一组基底,则下列结论正确的是( )A .a ,b ,c 可以为任意向量B .对空间任一向量p ,存在唯一有序实数组(),,x y z ,使p xa yb zc =++C .若a b ⊥,b c ⊥,则a c ⊥D .{}2,2,2a b b c c a +++可以作为构成空间的一组基底【答案】BD【解析】根据可作为基底的一组向量的性质,结合向量垂直、共线的判定,判断各选项的正误即可.【详解】A 选项:a ,b ,c 为不共线的非零向量;B 选项:由向量的基本定理知,空间任一向量p ,存在唯一有序实数组(),,x y z ,使p xa yb zc =++;C 选项:a b ⊥,b c ⊥,则,a c 不一定垂直;D 选项:{}2,2,2a b b c c a +++中三个向量间无法找到实数λ使得它们之间有λ=m n 的等式形式成立,即可以构成基底.故选:BD【点睛】本题考查了向量的基本定理,理解作为基底向量的非零、不共线性质,应用向量垂直、共线判定正误. 11.如图所示,有一正四面体形状的木块,其棱长为a ,点P 是ACD △的中心.劳动课上,需过点P 将该木块锯开,并使得截面平行于棱AB 和CD ,则下列关于截面的说法中正确的是( )A .截面与侧面ABC 的交线平行于侧面ABDB .截面是一个三角形C .截面是一个四边形D .截面的面积为24a 【答案】AC【解析】先作出符合题意的截面,分别取BC 、AC 、BD 、AD 的三等分点E 、M (靠近C 点),F 、N (靠近D 点),四边形EMNF 是平行四边形,即为所作截面,即可逐一判断四个选项的正误.【详解】因为正四面体的四个面都是等边三角形,点P 是ACD △的中心,所以P 位于CD 中线的23处, 分别取BC 、AC 、BD 、AD 的三等分点E 、M (靠近C 点),F 、N (靠近D 点),则//EM AB ,//EF CD ,且截面EMNF 经过点P ,满足题意,因为//EM FN 且=EM FN ,所以四边形EMNF 是平行四边形, 平面EMNF ⋂平面ABC EM =,//EM FN ,NF ⊂平面ABD ,所以//EM 平面ABD ,所以选项A 正确;截面是一个四边形,故选项B 不正确;选项C 正确;四边形EMNF 是边长为23a 的菱形,所以面积不是24a ,故选项D 不正确, 故选:AC【点睛】本题主要考查了线面平行判断的应用以及空间几何体的截面图形,属于中档题12.如图所示,已知二面角A BD C --的大小为π3,G ,H 分别是BC ,CD 的中点,E ,F 分别在AD ,AB 上,13AE AF AD AB ==,且AC ⊥平面BCD ,则以下说法正确的是( )A .E ,F ,G ,H 四点共面B .//FG 平面ADCC .若直线FG ,HE 交于点P ,则P ,A ,C 三点共线D .若ABD △的面积为6,则BCD 的面积为3【答案】ACD【解析】A 选项:先证明得到//EF BD ,再证明得到//GH BD ,最后证明//EF GH 并判断A 选项正确;B 选项:先假设//FG 平面ADC 成立得到F 是AB 的中点,再与13AF AB =产生矛盾,判断B 选项错误;C 选项:先得到P ∈平面ABC 和P ∈平面DAC ,再证明P AC ∈,判断C 选项正确;D 选项:因为二面角A BD C --的大小为π3,AC ⊥平面BCD ,所以点A 到直线BD 的距离是点C 到直线BD 的距离的2倍,故ABD CBD SS =,故D 选项正确; 【详解】解:A 选项:在ABD △中,因为13AE AF AD AB ==,所以//EF BD ,在BCD 中,因为G ,H 分别是BC ,CD 的中点,所以//GH BD ,所以//EF GH ,所以E ,F ,G ,H 四点共面,故A 选项正确; B 选项:假设//FG 平面ADC 成立,因为平面ABC 平面DAC AC =,所以//FG AC ,又G 是BC 的中点,所以F 是AB 的中点,与13AF AB =矛盾,故B 选项错误; C 选项:因为FG ⊂平面ABC ,P FG ∈,所以P ∈平面ABC ,同理P ∈平面DAC ,因为平面ABC平面DAC AC =,所以P AC ∈,所以P ,A ,C 三点共线,故C 选项正确;D 选项:因为二面角A BD C --的大小为π3,AC ⊥平面BCD ,所以点A 到直线BD 的距离是点C 到直线BD 的距离的2倍,故ABD CBD SS =,故D 选项正确; 故选:ACD【点睛】本题考查证明空间四点共面、证明线面平行、证明三点共线,是中档题.三、填空题13.在三棱锥P ABC -中,PA ⊥平面ABC ,45PBA ∠=,60PBC ∠=,则ABC ∠为______. 【答案】45【解析】作出图形,设2AB =,过点A 在平面ABC 内作AD BC ⊥,连接PD ,计算出BD ,进而可求得ABC ∠的值. 【详解】①当ABC ∠为锐角时,如下图所示:设2AB =,过点A 在平面ABC 内作AD BC ⊥,垂足为点D ,连接PD ,PA ⊥平面ABC ,BC 、AB 平面ABC ,PA AB ∴⊥,PA BC ⊥,45PBA ∠=,所以,PAB △为等腰直角三角形,且2PA AB ==,2222PB PA AB ∴=+=,AD BC ⊥,PA BC ⊥,AD PA A ⋂=,BC ∴⊥平面PAD , PD ⊂平面PAD ,PD BC ∴⊥,60PBC ∠=,cos 22cos602BD PB PBC ∴=∠==AD BC ⊥,所以,2cos 2BD ABC AB ∠==,则45ABC ∠=; ②若ABC ∠为直角,则BC AB ⊥, 又PA BC ⊥,PAAB A =,BC ∴⊥平面PAB ,PB ⊂平面PAB ,BC PB ∴⊥,这与60PBC ∠=矛盾;③若ABC ∠为钝角,过点A 在平面ABC 内作AD BC ⊥,垂足为点D ,如下图所示:则点D 在射线CB 上,由①同理可知PD BC ⊥,进而可知PBD ∠为锐角,则PBC ∠为钝角,这与60PBC ∠=矛盾,不合乎题意.综上所述,45ABC ∠=. 故答案为:45. 【点睛】本题考查三棱锥中角的计算,考查计算能力,属于中等题.14.如图所示,已知平行六面体1111ABCD A BC D -中,2AB AD ==,14AA =,1160BAA DAA BAD ∠=∠=∠=︒.M 为1CC 的中点,则AM 长度为______.【答案】26【解析】利用空间向量的加法得到11112AM AC C M AB AD AA =+=++,然后再由22112AMAB AD AA ⎛⎫=++ ⎪⎝⎭,利用空间向量的数量积求解.【详解】 因为11112AM AC C M AB AD AA =+=++, 所以22222111111224AMAB AD AA ABADAA AB AD AA AB AD AA ⎛⎫=++=+++⋅+⋅+⋅ ⎪⎝⎭,222111122422242424222=++⨯+⨯⨯⨯+⨯⨯+⨯⨯, 24=,所以26AM =故答案为: 26 【点睛】本题主要考查空间两点间距离的向量的求法,还考查空间想象和运算求解的能力,属于中档题.15.如图所示,在四面体A BCD -中,ABC 为正三角形,四面体的高3AH =,若二面角A BC D --的大小为π3,则ABC 的面积为______.【答案】43【解析】利用正三角形的性质,结合二面角的定义、线面垂直的判定定理和性质、三角形面积公式进行求解即可 【详解】取BC 的中点E ,连接,EA EH ,设正三角形ABC 的边长为a ,由正三角形的性质可得AE BC ⊥,由勾股定理可得:2213()22AE AB BC a =-=,因为AH 是四面体A BCD -的高,所以AH ⊥平面BCD ,而BC ⊂平面BCD , 所以AH BC ⊥,而AHAE A =,,AH AE ⊂平面AHE ,因此BC ⊥平面AHE ,因为HE ⊂平面AHE ,所以有BC HE ⊥,因此AEH ∠是二面角A BC D --的平面角,所以3AEH π∠=,在RtAEH 中,sin sin 433AH AEH a AE a π∠=⇒=⇒=, 因此ABC 的面积为:13344432a a ⋅⋅=⨯⨯=. 故答案为:43 【点睛】本题考查了二面角的定义,考查了线面垂直的判定定理和性质应用,考查了数学运算能力和推理论证能力. 16.《九章算术》是西汉张苍等辑撰的一部数学巨著,被誉为人类数学史上的“算经之首”.书中“商功”一节记录了一种特殊的锥体,称为鳖臑(biēnào ).如图所示,三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,则该三棱锥即为鳖臑.若2AB =且三棱锥外接球的体积为36π,则PB AC +长度的最大值是______.【答案】45【解析】由三棱锥外接球体积求半径为3R =,根据已知条件知PA 与AC 构成平面一定是外接球过球心的截面,即可得222||||44PA AC R =+而222||||||PB PA AB =+,结合基本不等式求PB AC +最大值即可. 【详解】设三棱锥外接球的半径为R ,由体积为36π,知:34363R ππ=,即3R =,又∵PA ⊥平面ABC ,AB BC ⊥,知:面ABC 的外接圆半径为2AC r =,即有:222||||944PA AC R =+=,有22||||36PA AC +=,而在Rt PAB 中2AB =,2222||||||||4PB PA AB PA =+=+,∴22||||40PB AC +=,而222(||||)2(||||)80PB AC PB AC +≤+=,当且仅当||||PB AC =时等号成立,∴||||PB AC +≤故答案为:【点睛】本题考查了三棱锥外接球问题、以及应用基本不等式求最值,注意理解当三棱锥中有一条棱垂直于底面时底面外接圆半径、球半径与这条棱之间的关系. 四、解答题17.已知(),1,3a x =-,()1,2,1b =-,()1,0,1c =,()//2c a b +. (1)求实数x 的值;(2)若()()a b a b λ-⊥+,求实数λ的值. 【答案】(1)2;(2)917λ=. 【解析】(1)根据,2c a b +共线,设()2c a b λ=+,再根据对应坐标相等求解出x 的值; (2)先用坐标表示出,a b a b λ-+,然后根据向量垂直对应的数量积为0求解出λ的值. 【详解】(1)()()()22,1,31,2,121,0,5a b x x +=-+-=+. ∵ ()//2c a b +, ∴ 设()()20c a b λλ=+≠,∴ ()()()1,0,121,0,5x λλ=+,∴ ()211,51,x λλ⎧+=⎨=⎩即1,52,x λ⎧=⎪⎨⎪=⎩∴x 的值为2.(2)()()()2,1,31,2,11,3,4a b -=---=-,()()()2,1,31,2,121,2,31a b λλλλλ+=-+-=+-+-.∵ ()()a b a b λ-⊥+,∴ ()()21324310λλλ+--++-=, ∴ 917λ=. 【点睛】本题考查根据空间向量的共线与垂直求解参数值,主要考查学生对坐标形式下空间向量的平行与垂直关系的理解,难度较易.18.如图所示,在正方体1111ABCD A BC D -中,P 为对角线1BD 的中点,E 为11C D的中点.(1)求异面直线DP 与1BC 所成角的大小;(2)若平面1PB E ⋂平面11BCC B m =,求证://PE m . 【答案】(1)90°;(2)证明见解析.【解析】(1)以D 为原点,DA ,DC ,1DD 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.设正方体棱长为a ,写出各点的坐标表示,求出向量DP ,1BC 的坐标,再用向量的的余弦值公式111cos ,DP BC DP BC DP BC ⋅=⋅,即可得出异面直线DP 与1BC 所成角的大小.(2)根据三角形的中位先定理得出1//PE BC ,从而证得//PE 平面11BCC B .又PE ⊂平面1PB E ,平面1PB E ⋂平面11BCC B m =,最后可得//PE m .【详解】解:(1)如图所示,以D 为原点,DA ,DC ,1DD 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.设正方体棱长为a ,则()0,0,0D ,(),,0B a a ,()10,,C a a ,()10,0,D a ,,,222a a a P ⎛⎫⎪⎝⎭. ∴,,222a a a DP ⎛⎫=⎪⎝⎭,()1,0,BC a a =-, 则DP ,1BC 所成角的余弦值为111cos ,0DP BC DP BC DP BC ⋅==⋅,∴异面直线DP 与1BC 所成角为90°.(2)证明:在11BD C △中,P ,E 分别为1BD ,11C D 的中点, ∴1//PE BC ,∵PE ⊄平面11BCC B ,1BC ⊂平面11BCC B . ∴//PE 平面11BCC B .∵PE ⊂平面1PB E ,平面1PB E ⋂平面11BCC B m =, ∴//PE m . 【点睛】本题考查异面直线所成角的大小,考查线线平行的证明,考查学生的空间思维能力,属于中档题. 19.如图所示,在三棱锥P ABC -中,点M ,N 分别在棱PC ,AC 上,且N 为AC 的中点.(1)当M 为PC 的中点,求证://MN 平面PAB ; (2)若平面PAB ⊥平面ABC ,BC PA ⊥,求证:12BN CA =. 【答案】(1)证明见解析;(2)证明见解析.【解析】(1)先证明//MN PA ,再结合MN ⊄平面PAB 和PA ⊂平面PAB 证明//MN 平面PAB . (2)先证明PH BC ⊥,再证明BC AB ⊥说明ABC 是直角三角形,最后证明12BN CA =. 【详解】证明:(1)∵N 为AC 的中点,M 为PC 的中点, ∴MN 为PAC 的中位线, ∴//MN PA .∵MN ⊄平面PAB ,PA ⊂平面PAB , ∴//MN 平面PAB .(2)如图所示,作PH AB ⊥于H .∵平面PAB ⊥平面ABC 且平面PAB ⋂平面ABC AB =, ∴PH ⊥平面ABC , ∴PH BC ⊥. ∵BC PA ⊥且PAPH P =,PA ⊂平面PAB ,PH ⊂平面PAB ,∴BC ⊥平面PAB ,∴BC AB ⊥.在直角三角形ABC 中,N 为斜边AC 的中点, ∴12BN CA =. 【点睛】本题考查利用线线平行证明线面平行、利用面面垂直证明线面垂直、利用线面垂直证明线线垂直,还考查了直角三角形中的长度关系,是中档题20.如图所示,平行四边形ABCD 的边AD 所在的直线与菱形ABEF 所在的平面垂直,且GB GE =,AE AF =.(1)求证:平面ACG ⊥平面ADF ;(2)若2AF =,______,求二面角C AG F --的余弦值,从①2BC AB ,②BC AG =这两个条件中任选一个填入上面的横线上,并解答问题. 【答案】(1)证明见解析;(2)选①2BCAB ,二面角C AG F --的余弦值为13-, 选②BC AG =,二面角C AG F --的余弦值为12-, 【解析】(1)利用AD ⊥平面ABEF ,可得AD AG ⊥,由AG BE ⊥,可得AG AF ⊥,即证AG ⊥平面ADF ,从而得证; (2)选①2BCAB ,可证平面//BCE 平面ADF ,又AG ⊥平面BCE ,可知CGE ∠即为二面角C AG F --的平面角,求解即可;选②BC AG =,由(1)知AG ⊥平面ADF ,可知平面//BCE 平面ADF ,所以AG ⊥平面BCE ,可证明CGE ∠即为二面角C AG F --的平面角,利用余弦定理解之即可. 【详解】(1)∵AE AF =,∴AE AB EB ==,即ABE △为等边三角形.∵GB GE =,∴G 为BE 中点,故AG BE ⊥, ∴AG AF ⊥.∵AD ⊥平面ABEF , ∴AD AG ⊥. ∵AFA AD =,∴AG ⊥平面ADF , ∵AG ⊂平面ACG , ∴平面ACG ⊥平面ADF . (2)选①由(1)知AG ⊥平面ADF , ∵//BC AD ,//BE AF ,BC BE B =,∴平面//BCE 平面ADF , ∴AG ⊥平面BCE . ∵CG ⊂平面BCE ,GE平面BCE ,∴AG CG ⊥,AG GE ⊥,∴CGE ∠即为二面角C AG F --的平面角.∵BC ==1BG =,∴3CG =,∴1cos 3CGB ∠=, ∴1cos 3CGE ∠=-,即二面角C AG F --的余弦值为13-.选②由(1)知AG ⊥平面ADF , ∵//BC AD ,//BE AF ,BC BE B =,∴平面//BCE 平面ADF , ∴AG ⊥平面BCE . ∵CG ⊂平面BCE ,GE平面BCE ,∴AG CG ⊥,AG GE ⊥,∴CGE ∠即为二面角C AG F --的平面角,∵BC AG ==1BG =,∴2CG =, ∴1cos 2CGB ∠=∴1cos 2CGE ∠=-,即二面角C AG F --的余弦值为12-. 【点睛】本题主要考查了面面垂直的判定,以及二面角的平面角的求解,属于中档题.21.如图所示,已知三棱台111ABC A B C -中,平面11BCC B ⊥平面ABC ,ABC 是正三角形,侧面11BCC B 是等腰梯形,111224AB BB B C ===,E 为AC 的中点.(1)求证:1AA BC ⊥;(2)求直线1EB 与平面11ABB A 所成角的正弦值.【答案】(1)证明见解析;(2)65. 【解析】(1)作出辅助线,根据线面垂直的判定定理先证明BC ⊥平面11AOO A ,由此可证明1AA BC ⊥; (2)建立合适空间直角坐标系,利用直线的方向向量与平面法向量夹角的余弦值求解出线面角的正弦值.【详解】(1)证明:如图所示,分别取BC ,11B C 的中点O ,1O ,连接11AO ,1OO,AO ,∵ABC 为正三角形∴AO BC ⊥∵侧面11BCC B ⊥平面ABC ,平面11BCC B 平面ABC BC =,AO ⊂平面ABC , ∴AO ⊥平面11BCC B ,同理,11AO ⊥平面11BCC B ,∴11//AO AO ,∴1A ,1O ,O ,A 四点共面.∵等腰梯形11BCC B 中,O ,1O 是BC ,11B C 的中点,∴1OO BC ⊥.又AO BC ⊥,1AO OO O ⋂=,∴BC ⊥平面11AOO A ,∵1AA ⊂平面11AOO A ,∴1AA BC ⊥.(2)解:由(1)知AO ⊥平面11BCC B∵1OO ⊂平面11BCC B ,∴1AO OO ⊥,∴1OO ,OA ,OB 两两互相垂直,∴以O 为坐标原点,OA ,OB ,1OO 的方向分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,则由题意知()23,0,0A ,()0,2,0B ,()10,1,3B ,()0,2,0C -,()3,1,0E -,∴()13,2,3EB =-,()23,2,0AB =-,()10,1,3BB =-.设平面11ABB A 的一个法向量(),,n x y z =,则 12320,30.n AB x y n BB y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 令1x =得3y =,1z =,此时()1,3,1n =.∴111236cos ,105EB nEB n EB n ⋅===⋅⋅. 设所求线面角为θ,则16sin cos ,EB n θ==, ∴直线1EB 与平面11ABB A 所成角的正弦值为6. 【点睛】本题考查立体几何的综合,其中涉及到空间中线线垂直关系的证明、线面角的向量求法,难度一般.利用向量方法求解线面角的正弦值时,要注意:直线方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值.22.如图所示,正方形ABCD 和矩形ADEF 所在的平面互相垂直,动点P 在线段EF (包含端点E ,F )上,M ,N 分别为AB ,BC 的中点,22AB DE ==.(1)若P 为EF 的中点,求点N 到平面PDM 的距离;(2)设平面PDM 与平面ABCD 所以的锐角为θ,求cos θ的最大值并求出此时点P 的位置.【答案】(16(2)cos θ的最大值23,此时P 点与F 点重合. 【解析】(1)以A 点为坐标原点,以AB ,AD ,AF 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,设平面PDM 的一个法向量为()1111,,y z =n ,求出法向量,设点N 到平面PDM 的距离为d ,利用公式即可求得,1NM d ⋅=n n .(2)因为动点P 在线段EF (包含端点E ,F )上,可设()()0,,102P t t ≤≤,设平面PDM 的一个法向量为()2221,,y z =n ,平面ABCD 的一个法向量()00,0,1=n ,利用公式2020cos n n n n θ⋅=⋅求解即可【详解】解:以A 点为坐标原点,以AB ,AD ,AF 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.(1)由图可得()0,2,0D ,()2,1,0N ,()1,0,0M ,()0,1,1P ,则()1,1,1PM =--,()0,1,1PD =-,()1,1,0NM =--.设平面PDM 的一个法向量为()1111,,y z =n ,由11111110,0n PM y z n PD y z ⎧⋅=--=⎪⎨⋅=-=⎪⎩可得1111,,22⎛⎫= ⎪⎝⎭n . 设点N 到平面PDM 的距离为d ,则16NM d ⋅==n n . (2)因为动点P 在线段EF (包含端点E ,F )上,可设()()0,,102P t t ≤≤,则()1,,1PM t =--,()1,2,0MD =-.设平面PDM 的一个法向量为()2221,,y z =n ,由2222210,120n PM ty z n MD y ⎧⋅=--=⎪⎨⋅=-+=⎪⎩可得2121,,22t -⎛⎫= ⎪⎝⎭n . ∵平面ABCD 的一个法向量()00,0,1=n ,∴)cos 02t θ===≤≤∴当0t =时,cos θ取得最大值23,此时P 点与F 点重合. 【点睛】 本题考查利用法向量求点到面的距离,以及法向量求面面角公式的运用,主要考查学生的运算能力,属于中档题.。
青岛二中2020-2021学年高二上学期数学周考五(文AB理B)

2020届高二上学期数学第五次周考试卷命题人: 审题人:一、选择题(本大题共10小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1、一个简单几何体的主视图、左视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆.其中正确的是( )A .①②B .②③C .①③D .①②2、设l 是直线,α,β是两个不同的平面,则下列说法正确的是( )A .若l ∥α,l ∥β,则α∥βB .若l ∥α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β,l ∥α,则l ⊥β 3、已知正方体外接球的体积是323π,那么正方体的棱长等于( )A .2 2 B.223C.423D.4334、如图是一个几何体的三视图.若它的体积是33,则a =( )A .2 3 B. 6 C. 3D .2 65、过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积是球的表面积的( )A.316B.916C.38D.586、已知一个空间几何体的三视图如图所示,其中主视图、左视图都是由半圆和矩形组成,根据图中标出的尺寸,可得这个几何体的体积是( )A .2π B.43π C.53πD .3π7、正四棱锥的体积为12,底面对角线的长为26,则侧面与底面所成的二面角为( )A .30°B .45°C .60°D .90°8、在长方体ABCD A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离为( )A.83B.38C.43D.34二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上) 9、已知各面均为等边三角形的四面体的棱长为2,则它的表面积是________. 10、一个几何体的三视图如图所示,则这个几何体的体积为________. 11、如图,AB 是⊙O 的直径,C 是圆周上不同于A ,B 的点,PA 垂直于⊙O 所在的平面,AE ⊥PB 于E ,AF ⊥PC 于F ,因此,________⊥平面PBC.(填图中的一条直线).12、已知三棱锥P ABC 的三条侧棱PA ,PB ,PC 两两相互垂直,且三个侧面的面积分别为S 1,S 2,S 3,则这个三棱锥的体积为________.第10题 第11题 第12题 三、解答题(本大题共5小题,共55分.解答时应写出必要的文字说明、证明过程或演算步骤)13、(本小题满分10分)如图,圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD =O,且AB⊥CD,SO=OB=2,P为SB的中点.(1)求证:SA∥平面PCD;(2)求异面直线SA与PD所成角的正切值.14、(本小题满分10分)如图所示,在棱长为2的正方体ABCDA1B1C1D1中,E,F分别为DD1,DB的中点.(1)求证:EF∥平面ABC1D1;(2)求证:EF⊥B1C;(3)求三棱锥B1EFC的体积.2020届高二上学期数学第五次周考试卷命题人: 审题人:一、选择题(本大题共10小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1、一个简单几何体的主视图、左视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆.其中正确的是( )A .①②B .②③C .①③D .①②解析:选B2、设l 是直线,α,β是两个不同的平面,则下列说法正确的是( ) A .若l ∥α,l ∥β,则α∥β B .若l ∥α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β,l ∥α,则l ⊥β 选B 3、已知正方体外接球的体积是323π,那么正方体的棱长等于( )A .2 2 B.223C.423D.433 选D4、如图是一个几何体的三视图.若它的体积是33,则a =( )A .2 3 B. 6C. 3D .2 6 选C.5、过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积是球的表面积的( )A.316B.916C.38D.58 选A6、已知一个空间几何体的三视图如图所示,其中主视图、左视图都是由半圆和矩形组成,根据图中标出的尺寸,可得这个几何体的体积是( )A .2π B.43πC.53πD .3π 选C7、正四棱锥的体积为12,底面对角线的长为26,则侧面与底面所成的二面角为( )A .30°B .45°C .60°D .90° 选C8、在长方体ABCD A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离为( )A.83B.38C.43D.34 选C二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上) 9、已知各面均为等边三角形的四面体的棱长为2,则它的表面积是________.答案:4 310、一个几何体的三视图如图所示,则这个几何体的体积为________. 答案:3611、如图,AB 是⊙O 的直径,C 是圆周上不同于A ,B 的点,PA 垂直于⊙O 所在的平面,AE ⊥PB 于E ,AF ⊥PC 于F ,因此,________⊥平面PBC.(填图中的一条直线).答案:AF12、已知三棱锥P ABC 的三条侧棱PA ,PB ,PC 两两相互垂直,且三个侧面的面积分别为S 1,S 2,S 3,则这个三棱锥的体积为________. 答案:132S 1S 2S 3第10题第11题第12题三、解答题(本大题共5小题,共55分.解答时应写出必要的文字说明、证明过程或演算步骤)13、(本小题满分10分)如图,圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD =O,且AB⊥CD,SO=OB=2,P为SB的中点.(1)求证:SA∥平面PCD;(2)求异面直线SA与PD所成角的正切值.解:(1)证明:连接PO,因为P,O分别为SB,AB的中点,所以PO∥SA.因为PO平面PCD,SA平面PCD,所以SA∥平面PCD.(2)因为PO∥SA,所以∠DPO为异面直线SA与PD所成的角.因为AB⊥CD,SO⊥CD,AB∩SO=O,所以CD⊥平面SOB.因为PO平面SOB,所以OD⊥PO.在Rt△DOP中,OD=2,OP=12SA=12SB=2,所以tan∠DPO=ODOP=22=2,所以异面直线SA与PD所成角的正切值为 2.14、(本小题满分10分)如图所示,在棱长为2的正方体ABCDA1B1C1D1中,E,F分别为DD1,DB的中点.(1)求证:EF ∥平面ABC 1D 1; (2)求证:EF ⊥B 1C ;(3)求三棱锥B 1EFC 的体积.解:(1)证明:连接BD 1,在△DD 1B 中,E ,F 分别为D 1D ,DB 的中点,则EF ∥D 1B. 因为EF ∥D 1B ,D 1B 平面ABC 1D 1,EF 平面ABC 1D 1,所以EF ∥平面ABC 1D 1.(2)证明:因为B 1C ⊥AB ,B 1C ⊥BC 1,AB ,BC 1平面ABC 1D 1,AB ∩BC 1=B , 所以B 1C ⊥平面ABC 1D 1.又BD 1平面ABC 1D 1, 所以B 1C ⊥BD 1.又因为EF ∥BD 1,所以EF ⊥B 1C.(3)因为CF ⊥平面BDD 1B 1,所以CF ⊥平面EFB 1且CF =BF =2, 因为EF =12BD 1=3,B 1F =BF 2+BB 21=(2)2+22=6,B 1E =B 1D 21+D 1E 2=(22)2+12=3, 所以EF 2+B 1F 2=B 1E 2,即∠EFB 1=90°, 所以VB 1EFC =VC B 1EF =13·S △B 1EF ·CF =13×12·EF ·B 1F ·CF =13×12×3×6×2=1.。
山东省青岛市2020-2021学年度第一学期期末学业水平检测高二数学试题答案

2020-2021学年度第一学期期末学业水平检测高二数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分。
1-8:CCDB BADA 二、多项选择题:本题共4小题,每小题5分,共20分。
9.BCD ;10.ABD ;11.AB ;12.BD ;三、填空题:本题共4个小题,每小题5分,共20分。
13.22(1)(2)1x y ++-=;14.12y x =±;15.5;222n n -+;16.2;四、解答题:本题共6小题,共70分。
解答应写出文字说明,证明过程或演算步骤。
17.(10分)解:以D 为坐标原点,直线DA ,DC ,1DD 分别为x ,y ,z 轴,建立空间直角坐标系·····················································································1分设AE x =,则1(1,2,1)B ,(0,2,0)C ,1(0,0,1)D ,(1,,0)E x ,(1,2,0)B .···········2分(1)因为11(1,0,1)(1,,1)0CB D E x ⋅=⋅-= ·······················································4分所以11D E B C ⊥.························································································5分(2)因为E 为AB 的中点,则()1,1,0E ,从而1(1,1,1)D E =- ,(1,1,0)EC =- ,(1,0,0)BC =- ,设平面1D EC 的法向量为(,,)n a b c = ,则100n D E n EC ⎧⋅=⎪⎨⋅=⎪⎩ ,也即00a b c a b +-=⎧⎨-+=⎩,取1a =,从而(1,1,2)n = ,···········································································8分所以点B 到平面1D EC 的距离为6||6||n BC h n ⋅=== .·······························10分18.(12分)解:(1)由题知:12123224,36,a a a a a a +=++==所以:121,2,1,n a a d a n ====····································································2分因为111(`1)1n n n n =-++···············································································3分所以111111111......122334111n n T n n n n =-+-+-++-=-=+++·······················6分(2)因为22n a n n b ==,所以1122n n n n b b +=+················································8分所以111(1)2(12)111222*********(1)2n n n n n n nW ++--=+⨯=-+-=----······················12分19.(12分)解:(1)因为122n n S a +=-,所以122n n S a -=-(2)n ≥两式相减得122n n n a a a +=-,即112n n a a +=(2)n ≥··············································3分A D C B 1C 1D 1A 1B E y xz因为当1n =时,1222a a =-,11a =,所以212a =,2112a a =·····························4分所以数列{}n a 是首项为1,公比为12的等比数列所以112n n a -=·····························································································5分(2)由(1)知,112n n a -=,所以当122n n m -≤<时,m b n =所以,当1n =时,11b =当2n =时,232b b ==当3n =时,4573b b b ==== 当4n =时,89154b b b ==== 当5n =时,1617315b b b ==== ·······················································11分所以301223448515106W =+⨯+⨯+⨯+⨯=················································12分20.(12分)解:(1)由题知:圆2211(24x y +-=的最高点恰为椭圆C 的上顶点所以,1b =·································································································1分又因为2e a==,解得a 2分所以椭圆C 的标准方程为2212x y +=·······························································3分在PFQ ∆中,332(242P p p y --==-+,所以33||242P p p PF y =-=+······················4分又因为||(3)322p p FQ =---=-·······································································5分所以3353||||()(3)142242p p p PF FQ -=+--=-=,解得2p =所以,抛物线D 的标准方程为24x y =-···························································6分(2)设),(),,(2211y x B y x A ,则12,1222222121=+=+y x y x ······································7分做差可得:12122212122()222()4(4nn AB n n x y y x x k x x x y y x n -+==-=-==-+-····························8分解得:212n n n x -=···························································································9分因为2221(1)22122n n n n n n n n x x ++----==-···················································10分当12n ≤≤时,22102n n n --->;当3n ≥时,22102n n n ---<;·····················11分所以123x x x <<且345x x x >>> 所以394n x x ≤=··························································································12分21.(12分)解:(1)由题知:AO ⊥平面BOC ,所以AO OC ⊥·········································1分所以在三棱锥O ABC -中,222AC AO OC =+···············································2分所以在直角梯形12AO O C 中,取1AO 的中点E ,则ACE ∆是直角三角形所以,22212AC O O AE =+,解得124O O =······················································3分所以,118363O ABC BOC V S OA OC OB OA -∆=⨯⨯=⨯⨯⨯=·······································4分(2)由(1)知:AO OC ⊥,AO OB ⊥,又BO OC ⊥;以O 为坐标原点,以OC ,OB ,OA 的方向分别作为x 轴,y 轴,z 轴的正方向,建立如图空间直角坐标系O xyz -,································································6分所以(0,0,4),(0,2,0),(2,0,0),(0,0,2)A B C F ,(2,0,2)CF =- ,(0,2,4)AB =- ···································································7分设异面直线OC 与AB 所成角为α所以cos 5CF AB OC AB α⋅== (3)由题知:002020400(,,333G ++++++················································8分所以224(,,333OG = ,(2,0,0)OC = 设(,,)n x y z = 为平面OGC 的法向量,由00n OG n OC ⎧⋅=⎪⎨⋅=⎪⎩ 可得:224020x y z x ++=⎧⎨=⎩,令2y =得:(0,2,1)n =- ············································································10分OB 为平面OAC 的法向量,·········································································11分设平面GOC 和平面AOC 夹角为θ,所以||cos =5||||OB n OB n θ⋅== ,所以平面GOC 和平面AOC 夹角的余弦值为255············································12分22.(12分)解:(1)由题知:||2W p FW x p =+=,所以,2W W p x y p ==所以:525||==p OW ,解得2=p ···························································1分所以抛物线D 的标准方程为24y x =,)0,1(F ···················································2分设动圆Z 的半径为r ,由题意知:ZF r '=,4ZF r=-所以42ZF ZF FF ''+=>=····································································3分所以Z 点的轨迹是以,F F '为焦点的椭圆.························································4分其长轴长24,a =焦距为22c =,b ==所以曲线E 的标准方程为:22143x y +=···························································5分(2)(ⅰ)设点(,)G x y ,z y x O A B C因为1(2)y k x =-,所以12y k x =-;因为2y k x =+,所以2y k x-=因为1234k k =,所以33()(24y y xx =-··························································7分整理得,(2)(20y y +-=因为ABCD 为四边形,所以20y +-≠所以点G 20y -=上···································································8分(ⅱ)由题知:)1,0(),0,2(B A ,直线323:+-=x y AB ·································9分设1122(,),(,)C x y D x y ,直线m kx y CD +=:将m kx y +=代入22143x y +=得:222(34)84120k x kmx m +++-=所以21212228412,3434km m x x x x k k-+=-=++························································10分所以22121211212112121212233()3()2(2)2yy y y k x x km x x m kx m k k x x x x x x x ++++=⨯==---222222222241288()()()343434412234m km km k km m x k k k m x k -+-+---+++=--所以2223222231243333(34)34122(34)4m k m k k x m k x -+-+=--+所以322222418)(43)36480k x k k ++++-+-=所以322224180(43)36480k k k ⎧+++=⎪⎨-+-=⎪⎩····························································11分解得32k =-,所以CD AB //······································································12分。
山东省青岛市第二中学高二数学上学期第一次月考试题(含解析)

山东省青岛市第二中学2019-2020学年高二数学上学期第一次月考试题(含解析)一、选择题(本大题共13小题,每小题4分,共52分。
题1-10为单选题,题11—13为多选题,多选题错选得0分,漏选得2分。
)1.椭圆229225x ky +=的一个焦点是()4,0,那么k =( ) A 。
5 B 。
25C 。
-5D 。
-25【答案】B 【解析】 【分析】将椭圆方程化为标准方程,根据焦点坐标求得c ,由此列方程求得k 的值。
【详解】椭圆的标准方程为22122525x y k+=,由于椭圆焦点为()4,0,故焦点在x 轴上,且4c =。
所以2225254k=+,解得25k =。
故选:B【点睛】本小题主要考查根据椭圆的焦点坐标求参数的值,属于基础题. 2。
双曲线22412mx y -=20y -=,则m =( ) A 。
3 B 。
C. 4D 。
16【答案】A 【解析】 【分析】写出双曲线的标准方程,根据渐近线方程即可得解.【详解】双曲线22412mx y -=20y -=,即双曲线221213m x y -=的一条渐近线的方程为y =, 所以124,3m m==。
故选:A【点睛】此题考查根据双曲线的渐近线方程求双曲线标准方程,关键在于准确掌握双曲线的概念,找准其中的a ,b 。
3。
命题“x R ∃∈,2440x x -+≤”的否定是( ) A 。
x R ∀∈,2440x x -+> B. x R ∀∈,2440x x -+≥ C 。
x R ∃∈,2440x x -+> D 。
x R ∃∈,2440x x -+≥【答案】A 【解析】 【分析】根据特称命题的否定是全称命题的知识选出正确选项。
【详解】原命题为特称命题,其否定是全称命题,注意到要否定结论,所以A 选项正确。
故选:A【点睛】本小题主要考查特称命题的否定是全称命题,属于基础题。
4.下列语句中,是命题的是( ) A. 2230x x -->, B. π不是无限不循环小数 C. 直线与平面相交 D. 在线段AB 上任取一点 【答案】B 【解析】 【分析】ACD 三个选项不能判断真假,不是命题,B 能够判断真假,是命题。
山东省青岛市开发区第二中学2020-2021学年高二数学理联考试题含解析

山东省青岛市开发区第二中学2020-2021学年高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若函数在区间上递减且有最小值1,则ω的值为()A.2 B. C.3 D.参考答案:B略2. 函数的单调递减区间是A. B. C. D.参考答案:A试题分析:由函数导数可得得,所以减区间为考点:函数导数与单调性3. 在△ABC中,三内角分别是A、B、C,若,则此三角形一定是()A.直角三角形 B.正三角形 C.等腰三角形 D.等腰直角三角形参考答案:C4. 已知平面与两条直线,,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要参考答案:C根据线面垂直的性质定理可知,为充要条件,故选C.5. 命题“对任意,总有”的否定是A. “对任意,总有”B. “对任意,总有”C. “存在,使得”D. “存在,使得”参考答案:D6. 命题“?x∈R,2x>0”的否定是()A.?x0∈R,2>0 B.?x0∈R,2≤0C.?x∈R,2x<0 D.?x∈R,2x≤0参考答案:B【考点】命题的否定.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以命题“?x∈R,2x>0”的否定是?x0∈R,2≤0.故选:B7. 将甲,乙,丙,丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲,乙两名学生不能分到同一个班,则不同的分法的种数有()A.18B.24C.30D.36参考答案:C8. 函数y=Asin(ωx+φ)(ω>0,|φ|≤)的部分图象如图所示,则函数的一个表达式为()A.y=﹣4sin(x+)B.y=4sin(x﹣)C.y=﹣4sin(x﹣)D.y=4sin(x+)参考答案:A【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】观察函数的图象可得A,由图可得周期T=16,代入周期公式T=可求ω,再把函数图象上的最值点代入结合已知φ的范围可得φ的值,即可得解.【解答】解:由函数的图象可得最大值为4,且在一周期内先出现最小值,所以A=﹣4,观察图象可得函数的周期T=16,ω==,又函数的图象过(2,﹣4)代入可得sin(+φ)=1,∴φ+=2kπ+,∵|φ|<,∴φ=,∴函数的表达式y=﹣4sin(x+).故选:A.9. 函数在点处的导数是(A) (B) (C) ( D)参考答案:D10. 曲线的极坐标方程ρ=4sinθ化为直角坐标为()A.x2+(y+2)2=4 B.x2+(y﹣2)2=4 C.(x﹣2)2+y2=4 D.(x+2)2+y2=4参考答案:B【考点】极坐标系和平面直角坐标系的区别;点的极坐标和直角坐标的互化.【分析】曲线的极坐标方称即ρ2=4ρsinθ,即 x2+y2=4y,化简可得结论.【解答】解:曲线的极坐标方程ρ=4sinθ即ρ2=4ρsinθ,即 x2+y2=4y,化简为x2+(y﹣2)2=4,故选:B.二、填空题:本大题共7小题,每小题4分,共28分11. 若过点P(5,﹣2)的双曲线的两条渐近线方程为x﹣2y=0和x+2y=0,则该双曲线的实轴长为.参考答案:6【考点】双曲线的简单性质.【专题】计算题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】利用共渐近线双曲线系方程设为x2﹣4y2=λ(λ≠0),求得λ,再求2a.【解答】解:设所求的双曲线方程为x2﹣4y2=λ(λ≠0),将P(5,﹣2)代入,得λ=9,∴x2﹣4y2=9,∴a=3,实轴长2a=6,故答案为:6.【点评】利用共渐近线双曲线系方程可为解题避免分类讨论.12. 某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归方程.模糊看不清,请你推断出该数据的值为.参考答案:73略13. 袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.参考答案:14. 如图所示,函数的图象在点处的切线方程是,则_____.参考答案:15. 已知实数满足,则=;=。
山东省青岛市第二高级中学2020-2021学年高二数学文模拟试卷含解析

山东省青岛市第二高级中学2020-2021学年高二数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 数列的前n项和为S n,且满足a1=1,a n=a n﹣1+n,(n≥2),则S n等于()A.B.C.D.参考答案:B【考点】8E:数列的求和.【分析】由a n=a n﹣1+n(n≥2)得a n﹣a n﹣1=n,利用累加法求出a n,代入化简后,由等差数列的前n项和公式求出则数列的前n项和为S n.【解答】解:由题意得,a n=a n﹣1+n(n≥2),则a n﹣a n﹣1=n,所以a2﹣a1=2,a3﹣a2=3,…,a n﹣a n﹣1=n,以上(n﹣1)个式子相加得,a n﹣a1=2+3+…+n,又a1=1,则a n=1+2+3+…+n=,所以=,则数列的前n项和为S n= = =,故选:B.2. 命题是命题的条件()A.充分不必要B.必要不充分C.充要D.既不充分也不必要参考答案:B3. 设集合U={1,2,3,4,5},A={1,3,5},B={2,5},则A∩(?U B)等于()A.{2}B.{2,3}C.{3}D.{1,3}参考答案:D【考点】交、并、补集的混合运算.【分析】先求出集合B在全集中的补集,然后与集合A取交集.【解答】解:因为集合U={1,2,3,4,5},B={2,5},所以C U B={1,3,4},又A={1,3,5},所以A∩(C U B)={1,3,5}∩{1,3,4}={1,3}.故选D.4. 已知α、β、γ是三个互不重合的平面,l是一条直线,下列命题中正确命题是()A.若α⊥β,l⊥β,则l∥αB.若l上有两个点到α的距离相等,则l∥αC.若l⊥α,l∥β,则α⊥βD.若α⊥β,α⊥γ,则γ⊥β参考答案:C【考点】空间中直线与平面之间的位置关系.【专题】阅读型.【分析】由线面平行的判定方法,我们可以判断A的真假;根据直线与平面位置关系的定义及几何特征,我们可以判断B的真假;根据线面垂直的判定定理,我们可以判断C的真假;根据空间平面与平面位置关系的定义及几何特征,我们可以判断D的真假.进而得到答案.【解答】解:A中,若α⊥β,l⊥β,则l∥α或l?α,故A错误;B中,若l上有两个点到α的距离相等,则l与α平行或相交,故B错误;C中,若l⊥α,l∥β,则存在直线a?β,使a∥l,则a⊥α,由面面垂直的判定定理可得α⊥β,故C正确;D中,若α⊥β,α⊥γ,则γ与β可能平行也可能相交,故D错误;故选C【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间直线与平面,平面与平面位置关系的定义及判定方法,是解答本题的关键.5. 某几何体的三视图如右图所示,它的体积为( )A.B.C.D.参考答案:A略6. 袋中有大小完全相同的2个白球和3个黄球,逐个不放回地摸出两球,设“第一次摸得白球”为事件,“摸得的两球同色”为事件,则为()A.B.C.D.参考答案:C7. 函数的最小值为A.2 B. C.4D.6参考答案:A略8. 如图是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图中可以看出()A.性别与喜欢理科无关B.女生中喜欢理科的比为80%C.男生比女生喜欢理科的可能性大些D.男生不喜欢理科的比为60%参考答案:C本题考查学生的识图能力,从图中可以分析,男生喜欢理科的可能性比女生大一些.9. 给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件参考答案:A【考点】必要条件、充分条件与充要条件的判断;命题的否定.【分析】根据互为逆否命题真假性相同,可将已知转化为q是?p的充分不必要条件,进而根据逆否命题及充要条件的定义得到答案.【解答】解:∵?p是q的必要而不充分条件,∴q是?p的充分不必要条件,即q??p,但?p不能?q,其逆否命题为p??q,但?q不能?p,则p是?q的充分不必要条件.故选A.10. 设是将函数向左平移个单位得到的,则等于A. B. C. D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 某汽车交易市场最近成交了一批新款轿车,共有辆国产车和辆进口车,国产车的交易价格为每辆万元,进口车的交易价格为每辆万元.我们把叫交易向量,叫价格向量,则的实际意义是参考答案:.该批轿车的交易总金额12. 我们知道:在长方形ABCD 中,如果设AB=a ,BC=b,那么长方形ABCD的外接圆的半径R满足:4R2=a2+b2,类比上述结论回答:在长方体ABCD﹣A1B1C1D1中,如果设AB=a,AD=b,AA1=c,那么长方体ABCD﹣A1B1C1D1的外接球的半径R满足的关系式是________.参考答案:4R2=a2+b2+c2【考点】类比推理【解析】【解答】解:从平面图形类比空间图形,模型不变.可得如下结论:在长方体ABCD﹣A1B1C1D1中,如果设AB=a,AD=b,AA1=c,那么长方体ABCD﹣A1B1C1D1的外接球的半径R满足的关系式是4R2=a2+b2+c2,故答案为:4R2=a2+b2+c2.【分析】从平面图形类比空间图形,从二维类比到三维模型不变.13. 若直线l的倾斜角是直线2x﹣y+4=0的倾斜角的两倍,则直线l的斜率为.参考答案:【考点】直线的倾斜角.【分析】设直线y=2x+4倾斜角为θ,则tanθ=2,直线l的倾斜角是2θ,利用斜率计算公式、倍角公式即可得出.【解答】解:设直线y=2x+4倾斜角为θ,则tanθ=2,直线l的倾斜角是2θ,则直线l的斜率=tan2θ===,故答案为:.14. 朝露润物新苗壮,四中学子读书忙.天蒙蒙亮,值日老师站在边长为100米的正方形运动场正中间,环顾四周.但老师视力不好,只能看清周围10米内的同学.郑鲁力同学随机站在运动场上朗读.郑鲁力同学被该老师看清的概率为 .参考答案:15. 设函数的导函数为,若,则=▲.参考答案:105结合导数的运算法则可得:,则,导函数的解析式为:,据此可得:.16. 若直线⊥平面,直线,有下面四个命题:①; ②; ③; ④,其中正确的命题是参考答案:①③17. 在△ABC中,角A、B、C的对边分别为a、b、c,A=,a=,b=1,则c=________参考答案:三、解答题:本大题共5小题,共72分。
山东省青岛市青岛第二中学2024-2025学年高二上学期第一次月考数学试题(无答案)

青岛二中2024-2025学年第一学期10月份阶段练习一高二数学试题时间:90分钟 满分:120分一、选择题:本题共8小题;每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知空间向量,,且,则()A.-16B.16C.4D.-42.已知点,,若过点的直线与线段相交,则该直线斜率的取值范围是()A. B.C. D.3.已知空间向量,,若与垂直,则等于()4.设,为两个随机事件,以下命题正确的为( )A.若,是对立事件,则B.若,是互斥事件,,,则C.若,,且,则,是独立事件D.若,是独立事件,,,则5.已知点关于直线-对称的点在圆上,则()A.4B.5C.-4D.-56.连掷两次骰子得到的点数分别为和,记向量与向量的夹角为,则的概率是()A.B.CD.7.边长为1的正方形沿对角线折叠,使,则三棱锥的体积为()()1,3,5a =-()2,,b x y = a b ∥x y -=()2,3A -()3,2B --()1,1P -AB 32,,43⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭][43,,32⎛⎫-∞-⋃+∞ ⎪⎝⎭34,23⎡⎤-⎢⎥⎣⎦43,32⎡⎤-⎢⎥⎣⎦()1,,2a n = ()2,1,2b =- 3a b - b aA B A B ()1P AB =A B ()13P A =()12P B =()16P A B +=()13P A =()12P B ≡()13P AB =A B A B ()13P A =()23P B =()19P A B ⋂=()0,1P -10x y -+=Q 22:50C x y mx +++=m =m n (),a m n =()1,1b =- θ0,2πθ⎛⎤∈ ⎥⎝⎦5121271256ABCD AC 14AD BC ⋅= D ABC -8.已知空间向量,,两两的夹角均为,且,.若向量,满足,,则的最大值是()A. B. C. D.二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得3分,有选错的得0分.9.下列说法正确的是()A.8个数据的平均数为5,另3个数据的平均数为7,则这11个数据的平均数是B.若样本数据,,,的平均数为2,则数据,,,的平均数为3C 一组数据,,,,,的分位数为6D.某班男生30人、女生20人,按照分层抽样的方法从该班共抽取10人答题.若男生答对题目的平均数为10,方差为1;女生答对题目的平均数为15,方差为0.5,则这10人答对题目的方差为6.810.已知,若过定点的动直线和过定点的动直线:交于点(与,不重合),则以下说法正确的是()A.B 点的坐标为B.为定值C.最大值为D.的最大值为11.在棱长为1的正方体中,,,,,,若直线与的夹角为,则下列说法正确的是()A.线段的最小值为1C.对任意点,总存在点,使得D.存在点,使得直线与平面所成的角为三、填空题:本题共4个小题,每小题5分,共20分.12.已知,,,若不能构成空间的一个基底,则_________.13.已知半径为1的圆经过点,则其圆心到直线距离的最大值为_______.a b c 602a b == 4c = x y ()x x a x b ⋅+=⋅ ()y y a y c ⋅+=⋅ x y -1+1+261111x 2x ⋯10x 121x -221x -⋯1021x -43265860%m ∈R A 1:20l x my m -+-=B 2l 240mx y m ++-=P P A B ()2,4-22PA PB +PAB S △2522PA PB +1111ABCD A B C D -1BP xBB yBC =+ x ()0,1y ∈11A Q z A C = []0,1z ∈1A P 11A B 45 1A P 1A Q PQ +P Q 1D Q CP⊥P 1A P 11ADD A 60()11,0,1n =- ()2,3,2n m =- ()30,1,1n =- {}123,,n n nm =()3,43430x y --=14.在长方体中,已知异面直线与,与所成角的大小分别为和,为中点,则点到平面的距离为_______.15.平面直角坐标系中,矩形的四个顶点为,,,,,光线从边上一点沿与轴正方向成角的方向发射到边上的点,被反射到上的点,再被反射到上的点,最后被反射到轴上的点,若,则的取值范围是_______.四、解答题:本题共3小题,共42分.解答应写出文字说明,证明过程或演算步骤.16.(本题满分10分)已知直线,,且满足,垂足为.(I )求的值及点的坐标.(II )设直线与轴交于点,直线与轴交于点,求的外接圆方程.17.(本题满分15分)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为,收到0的概率为;发送时,收到0的概率为,收到1的概率为.现有两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码(例如,若收到1,则译码为1,若收到0,则译码为0);三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到,,,则译码为1,若依次收到,,,则译码为1).(I )已知,,(1)若采用单次传输方案,重复发送信号0两次,求至少收到一次0的概率;(2)若采用单次传输方案,依次发送,,,判断事件“第三次收到的信号为”与事件“三次收到的数字之和为2”是否相互独立,并说明理由;(II )若发送1,采用三次传输方案时译码为0的概率不大于采用单次传输方案时译码为0的概率,求的取值范围.18.(本题满分17分)1111ABCD A B C D -1AC 11B C 1AC 11C D 6045 E 1CC E 1A BC ()0,0O ()8,0A ()8,6B ()0,6C OA ()04,0P x θAB 1P AB BC 2P BC OC 3P OC x ()4,0P t ()4,6t ∈tan θ()1:220l x m y +-=2:220l mx y +-=12l l ⊥C m C 1l x A 2l x B ABC △()1101p p <<11p -1()2201p p <<21p -101111134p =223p =00112p如图,四面体中,为等边三角形,且,为等腰直角三角形,且.第(I )问图(I )当时,(1)求二面角的正弦值;第(II )问图(2)当为线段中点时,求直线与平面所成角正弦值;(II )当时,若,且平面,为垂足,中点为,中点为;直线与平面的交点为,当三棱锥体积最大时,求的值.ABCD ABC △2AB =ADC △90ADC ∠= BD =D AC B --P BD AD APC 2BD =()01DP DB λλ=<<PH ⊥ABC H CD M AB N MN APC G P ACH -MGGN。
2020-2021学年山东省青岛市第二实验初级中学高二数学文期末试卷含解析

2020-2021学年山东省青岛市第二实验初级中学高二数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若在区间[0,2]中随机地取两个数,则这两个数中较小的数大于的概率是()A.B.C.D.参考答案:C【考点】几何概型.【专题】概率与统计.【分析】先根据几何概型的概率公式求出在区间[0,2]中随机地取一个数,这两个数中较小的数大于,利用几何概型求出概率即可.【解答】解:∵在区间[0,2]中随机地取一个数,这两个数中较小的数大于的概率为=,故选:C.【点评】本题主要考查了几何概型,简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.属于基础题.2. 在曲线的所有切线中,斜率最小的切线方程为()A.B.C.D.参考答案:C3. 复数是纯虚数,则=A. B.1 C. D.参考答案:D略4. 若函数在区间(1,+∞)上是减函数,则实数a的取值范围为()A.[1,+∞) B.(1,+∞)C.(﹣∞,1] D.(﹣∞,1)参考答案:C【考点】函数的单调性与导数的关系.【专题】计算题.【分析】求出f(x)的导函数,令导函数小于等于0在区间(1,+∞)上恒成立,分离出a,求出函数的最大值,求出a的范围.【解答】解:∵∵f(x)在区间(1,+∞)上是减函数,∴在区间(1,+∞)上恒成立∴a≤x2在区间(1,+∞)上恒成立∵x2>1∴a≤1故选C.【点评】解决函数的单调性已知求参数范围问题常转化为导函数大于等于(或小于等于)0恒成立;解决不等式恒成立求参数范围问题常分离参数转化为求函数的最值.5. 样本()的平均数为,样本()的平均数为,若样本(,)的平均数,其中,则n,m的大小关系为( )A. B. C. D.不能确定参考答案:A略6. 如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.1﹣B.C.D.1﹣参考答案:A【考点】几何概型.【分析】由题意,直接看顶部形状,及正方形内切一个圆,正方形面积为4,圆为π,即可求出“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率.【解答】解:由题意,正方形的面积为22=4.圆的面积为π.所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1﹣,故选:A.7. 已知=(1,1,1),=(0,y,1)(0≤y≤1),则cos<,>最大值为()A.B.C.D.参考答案:D【考点】空间向量的夹角与距离求解公式.【分析】【解法一】利用作图法,构造正方体,考虑极端情况,可快速得出答案;【解法二】根据两向量的数量积求出夹角的余弦值cos<,>,再利用换元法求出它的最大值即可.【解答】解:【解法一】利用作图法,构造正方体,设正方体的边长为1,如图所示;则==(1,1,1),==(0,y,1),且E在线段D′C′上移动,当E在D′位置时,cos<,>===;当E在C′位置时,cos<,>===为最大值.【解法二】∵=(1,1,1),=(0,y,1)(0≤y≤1),∴?=y+1,||=,||=,∴cos<,>==;设t=,则t2﹣1=y2,∴y=(1≤t≤),∴f(t)=?=(+);设sinα=,则1≥sinα≥,即≤α≤,∴g(α)=(+sinα)=(cosα+sinα)=sin(α+),∴当α=时,g(α)取得最大值为=.故选:D.8. 已知双曲线与圆交于A、B、C、D四点,若四边形ABCD是正方形,则双曲线的离心率是()A. B. C. D.参考答案:A【考点】双曲线的简单性质.【分析】联立双曲线方程和圆方程,求得交点,由于四边形ABCD是正方形,则有x2=y2,运用双曲线的a,b,c的关系和离心率公式,即可得到结论.【解答】解:联立双曲线方程和圆x2+y2=c2,解得,x2=c2﹣,y2=,由于四边形ABCD是正方形,则有x2=y2,即为c2﹣=,即c4=2b4,即c2=b2=(c2﹣a2),则e===.故选:A.9. 某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程各至少选一门,则不同的选法共有().A. 30种B. 31种C. 35种D. 60种参考答案:A由题意,7门课程选3门有种方法,若选择的课程均为A课程,有种方法,选择的课程均为B课程,有种方法,满足题意的选择方法有:种.本题选择A选项.10. 已知S={x|x=2n,n∈Z}, T={x|x=4k±1,k∈Z},则()A.S TB.T SC.S≠TD.S=T参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 已知函数,则曲线在点处的切线方程_________ .参考答案:3X+Y-4=012. 如图,正方体的棱长为,线段上有两个动点,且,则四面体的体积 .参考答案:13. 不等式对于任意恒成立的实数的集合为___________.参考答案:略14. 已知平面上三点、、满足,,,则的值等于_______.参考答案:略15. 在中,所对的边分别是,若,则__________.参考答案:略16. 设二元一次不等式组所表示的平面区域为M,使函数y=ax(a>0,a≠1)的图象过区域M的a的取值范围是______参考答案:略17. 求圆心在直线3x+y﹣5=0上,并且经过原点和点(4,0)的圆的方程.参考答案:【考点】直线与圆相交的性质.【分析】由直线和圆相交的性质可得,圆心在点O(0,0)和点A(4,0)的中垂线x=2上,再根据圆心在直线3x+y﹣5=0上,可得圆心C的坐标和半径r=|OC|的值,从而得到所求的圆的方程.【解答】解:由直线和圆相交的性质可得,圆心在点O(0,0)和点A(4,0)的中垂线x=2上,再根据圆心在直线3x+y﹣5=0上,可得圆心C的坐标为(2,﹣1),故半径r=|OC|=,故所求的圆的方程为(x﹣2)2+(y+1)2=5.三、解答题:本大题共5小题,共72分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信丰中学2017级高二上学期周考十(文A+)数学试卷
命题人:审题人:
一、选择题:(本大题共8小题,每小题5分,共40分)
1、设F
1,F
2
为定点,|F
1
F
2
|=6,动点M满足|MF
1
|+|MF
2
|=6,则动点M的轨迹是( )
A.椭圆 B.直线 C.圆 D.线段2、命题“2
2530
x x
--<”的一个必要不充分条件是()
A.
1
3
2
x
-<<B.
1
3
2
x
-<< C.
1
4
2
x
-<<D.12
x
-<<
3.过椭圆4x2+y2=1的一个焦点F
1
的直线与椭圆交于A,B两点,则A与B和椭圆的
另一个焦点F
2构成的△ABF
2
的周长为( )
A.2 B.4 C.8 D.2 2
4.下列说法正确的是( )
A.命题“任意x∈R,e x>0”的否定是“存在x∈R,e x>0”
B.命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”的逆否命题是真命题
C.“x2+2x≥ax在x∈[1,2]上恒成立”⇔“(x2+2x)
min ≥(ax)
max
在x∈[1,2]上恒
成立”
D.命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题为真命题
5.已知焦点在x轴上的椭圆C:x2
a2+y2=1(a>0),过右焦点作垂直于x轴的直线交椭
圆于A,B两点,且|AB|=1,则该椭圆的离心率为( )
A.
3
2 B.
1
2 C.
15
4 D.
5
3
6.已知F
1,F
2
为椭圆C:
x2
9+
y2
8=1的左、右焦点,点E是椭圆C上的动点,1
EF·
2
EF
的最大值、最小值分别为( )
A.9,7 B.8,7 C.9,8 D.17,8
7.已知直线l
1:4x-3y+6=0和直线l
2
:x=-1,抛物线y2=4x上一动点P到直线
l 1和直线l
2
的距离之和的最小值是( )
A.
35
5 B.
11
5 C.2 D.3
8.已知椭圆22
22:1(0)x y E a b a b
+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两
点.若AB
的中点坐标为(1,1)-,则E 的方程为( )
A .2214536x y +=
B .2213627x y +=
C .2212718x y +=
D .22
1189
x y +=
二、填空题:(本大题共4个小题,每题5分,共20分)
9.若椭圆的方程为x 210-a +y 2
a -2=1,且此椭圆的焦距为4,则实数a =________. 10.点(,)P x y 是椭圆222312x y +=上的一个动点,则2x y +的最大值为________.
11.已知椭圆的方程是x 2+2y 2-4=0,则以M(1,1)为中点的弦所在直线方程是______. 12.已知M 是抛物线x 2=4y 上一点,F 为其焦点,点A 在圆C :(x +1)2+(y -5)2=1上,则|MA|+|MF|的最小值是________.
三、解答题:(本大题共2个小题,共20分.解答应写出文字说明,证明过程或演算步骤)
13.设命题p :函数f(x)=lg(ax 2
-x +1
4a)的定义域为R ;命题q :不等式3x -9x <a
对一切正实数均成立.如果命题“p ∨q ”为真命题,“p ∧q ”为假命题,求实数a 的取值范围.
14.椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点⎝ ⎛⎭⎪⎫1,32,离心率为12,左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点.
(1)求椭圆C 的方程;
(2)当△F 2AB 的面积为122
7时,求直线的方程.
信丰中学2017级高二上学期周考十(文A+)数学试卷参考答案 一、选择题:DCBB ABCD
二、填空题:9.4或8 10 11.x +2y -3=0 12.5 三、解答题:13.解析 若命题p 为真,即ax 2
-x +1
4a >0恒成立,
则⎩⎨⎧
a >0,Δ<0,
有⎩⎨⎧
a >0,
1-a 2<0,
∴a >1.
令y =3x
-9x
=-(3x
-12)2
+14,由x >0,得3x >1.∴y =3x -9x 的值域为(-∞,0). ∴若命题q 为真,则a ≥0.
由命题“p ∨q ”为真,“p ∧q ”为假,得命题p 、q 一真一假. 当p 真q 假时,a 不存在;当p 假q 真时,0≤a ≤1.
14.解:(1)因为椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点⎝ ⎛
⎭⎪⎫1,32,所以1a 2+94b 2=1.①
又因为离心率为12,所以c a =12,所以b 2a 2=3
4.②解①②得a 2=4,b 2=3. 所以椭圆C 的方程为x 24+y 2
3=1.
(2)当直线的倾斜角为π2时,A ⎝ ⎛⎭⎪⎫-1,32,B ⎝ ⎛⎭⎪⎫-1,-32,
S △ABF 2=12|AB |·|F 1F 2|=12×3×2=3≠122
7.
当直线的倾斜角不为π
2时,设直线方程为y =k(x +1), 代入x 24+y 2
3=1得(4k 2+3)x 2+8k 2x +4k 2-12=0.
设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=-8k 24k 2+3,x 1x 2=4k 2-12
4k 2+3, 所以S △ABF 2=1
2|y 1-y 2|×|F 1F 2|=|k|(x 1+x 2)2-4x 1x 2 =|k|
⎝ ⎛
⎭
⎪⎫-8k 24k 2+32-4·4k 2-124k 2
+3=12|k|k 2+14k 2+3=1227, 所以17k 4+k 2-18=0,
解得k 2
=1⎝ ⎛⎭⎪⎫k 2=-1817舍去,所以k =±1,
所以所求直线的方程为x -y +1=0或x +y +1=0.。