动载荷PPT课件
合集下载
第十三章动载荷

2. 计算梁内最大静应力 最大弯矩和弯曲正应力发生在跨中截面上
1 M st max = FN st × 4 qst × 6 2 = 6qst = 6 × 165.62 = 993.7 N m 2
σ st max =
M st max 993.7 N m = = 61.7 MPa Wz 16.1×106 m 3
d(l d ) = ε d ( x)dx =
于是, 于是,杆的总伸长量为
σ d ( x)
E
2
dx
l d = ∫ d (l d ) = ∫
0
l
l
γω 2
2 Eg
0
(l x )dx =
2
γω 2 l 3
3Eg
材料力学
中南大学土木建筑学院
20
§13.3 杆件受冲击时的应力和变形
一,冲击现象
下落重物冲击梁
Vεd = V +T
材料力学
1 应变能 Vε d = F d d 2 1 Fd d = W d + T 2
中南大学土木建筑学院 23
线弹性 范围内
F d d σd = = = Kd W st σst
冲击动荷系数
F = KdW, d = Kd st d
2 d
1 F d = Wd +T d 2
2T =0 K 2Kd Wst
Fd = KdW, d = Kd st
v
W
线弹性 范围内 水平冲击 动荷系数
冲击点
v2 Kd = gst
冲击点作用大小等于W st ——冲击点作用大小等于 的水平 冲击点作用大小等于 静载荷时引起该点的静变形. 静载荷时引起该点的静变形.
材料力学 中南大学土木建筑学院 27
1 M st max = FN st × 4 qst × 6 2 = 6qst = 6 × 165.62 = 993.7 N m 2
σ st max =
M st max 993.7 N m = = 61.7 MPa Wz 16.1×106 m 3
d(l d ) = ε d ( x)dx =
于是, 于是,杆的总伸长量为
σ d ( x)
E
2
dx
l d = ∫ d (l d ) = ∫
0
l
l
γω 2
2 Eg
0
(l x )dx =
2
γω 2 l 3
3Eg
材料力学
中南大学土木建筑学院
20
§13.3 杆件受冲击时的应力和变形
一,冲击现象
下落重物冲击梁
Vεd = V +T
材料力学
1 应变能 Vε d = F d d 2 1 Fd d = W d + T 2
中南大学土木建筑学院 23
线弹性 范围内
F d d σd = = = Kd W st σst
冲击动荷系数
F = KdW, d = Kd st d
2 d
1 F d = Wd +T d 2
2T =0 K 2Kd Wst
Fd = KdW, d = Kd st
v
W
线弹性 范围内 水平冲击 动荷系数
冲击点
v2 Kd = gst
冲击点作用大小等于W st ——冲击点作用大小等于 的水平 冲击点作用大小等于 静载荷时引起该点的静变形. 静载荷时引起该点的静变形.
材料力学 中南大学土木建筑学院 27
动载荷

2. 求解冲击问题的能量法
冲击问题极其复杂,难以精确求解.工程中常采用一种 冲击问题极其复杂,难以精确求解. 较为简略但偏于安全的估算方法--能量法, --能量法 较为简略但偏于安全的估算方法--能量法,来近似估算构件 内的冲击载荷和冲击应力. 内的冲击载荷和冲击应力. 在冲击应力估算中作如下基本假定: 在冲击应力估算中作如下基本假定: ①不计冲击物的变形: 不计冲击物的变形: ②冲击物与构件接触后无回弹,二者合为一个运动系统; 冲击物与构件接触后无回弹,二者合为一个运动系统; ③构件的质量与冲击物相比很小,可略去不计,冲击应 构件的质量与冲击物相比很小,可略去不计, 力瞬时传遍整个构件 ④材料服从虎克定律; 材料服从虎克定律; ⑤冲击过程中,声,热等能量损耗很小,可略去不计. 冲击过程中, 热等能量损耗很小,可略去不计.
1. 工程中的冲击问题
锻锤与锻件的撞击,重锤打桩,用铆钉枪进行铆接, 锻锤与锻件的撞击,重锤打桩,用铆钉枪进行铆接, 高速转动的飞轮突然刹车等均为冲击问题,其特点是冲击 高速转动的飞轮突然刹车等均为冲击问题, 物在极短瞬间速度剧变为零, 物在极短瞬间速度剧变为零,被冲击物在此瞬间经受很大 的应力变化. 的应力变化.
Fd sd Dd = = P s st D st
可得: 可得:
Dd
2
2T D st - 2D stD d = 0 P
解得: 解得:
骣 1 + 1 + 2T ÷ ÷ D d = D st ÷ PD st ÷ 桫
引入冲击动荷系数K 引入冲击动荷系数Kd
Dd 2T Kd = = 1+ 1+ D st PD st
要保证圆环的强度,只能限制圆环的转速,增大横截面 要保证圆环的强度,只能限制圆环的转速, 积并不能提高圆环的强度. 积并不能提高圆环的强度.
动载荷

材料力学
§2
惯性力问题
动载荷
2、等角速度旋转的构件
•旋转圆环的应力计算 一平均直径为D的薄壁圆环绕通过其圆心且垂直于圆环平面 的轴作等角速度转动。已知转速为,截面积为A,比重为,壁 厚为t。 解:等角速度转动时,环内各
qd
an
D o
t
o
点具有向心加速度,且D>>t 可近似地认为环内各点向心 an 2 D / 2 。 加速度相同, 沿圆环轴线均匀分布的惯性 力集度 q d 为:
圆环横截面上的应力:
式中 v D 是圆环轴线上各点的线速度。强度条件为:
2
d
材料力学
v 2
g
[ ]
§2
惯性力问题
动载荷
•旋转圆环的变形计算
D , 在惯性力集度的作用下,圆环将胀大。令变形后的直径为 则其直径变化 D D D ,径向应变为
t D ( D D) r t D D E d v 2 D
式中 k d 为冲击时的动荷系数,
2
kd st
2H kd 1 1 st
其中 st 是结构中冲击受力点在静载荷(大小为冲击物重量) 作用下的垂直位移。
材料力学
§3
冲击问题
动载荷
因为
Pd d d kd Q st st
所以冲击应力为
d k d st
2H 当 110 时,可近似取 k d st
2 H ,误差<5%。 st 2 H ,误差<10%。 st
4、 k d 不仅与冲击物的动能有关,与载荷、构件截面尺寸有关, 更与 st 有关。这也是与静应力的根本不同点。构件越易变 形,刚度越小,即“柔能克刚”。
教学课件:第十章动载荷与疲劳强度简述详解

06
结论
主要观点总结
动载荷和疲劳强度是机械工程中的重 要概念,对机械部件的寿命和可靠性 有显著影响。
疲劳强度是指材料在循环载荷作用下 抵抗疲劳失效的能力,通常通过实验 测定。
动载荷会导致材料内部产生循环应力, 从而引发疲劳裂纹的形成和扩展,最 终导致部件的疲劳失效。
提高疲劳强度的方法包括改善材料表 面质量、优化结构设计、降低应力集 中等。
对未来研究的建议
深入研究不同材料的疲劳性能和失效机制,为新材料的 开发和现有材料的优化提供理论支持。
针对复杂载荷条件下的疲劳行为进行深入研究,以更准 确地预测机械部件的寿命和可靠性。
探索新型的疲劳强度测试方法和实验技术,提高测试的 准确性和可靠性。
加强跨学科合作,将疲劳研究与计算机科学、人工智能 等相结合,推动疲劳领域的技术创新和应用拓展。
详细描述
机械零件在循环载荷的作用下,经过一段时间后会发生疲劳 断裂。这种失效通常是由于应力集中、材料缺陷或设计不当 等因素引起的。为了防止疲劳失效,可以采用优化设计、改 善制造工艺和使用高强度材料等方法。
案例二:车辆动载荷分析
总结词
车辆动载荷分析对于车辆设计和安全性至关重要,通过案例分析,了解如何进行车辆动载荷分析。
循环应力
动载荷产生的循环应力是导致材 料疲劳的主要原因,循环应力的 变化范围和平均值对疲劳强度有
显著影响。
应力集中
动载荷引起的应力集中可能加速疲 劳裂纹的形成和扩展,降低材料的 疲劳强度。
温度效应
动载荷引起的温度变化可能影响材 料的力学性能和疲劳强度,特别是 在高温环境下。
疲劳强度对动载荷的限制
材料特性
详细描述
动载荷引起的疲劳损伤是机械系统中常见的失效形式。由于动载荷的持续变化,导致材料内部应力不断变化,从 而引发疲劳裂纹的形成和扩展,最终导致断裂失效。此外,动载荷还会影响机械系统的动态响应,使系统产生振 动和噪声,影响系统的稳定性和可靠性。
材料力学动载荷(共59张PPT)

g 二、动荷系数
Kd
1a1 5 1.51 g 9.8
三、计算物体静止时,绳索所需的横截面积
由强度条件得
三、计算物体静止时,绳索所需的横截面积
因此,吊索受到冲击作用。 〔2〕H =1m, 橡皮垫d2 = 0. 当CD、EF两杆位于铅直平面内时, 冲击点静位移 最大应力为
FNd
Ast P840 0 11 0 3 0 60.51 03
二、构件作等速转动时的动应力
截面为A的薄壁圆环平均直径为 D,以 等角速度ω绕垂直于环平面且过圆心的平面转 动,圆环的比重为γ。求圆环横截面的动应力。
解:一、求薄壁圆环内动内力
(1)
an
2R
2
D 2
F
man
AD 2
g
D 2
(2)
qd
ma n
D
Aan
g
A 2 D
g2
Ro
qd
(2) qdm D na A g anA g 2D 2
P(1 b 2 )
3g
P (1 b 2 )
3g
b 2
P(1 ) 3g
2 P b 2
3g
Pl (1 b2 )
3
3g
Pl (1 b 2 )
3
3g
三、计算 ωmax 。
当CD、EF两杆位于铅直平面内时, CD杆中有最大轴力
FNmax
P
Pb2
g
P (1 b 2 ) 3g
A
P b 2 P
g
bF
E
B
b
解:制动前瞬时,系统的机械能
l
由机械能守恒,得
Td
JGIp l
T11 2J2, V 10, U 10
Kd
1a1 5 1.51 g 9.8
三、计算物体静止时,绳索所需的横截面积
由强度条件得
三、计算物体静止时,绳索所需的横截面积
因此,吊索受到冲击作用。 〔2〕H =1m, 橡皮垫d2 = 0. 当CD、EF两杆位于铅直平面内时, 冲击点静位移 最大应力为
FNd
Ast P840 0 11 0 3 0 60.51 03
二、构件作等速转动时的动应力
截面为A的薄壁圆环平均直径为 D,以 等角速度ω绕垂直于环平面且过圆心的平面转 动,圆环的比重为γ。求圆环横截面的动应力。
解:一、求薄壁圆环内动内力
(1)
an
2R
2
D 2
F
man
AD 2
g
D 2
(2)
qd
ma n
D
Aan
g
A 2 D
g2
Ro
qd
(2) qdm D na A g anA g 2D 2
P(1 b 2 )
3g
P (1 b 2 )
3g
b 2
P(1 ) 3g
2 P b 2
3g
Pl (1 b2 )
3
3g
Pl (1 b 2 )
3
3g
三、计算 ωmax 。
当CD、EF两杆位于铅直平面内时, CD杆中有最大轴力
FNmax
P
Pb2
g
P (1 b 2 ) 3g
A
P b 2 P
g
bF
E
B
b
解:制动前瞬时,系统的机械能
l
由机械能守恒,得
Td
JGIp l
T11 2J2, V 10, U 10
17材料力学动载荷

厢的加速度 a 。
11
解: 选单摆的摆锤为研究对象。 虚加惯性力
Qm a (Qm)a
由动静法, 有
X 0 ,m sg i Q n co 0 s
解得
agtg
角随着加速度 a的变化而变化,当 a不变时, 角也不 变。只要测出 角,就能知道列车的加速度 a 。摆式加速计
转半径为,轮与轨道间摩擦系数为f , 试求在车轮滚动而不滑
动的条件下,驱动力偶矩M 之最大值。
解: 取轮为研究对象
虚加惯性力系:
RQmaC mR
MQCICm2
由动静法,得:
O
30
X0, FTRQ0
(1)
Y0, NPS0
(2)
mC(F)0,MFRMQC0(3)
Mmax的值为
把(5)代入(4)得:M f(PS) (R 2R)TR 2 上式右端的值。
31
§17.2 考虑惯性力时的应力计算
方法原理:D’Alembert’s principle ( 动静法 )
达朗伯原理认为:处于不平衡状态的物体,存在惯性力, 惯性力的方向与加速度方向相反,惯性力的数值等于加速度 与质量的乘积。只要在物体上加上惯性力,就可以把动力学 问题在形式上作为静力学问题来处理,这就是动静法。
由(2)得: RAn mgsin0 ;
由( 3)得:
3g 2l
cos0
;
代入(1)得:
RA
mg 4
c
os0
。
28
用动量矩定理+质心运动定理再求解此题:
解:选AB为研究对象
由 IAmgcos2l 得:
mg2l cos 3gcos
13ml2
11
解: 选单摆的摆锤为研究对象。 虚加惯性力
Qm a (Qm)a
由动静法, 有
X 0 ,m sg i Q n co 0 s
解得
agtg
角随着加速度 a的变化而变化,当 a不变时, 角也不 变。只要测出 角,就能知道列车的加速度 a 。摆式加速计
转半径为,轮与轨道间摩擦系数为f , 试求在车轮滚动而不滑
动的条件下,驱动力偶矩M 之最大值。
解: 取轮为研究对象
虚加惯性力系:
RQmaC mR
MQCICm2
由动静法,得:
O
30
X0, FTRQ0
(1)
Y0, NPS0
(2)
mC(F)0,MFRMQC0(3)
Mmax的值为
把(5)代入(4)得:M f(PS) (R 2R)TR 2 上式右端的值。
31
§17.2 考虑惯性力时的应力计算
方法原理:D’Alembert’s principle ( 动静法 )
达朗伯原理认为:处于不平衡状态的物体,存在惯性力, 惯性力的方向与加速度方向相反,惯性力的数值等于加速度 与质量的乘积。只要在物体上加上惯性力,就可以把动力学 问题在形式上作为静力学问题来处理,这就是动静法。
由(2)得: RAn mgsin0 ;
由( 3)得:
3g 2l
cos0
;
代入(1)得:
RA
mg 4
c
os0
。
28
用动量矩定理+质心运动定理再求解此题:
解:选AB为研究对象
由 IAmgcos2l 得:
mg2l cos 3gcos
13ml2
第10章动载荷解析

绳索中的动应力为
G
GGa g
d
FNd A
Kd
FNst A
K d st
Static 静态的 Dynamic 动态的
st 为静荷载下绳索中的静应力
强度条件为 d Kd st [ ]
10
N st
△d 表示动变形
mm
△s t 表示静变形 当材料中的应力不超过
A
x
比例极限时, 荷载与变形成正比
Nd A Aa
(qst
qG
)x
Ax(1
a g
)
a L
mn
x
2. 动应力
d
FNd A
x(1
a) g
a
FNd 动荷系数
Kd
1
a g
qst
x
qG 强度条件 dmax Kd stmax [ ]
12
例题3 起重机钢丝绳长 60m , 名义直径 28cm , 有效
横截面面积 A=2. 9cm2 , 单位长重量 q=25. 5N/m ,
A 2D2
4g
0
sin d A 2D2
2g
FNd
Rd 2
A
A2D22D2
4g4g 0
sidn
FddA22DD2
A 2g4g
2
园环轴A线 上2D点2 的线速度
2g
d
2
g
D v
2
强度条件
v2
d g [ ] FNd
y
Rd
d
o
q
d
(
D 2
d
)
qd
FNd
环内应力与横截面面积无关。
要保证强度, 应限制圆环的转速。
工程力学课件 第11章 动载荷、冲击载荷、交变应力简介

1.1.1 电路பைடு நூலகம்组成
交变应力的变化特点可用最小应力与最大应力的比值r表示, 称为循环特征(应力比)即
它的可能取值范围为
在五个特征量
中,只有两个是独立的,即只要已知其中的任意两个特征量, 就可求出其他的量。如果
工程力学
12
称为脉动循环交变应力,其循环特征r=0。 当
1.1.1 电路的组成
r=1 交变应力统称为非对称循环交变应力。
对于以等加速度作直线运动构件,只要确定其上各点的加速度a, 就可以应用达朗贝尔原理施加惯性力,如果为集中质量m,则惯性力 为集中力。
如果是连续分布质量,则作用在质量微元上的惯性力为
工程力学
2
然后,按照弹性 静力学中的方法对构
1.件1进.1行电应力路分的析和组强成 度与刚度的计算。以 图中的起重机起吊重 物为例,在开始吊起 重物的瞬时,重物具 有向上的加速度a,重 物上便有方向向下的 惯性力,如式(11-1) 所示。
其中
分别称为静应力(staticsstress)和动应力(dynamicsstress)。
工程力学
4
第二节 冲击载荷
一、基本假定 1.1.1具电有一路定的速度组的成运动物体,向着静止的构件冲击时,冲击物的
速度在很短的时间内发生了很大变化,即:冲击物得到了很大的负 值加速度。这表明,冲击物受到与其运动方向相反的很大的力作用。 同时,冲击物也将很大的力施加于被冲击的构件上,这种力在工程 上称为“冲击力”或“冲击载荷”。
③假设冲击过程中没有其他形式的能量转换,机械能量守恒定 理仍成立。
工程力学
5
二、自由落体冲击 1.1.1设电一简路支的梁(组线弹成性体)受自由落体冲击如图11.3所示,试分析
交变应力的变化特点可用最小应力与最大应力的比值r表示, 称为循环特征(应力比)即
它的可能取值范围为
在五个特征量
中,只有两个是独立的,即只要已知其中的任意两个特征量, 就可求出其他的量。如果
工程力学
12
称为脉动循环交变应力,其循环特征r=0。 当
1.1.1 电路的组成
r=1 交变应力统称为非对称循环交变应力。
对于以等加速度作直线运动构件,只要确定其上各点的加速度a, 就可以应用达朗贝尔原理施加惯性力,如果为集中质量m,则惯性力 为集中力。
如果是连续分布质量,则作用在质量微元上的惯性力为
工程力学
2
然后,按照弹性 静力学中的方法对构
1.件1进.1行电应力路分的析和组强成 度与刚度的计算。以 图中的起重机起吊重 物为例,在开始吊起 重物的瞬时,重物具 有向上的加速度a,重 物上便有方向向下的 惯性力,如式(11-1) 所示。
其中
分别称为静应力(staticsstress)和动应力(dynamicsstress)。
工程力学
4
第二节 冲击载荷
一、基本假定 1.1.1具电有一路定的速度组的成运动物体,向着静止的构件冲击时,冲击物的
速度在很短的时间内发生了很大变化,即:冲击物得到了很大的负 值加速度。这表明,冲击物受到与其运动方向相反的很大的力作用。 同时,冲击物也将很大的力施加于被冲击的构件上,这种力在工程 上称为“冲击力”或“冲击载荷”。
③假设冲击过程中没有其他形式的能量转换,机械能量守恒定 理仍成立。
工程力学
5
二、自由落体冲击 1.1.1设电一简路支的梁(组线弹成性体)受自由落体冲击如图11.3所示,试分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在惯性力集度的作用下,圆环将胀大。令变形后的直径为D ,
则其直径变化 DD D ,径向应变为
r D D (D D D )t E t
所以
DDd
v2D
E Eg
DDDD(1v2)
gE
由上式可见,圆环直径增大主要取决于其线速度。
材料力学
动载荷
§3 冲击问题
材料力学
§3 冲击问题
动载荷
•冲击问题的特点:
当σd〈σp(比例极限)时,胡克定律仍然有效,且弹
性模量与静荷下的数值相同。
材料力学
动载荷
§2 惯性力问题
材料力学
§2 惯性力问题
1、直线等加速运动构件
• 动静法(达朗贝尔原理) •动静法解题的步骤:
动载荷
•计算构件的加速度; •将相应的惯性力 F *m a 作为外力虚加于各质点;
•作为静力平衡问题进行处理。
Q
被冲击构件增加的变形能 U,是等于冲
击载荷 Pd 在冲击过程中所作的功。
st
d
且
Pd d Q st
于是变形能为
根据能量守恒:
U12Pdd 12Qstd2
材料力学
T U
§3 冲击问题
动载荷
可以得到: 即
Q(Hd)12Qstd2
d22s t d2H st0
解得:
dst s2 t 2Hst
式中“+”对应的是最大变形,“-”代表的是回跳到的最
材料力学
§2 惯性力问题
动载荷
例2-1 一吊车以匀加速度起吊重物Q,若吊索的横截面积为A,材料
比重为,上升加速度为a,试计算吊索中的应力。
解:将吊索在x处切开,取下面
Fd (x)
部分作为研究对象。 作用在这部分物体上的外力有:
mm
Ax
a x Ax a x
g
重物的重量:Q;
x段的吊索重量:Ax,
惯性力为:Q
动载荷
动载荷
材料力学
动载荷
§1 概述
材料力学
§1 概述
动载荷
静载荷:作用在构件上的载荷是由零开始 缓慢地增加到某一定值不再随时间改变。
动载荷:使构件产生明显的加速度的载 荷或者随时间变化的载荷。
材料力学
§1 概述
动载荷
动载荷问题分为三类:1.一般加速度问题; 2.冲击载荷; 3.振动问题
实验表明:
AD2
2g
§2 惯性力问题
圆环横截面上的内力:
动载荷
qd
y
qd D2 d
2Nd0 qdD 2dsinqdD
d
x
o
Nd
AD2 2
4g
Nd
Nd
圆环横截面上的应力:
d
Nd A
D22
4g
v2
g
式中v D 是圆环轴线上各点的线速度。强度条件为:
2
d
v2
g
[ ]
材料力学
§2 惯性力问题
动载荷
•旋转圆环的变形计算
v
结构(受冲击构件)受外力(冲
击物)作用的时间很短,冲击物的速
度在很短的时间内发生很大的变化,
甚至降为零,冲击物得到一个很大的
负加速度a,结构受到冲击力的作用
。
Qa
冲击物
受冲击 的构件
采用能量法近似计算冲击时构件内的最大应力和变形。
材料力学
§3 冲击问题
根据能量守恒定律,即
动载荷
TVU T :冲击物接触被冲击物后,速度0,释放出的动能; V :冲击物接触被冲击物后,所减少的势能; U :被冲击构件在冲击物的速度0时所增加的变形能。
st
代入上式,并引入记号K d
Ax Q
1 Aa ,称为动荷系数,则: g
d stKd
材料力学
§2 惯性力问题
动载荷
于是,动载荷作用下构件的强度条件为:
dm a(x s)tmK ad x[]
式中得[]仍取材料在静载荷作用下的许用应力。
•动荷系数 K d 的物理意义:是动载荷、动荷应力和动荷变形与
因为
Pd d Q st
d st
kd
所以冲击应力为
强度条件为
d kdst
dm ax kd(s)tm a[ x ]
材料力学
动载荷
§3 冲击问题
动载荷
因此在解决动载荷作用下的内力、应力和位移计算的
问题时,均可在动载荷作为静荷作用在物体上所产生的静
g
a
,Ax
g
a
Q
吊索截面上的内力:FNd (x)
Q
Qa
根据动静法,列平衡方程:
g
X 0即
F N(dx)Ax A gxaQ Q ga0
材料力学
§2 惯性力问题
动载荷
解得:
FNd(x)(AxQ)1(ga)
吊索中的动应力为:
d(x)F A NdAA xQ(1g a)
当重物静止或作匀速直线运动时,吊索横截面上的静荷应力为:
材料力学
§3 冲击问题
动载荷
根据假设,工程实际上的梁、杆均可简化为弹簧来
分析。现以一弹簧代表受冲构件,受重物Q,在高度H处
落下的作用,计算冲击应力。
Q H
Q H
Q
H
A
B
弹簧
材料力学
§3 冲击问题
动载荷
一、竖直冲击
设:受重物Q自高度 H 落下,冲击弹性系统后,
Q
速度开始下降至0,同时弹簧变形达到最
一平均直径为D的薄壁圆环绕通过其圆心且垂直于圆环平面
的轴作等角速度转动。已知转速为,截面积为A,比重为,壁
厚为t。
解:等角速度转动时,环内各
qd
点具有向心加速度,且D>>t
antDo来自可近似地认为环内各点向心
o
加速度相同, an 。2D/2
沿圆环轴线均匀分布的惯性
力集度 q为d :
材料力学
qd
A
g
an
静载荷、静荷应力和静荷变形之比。因此根据胡克定律,有以 下重要关系:
Kd P Psdt sdtsdt sdt
式中Pd,d,d,d分别表示动载荷,动应力,动应变和动位移; Pst,st,st,s分t 别表示静载荷,静应力,静应变和静位移。
材料力学
§2 惯性力问题
动载荷
2、等角速度旋转的构件
•旋转圆环的应力计算
材料力学
§3 冲击问题
•计算冲击问题时所作的假设:
动载荷
1、在整个冲击过程中,结构保持线弹性,即力和变 形成正比。
2、假定冲击物为刚体。只考虑其机械能,不计变形能。
3、假定被冲击物为弹性体。只考虑其变形能,不计机 械能(被冲击物质量不计)。
4、略去冲击过程中的其它能量损失,如塑性变形 能、热能等。
高位置。所以取正值。
即
dst s2 t 2Hst
材料力学
§3 冲击问题
动载荷
d st st2 2Hst
st (1
1 2H ) st
kdst
式中 k d 为冲击时的动荷系数,
kd 1
1 2H st
其中 st 是结构中冲击受力点在静载荷(大小为冲击物重量) 作用下的垂直位移。
材料力学
§3 冲击问题
H Q
大值 d 。
Q
d
此时,全部(动)势能转化为变形能, 杆内动应力达最大值(以后要回跳)。就
以此时来计算:
弹簧 •释放出的动能(以势能的降低来表示)
TQ(Hd)
•增加的变形能,在弹性极限内
材料力学
U
1 2
Pd
d
§3 冲击问题
动载荷
根据力和变形之间的关系:Pd kd
P
Pd
P d:冲击物速度为0时,作用于杆之力。