弧度制练习题

合集下载

弧度制及其与角度制的换算练习题

弧度制及其与角度制的换算练习题

弧度制及其与角度制的换算练习题1. 中心角为135∘的扇形,其面积为S1,其围成的圆锥的表面积为S2,则S1S2=()A.118B.138C.811D.8132. 小明出国旅游,因当地时间比中国时间晚一个小时,他需要将表的时针拨慢1小时,则时针转过的角的弧度数是()A.π3B.π6C.−π3D.−π63. 我们学过用角度制与弧度制度量角,最近,有学者提出用“面度制”度量角,因为在半径不同的同心圆中,同样的圆心角所对扇形的面积与半径平方之比是常数,从而称这个常数为该角的面度数,这种用面度作为单位来度量角的单位制,叫做面度制.在面度制下,角θ的面度数为,则角θ的余弦值为()A. B. C. D.4. 在△ABC中,关于x的方程(1+x2)sin A+2x sin B+(1−x2)sin C=0无实数根,则△ABC的形状为()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形5. 《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=12(弦+矢)×矢,弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差现有圆心角为2π3,半径等于20米的弧田,按照上述经验公式计算所得弧田面积约是( )(参考数据:π≈3.14,√3≈1.73)A.220平方米B.246平方米C.223平方米D.250平方米6. 在单位圆中,150∘的圆心角所对的弧长为()A.2π3B.3π4C.5π6D.π7. 如图,PM是圆O的切线,M为切点,PAB是圆的割线,AD // PM,点D在圆上,AD 与MB交于点C.若AB=6,BC=4,AC=3,则CD等于()A.169B.43C.916D.348. 半径为1cm,圆心角为150∘的弧长为()A.5 3cmB.5π3cm C.56cm D.5π6cm9. 已知扇形的弧长为π,面积为2π,则这个扇形的圆心角的弧度数为()A.π4B.π2C.2D.410. 天干地支纪年法,源于中国.中国自古便有十天干与十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如说第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”……依此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”……依此类推.已知1949年为“己丑”年,那么到新中国成立80周年时,即2029年为( ).A.己丑年B.己酉年C.壬巳年D.辛未年11. (1)已知a=835∘,β=256π.将a用弧度制表示为________,它为第________象限角;将β用角度制表示________,在[−720∘, 0∘]内与它终边相同的角为________. 11.(2)角的终边落在y=√3x(x>0)上的角的集合为________,角的终边落在y=√3x的角的集合为________.12. 若扇形的周长是8cm,面积4cm2,则扇形的圆心角为________rad.13. 你在忙着答题,秒针在忙着“转圈”,现在经过了1小时,则分针转过的角的弧度数是________.14. 走时精确的钟表,中午12时,分针与时针重合于表面上12的位置,则当下一次分针与时针重合时,时针转过的弧度数的绝对值等于________.15. 如图,动点P,Q从点A(3, 0)出发绕⊙O作圆周运动,若点M按逆时针方向每秒钟转π3rad,点N按顺时针方向每秒钟转π6rad.则当M、N第一次相遇时,点M转过的弧长为________.16. 一个扇形的面积为4,周长为8,则扇形的圆心角为________.17. 用30cm长的铁丝围成一个扇形,应怎样设计才能使扇形的面积最大?最大面积是多少?18. 如图,圆周上点A依逆时针方向做匀速圆周运动,已知A点1分钟转过θ(0∘<θ< 180∘),2分钟到第三象限,16分钟后回到原来的位置,求θ.19. 已经cos(2θ−3π)=725,且θ是第四象限角,(1)求cosθ和sinθ的值;(2)求cos (π2−θ)tan θ[cos (π+θ)−1]+sin (θ−3π2)tan (π−θ)cos (−θ)的值.20. 设α1=−570∘,α2=750∘,β1=3π5,β2=−π3. (1)将α1,α2用弧度制表示出来并指出它们各自的终边所在的象限;(2)将β1,β2用角度制表示出来,并在−720∘∼0∘范围内找出它们终边相同的所有角.参考答案与试题解析弧度制及其与角度制的换算练习题一、选择题(本题共计 10 小题,每题 5 分,共计50分)1.【答案】C【考点】柱体、锥体、台体的侧面积和表面积扇形面积公式弧度制的应用【解析】设扇形半径为1,l为扇形弧长,也为圆锥底面周长,由扇形面积公式求得侧面积,再利用展开图的弧长为底面的周长,求得底面半径,进而求底面面积,从而求得表面积,最后两个结果取比即可.【解答】解:设扇形半径为1,则扇形弧长为1×3π4=3π4,设围成圆锥的底面半径为r,则2πr=3π4,r=38,扇形的面积S1=12×1×3π4=3π8,圆锥的表面积S2=S1+πr2=3π8+9π64=33π64,∴S1S2=811.故选C.2.【答案】B【考点】弧度制【解析】他需要将表的时针逆时针旋转周角的112,即可转过的角的弧度数.【解答】他需要将表的时针逆时针旋转,则转过的角的弧度数是π6,3.【答案】B【考点】弧度制【解析】设角θ所在的扇形的半径为r,利用面度数的定义及扇形的面积公式可得=,解得θ=,即可求解cosθ的值.【解答】设角θ所在的扇形的半径为r,则由题意,可得=,可得cosθ=cos=-.4.【答案】B【考点】三角形的形状判断【解析】先运用正弦定理,把角化为边,再将方程整理为一般式,再根据判别式的意义得到△=4b2−4(a−c)(a+c)<0,即可判断三角形形状.【解答】由正弦定理,可得sin A=a2R ,sin B=b2R,sin C=c2R,则关于x的方程(1+x2)sin A+2x sin B+(1−x2)sin C=0,即为(1+x2)a+2xb+(1−x2)c=0方程整理为(a−c)x2+2bx+a+c=0,根据题意得△=4b2−4(a−c)(a+c)<0,∴a2>b2+c2,∴cos A<0∴A为钝角,5.【答案】C【考点】扇形面积公式【解析】在Rt△AOD中,由题意OA=20,∠DAO=π6,即可求得OD,AD的值,根据题意可求矢和弦的值,即可利用公式计算求值得解.【解答】解:如图,由题意可得∠AOB=2π3,OA=20,在Rt△AOD中,∠AOD=12∠AOB=π3,∠ADO=π2,所以∠DAO=π6,所以OD=12AO=12×20=10,所以矢即CD=20−10=10,由AD=AO⋅sinπ3=20×√32=10√3,所以弦即AB=2AD=2×10√3=20√3,所以弧田面积=12(弦+矢)×矢=12(20√3+10)×10≈223平方米.故选C.6.【答案】C【考点】弧长公式【解析】由题意,150∘=5π6,利用弧长公式可得.【解答】由题意,150∘=5π6,∴在单位圆中,150∘的圆心角所对的弧长为5π6,7.【答案】A【考点】与圆有关的比例线段【解析】证明△BMA∽△AMC,得出MC=43,再利用相交弦定理,求出CD.【解答】由题意,连接AM,∵PM是圆O的切线,M为切点,∴∠PMA=∠PBM,∵AD // PM,∴∠PMA=∠MAC,∴∠MAC=∠ABM,∵∠AMB=∠CMA,∴△BMA∽△AMC,∴BMAM =MAMC=BAAC,∵AB=6,AC=3,∴BM=2AM,AM=2MC,∴BM=4MC,∴4+MC=4MC,∴MC=43.由相交弦定理可得3CD=43×4,∴CD=169.8.【答案】D【考点】弧长公式【解析】利用弧长公式即可得出.【解答】解:150∘=5π6,∴弧长=5π6×1=5π6.故选:D.9.【答案】A【考点】扇形面积公式【解析】首先根据扇形的面积求出半径,再由弧长公式得出结果.【解答】解:根据扇形的面积公式S=12lr,可得:2π=12×πr,解得:r=4,再根据弧长公式l=4α,解得扇形的圆心角的弧度数是π4. 故选A.10.【答案】B【考点】进行简单的合情推理【解析】本题主要考查周期性及归纳推理.【解答】解:由题意可知,天干地支纪年法的周期为60,从1949年到2009年,恰好一个周期,即2009年是“己丑”年,再到2029年,又过去20年,因为天干的周期是10,地支的周期是12,所以天干过两个周期,地支过一个周期又8年,所以天干是“己”,地支是“酉”,所以2029年是“己酉”年.故选B.二、填空题(本题共计 6 小题,每题 5 分,共计30分)11.【答案】16736π,二,1125∘,−690∘,−330∘{α|α=60∘+k⋅360∘, k∈Z},,{α|α=60∘+n⋅180∘, n∈Z}.【考点】弧度制【解析】(1)根据角度值和弧度制转化关系式求出即可.(2)由终边相同的角的定义,先写出终边落在射线y=√3x(x>0)的角的集合,再写出终边落在射线y=√3x (x<0)的角的集合,最后求两个集合的并集即可【解答】解:(1)∵a=835∘,β=256π.∴a=835180π=16736π,它为第二象限角;β=254×180∘=1125∘,[−20∘, 0∘]内与它终边相同的角为−690∘,−330∘;(2)∵直线y=√3x的斜率为,则倾斜角为60∘,∴终边落在射线y=√3x(x>0)上的角的集合是S1={α|α=60∘+k⋅360∘, k∈Z},终边落在射线y=√3x(x<0)上的角的集合是S2={α|α=240∘+k⋅360∘, k∈Z},∴终边落在直线y=√3x上的角的集合是:S={α|α=60∘+k⋅360∘, k∈Z}∪{α|α=240∘+k⋅360∘, k∈Z}={α|α=60∘+2k⋅180∘, k∈Z}∪{α|α=60∘+(2k+1)⋅180∘, k∈Z}={α|α=60∘+n⋅180∘, n∈Z}.12.【答案】2【考点】弧长公式【解析】设扇形的圆心角为α,半径为R,则根据弧长公式和面积公式有{2R+Rα=812αR2=4,故可求扇形的圆心角.【解答】解:设扇形的圆心角为α,半径为R,则{2R+Rα=812αR2=4⇒{α=2R=2.故答案为:2.13.【答案】−2π【考点】弧长公式弧度制【解析】此题暂无解析【解答】此题暂无解答14.【答案】【考点】弧长公式弧度制【解析】此题暂无解析【解答】此题暂无解答15.【答案】4π【考点】弧度制【解析】根据两个动点的角速度和第一次相遇时,两者走过的弧长和恰好是圆周长求出第一次相遇的时间,再由角速度和时间求出P点到达的位置,再根据三角函数的定义求出此点的坐标,利用弧长公式及l=αR求出P点走过的弧长.【解答】解:设P、Q第一次相遇时所用的时间是t,可得t⋅π3+t⋅|−π6|=2π,即π2t=2π.∴t=4(秒),即第一次相遇的时间为4秒.设第一次相遇点为C,第一次相遇时P点已运动到终边在π3⋅4=4π3的位置,试卷第11页,总13页因此第一次相遇时,P 点走过的弧长为43π×3=4π.故答案为:4π. 16.【答案】 2【考点】 扇形面积公式 弧长公式 【解析】由题意列方程组可解半径r 和弧长l ,代入α=lr 计算可得.【解答】解:设扇形的半径为r ,弧长为l , 则由题意可得12lr =4,2r +l =8,解得l =4,r =2,∴ 扇形的圆心角α=lr =2,故答案为:2.三、 解答题 (本题共计 4 小题 ,每题 5 分 ,共计20分 ) 17. 【答案】 当半径r =152cm 时,扇形面积的最大值是2254cm 2.【考点】 扇形面积公式 【解析】 此题暂无解析 【解答】设扇形的圆心角为α,半径为r ,面积为S ,弧长为l ,则有l +2r =30, ∴ l =30−2r ,从而S =12⋅l ⋅r =12(30−2r )⋅r =−r 2+15r =−(r −152)2+2254.∴ 当半径r =152cm 时,l =30−2×152=15cm ,扇形面积的最大值是2254cm 2,试卷第12页,总13页这时α=lr =2rad . 18.【答案】解:A 点2分钟转过2θ,且180∘<2θ<270∘, 16分钟后回到原位,∴ 16θ=k ⋅360∘, θ=k⋅360∘16=k⋅45∘2,且90∘<θ<135∘,∴ θ=67.5∘或θ=90∘(舍). ∴ θ=67.5∘. 【考点】 弧度制 【解析】通过题意求出2θ的范围,利用16分钟回到原位,求出θ的值即可. 【解答】解:A 点2分钟转过2θ,且180∘<2θ<270∘, 16分钟后回到原位,∴ 16θ=k ⋅360∘, θ=k⋅360∘16=k⋅45∘2,且90∘<θ<135∘,∴ θ=67.5∘或θ=90∘(舍). ∴ θ=67.5∘. 19. 【答案】解:由cos (2θ−3π)=cos (−π+2θ)=−cos 2θ=725,即cos 2θ=1−2sin 2θ=−725,(1)∵ θ是第四象限角, ∴ sin θ=−45.∵ cos 2θ=2cos 2θ−1=−725 ∵ θ是第四象限角, ∴ cos θ=35.(2)由cos (π2−θ)tan θ[cos (π+θ)−1]+sin (θ−3π2)tan (π−θ)cos (−θ)=sin θ−tan θ⋅cos θ−tan θ−cos θtan θ⋅cos θ=sin θ−sin θ−sin θcos θ−cos θsin θ=cos θ−1−cos θ−cos θsin θ=−35−1−35+3545=89.【考点】三角函数中的恒等变换应用 【解析】 (1)(2)利用诱导公式和同角三角函数关系式化简即可求解. 【解答】解:由cos (2θ−3π)=cos (−π+2θ)=−cos 2θ=725,即cos 2θ=1−2sin 2θ=−725,(1)∵ θ是第四象限角, ∴ sin θ=−45.试卷第13页,总13页∵ cos 2θ=2cos 2θ−1=−725∵ θ是第四象限角, ∴ cos θ=35. (2)由cos (π2−θ)tan θ[cos (π+θ)−1]+sin (θ−3π2)tan (π−θ)cos (−θ)=sin θ−tan θ⋅cos θ−tan θ−cos θtan θ⋅cos θ=sin θ−sin θ−sin θcos θ−cos θsin θ=cos θ−1−cos θ−cos θsin θ=−35−1−35+3545=89.20. 【答案】α1=−570∘=−570×π180=−19π6,在第二象限;α2=750∘=750×π180=25π6,在第一象限; β1=3π5=108∘,终边相同的角k ⋅360∘+108∘,−720∘∼0∘范围内与它们终边相同的所有角−612∘,−252∘.β2=−π3=−60∘,终边相同的角k ⋅360∘−60∘,−720∘∼0∘范围内与它们终边相同的所有角−420∘.【考点】 弧度制 【解析】利用角度与弧度的互化,即可得出结论. 【解答】α1=−570∘=−570×π180=−19π6,在第二象限;α2=750∘=750×π180=25π6,在第一象限; β1=3π5=108∘,终边相同的角k ⋅360∘+108∘,−720∘∼0∘范围内与它们终边相同的所有角−612∘,−252∘.β2=−π3=−60∘,终边相同的角k ⋅360∘−60∘,−720∘∼0∘范围内与它们终边相同的所有角−420∘.。

高一任意角与弧度制题型练习(全)

高一任意角与弧度制题型练习(全)

任意角知识梳理一、角的概念的推广1.角按其旋转方向可分为:正角,零角,负角.①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角;②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角.例如,画出下列各角:,,.2.在直角坐标系中讨论角:①角的顶点在原点,始边在轴的非负半轴上,角的终边在第几象限,就说这个角是第几象限角.②若角的终边在坐标轴上,就说这个角不属于任何象限,它叫轴线角.二、终边相同的角的集合设表示任意角,所有与终边相同的角,包括本身构成一个集合,这个集合可记为.集合的每一个元素都与的终边相同,当时,对应元素为.例如,如图,角、角和角都是以射线为终边的角,它们是终边相同的角.特别提醒:为任意角,“”这一条件不能漏;与中间用“”连接,可理解成;当角的始边相同时,相等的角的终边一定相同,而终边相同的角不一定相等.终边相同的角有无数个,它们相差的整数倍.终边不同则表示的角一定不同.三、区间角、区域角1.区间角、区域角的定义介于两个角之间的角的集合叫做区间角,如.终边介于某两角终边之间的角的几何叫做区域角,显然区域角包括无数个区间角.2.区域角的写法(1)若角的终边落在一个扇形区域内,写区域角时,先依逆时针方向由小到大写出一个区间角,然后在它的两端分别加上“”,右端末注明“”即可.(2)若角的终边落在两个对称的扇形区域内,写区域角时,可以先写出终边落在一个扇形区域内的一个区间角,在此区间角的两端分别加上“”,右端末注明“”即可.例如,求终边落在图中阴影内(包括边界)的角的集合,可先求落在第一象限内的区间角,故终边落在图中阴影内(包括边界)的角的集合为.3.各象限角的集合象限角象限角的集合表示第一象限角第二象限角第三象限角第四象限角四、倍角和分角问题已知角的终边所在的象限,求的终边所在象限.1.代数法由的范围求出的范围.通过分类讨论把写成的形式,然后判断的终边所在的象限.2.几何法画出区域:将坐标系每个象限等分,得个区域.标号:自轴正向起,沿逆时针方向把每个区域依次标上、、、,如图所示(此时).确定区域:找出与角的终边所在象限标号一致的区域,即为所求.题型训练题型一任意角的概念1.下列四个命题中,正确的是()A.第一象限的角必是锐角B.锐角必是第一象限的角C.终边相同的角必相等D.第二象限的角必大于第一象限的角2.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③锐角一定是第一象限的角;④小于的角一定是锐角;⑤终边相同的角一定相等.其中正确命题的个数是()A.1B.2C.3D.43.设集合,,则?题型二终边相同的角的集合1.下列各个角中与2020°终边相同的是()A.-150°B.680°C.220°D.320°2.写出终边在图中直线上的角的集合.3.写出终边落在图中阴影部分(包括边界)的角的集合.4.下列各组中,终边相同的角是()A.和()B.和C.和D.和5.若角与的终边关于轴对称,且,则所构成的集合为.6.与2021°终边相同的最小正角是.7.写出角的终边在阴影中的角的集合.题型三象限角的定义1.在,,,,这五个角中,属于第二象限角的个数是()A.2B.3C.4D.52.若是第四象限角,则一定是第几象限角?3.已知,则所在的象限是()A.第一象限B.第二象限C.第一或第二象限D.第三或第四象限题型四角所在象限的研究1.已知α为第二象限角,则所在的象限是()A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限2.已知θ为第二象限角,那么是()A.第一或第二象限角B.第一或四象限角C.第二或四象限角D.第一、二或第四象限角3.若是第二象限角,则,是第几象限角?弧度制知识梳理一、弧度制和弧度制与角度制的换算1.角度制角可以用度为单位进行度量,度的角等于周角的,这种用度作为单位来度量角的单位制叫做角度制.2.弧度制①弧度的角:长度等于半径长的弧所对的圆心角.②弧度制定义:以弧度作为单位来度量角的单位制.记法:用符号表示,读作弧度.特别提醒:(1)用弧度为单位表示角的大小时,“弧度”或“”可以略去不写,只写这个角对应的弧度数即可,如角可写成.而用度为单位表示角的大小时,“度”或“°”不可以省略.(2)不管是以弧度还是以度为单位的角的大小都是一个与半径大小无关的定值.二、角度与弧度的换算1.弧度与角度的换算公式(1)关键:抓住互化公式rad=180°是关键;(2)方法:度数弧度数;弧度数度数2.一些特殊角的度数与弧度数的对应表:【注意】①在同一问题中,角度制与弧度制不能混用;②弧度制下角可以与实数可以建立一一对应的关系,所以弧度制表示的角的范围可以用区间表示,如,但角度制表示的角的范围一般不用区间表示,即不用表示,因为区间表示的是数集,但角度数不是实数.三、弧长公式、扇形面积公式如图,设扇形的半径为,弧长为,圆心角为.1.弧长公式:.注意:在应用弧长公式时,要注意的单位是“弧度”,而不是“度”,如果一直角是以“度”为单位的,则必须先把它化为以“弧度”为单位,再代入计算.2.扇形面积公式:.3.弧长公式及扇形面积公式的两种表示角度制弧度制弧长公式扇形面积公式注意事项是扇形的半径,是圆心角的角度数是扇形的半径,是圆心角的弧度数题型训练题型一弧度制与角度制互化1.与角终边相同的最小正角是?(用弧度制表示)2.若四边形的四个内角之比为,则四个内角的弧度数依次为.3.对应的弧度数为4.把化为弧度的结果是5.如图,用弧度制表示终边落在下列阴影部分的角.6.若θ=-3rad,则θ的终边落在()A.第一象限B.第二象限C.第三象限D.第四象限题型二扇形的弧长、面积、与圆心角问题1.半径为,中心角为的角所对的弧长为()A.B.C.D.2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为()A.2B.4C.6D.83.已知扇形的周长为,圆心角为,则扇形的面积为?4.一个扇形的弧长与面积都是,则这个扇形圆心角的弧度数为()A.B.C.D.5.已知弧度的圆心角所对的弦长为,那么,这个圆心角所对的弧长是()A.B.C.D.6.半径为,圆心角为的扇形的弧长为()A.B.C.D.7.设扇形的弧长为,半径为,则该扇形的面积为?8.已知扇形的周长为,面积为,则扇形圆心角的弧度数为?。

第5章 培优练习:5.1.2 弧度制(答案版)

第5章 培优练习:5.1.2 弧度制(答案版)

一、角度制与弧度制1.用度作为单位来度量角的单位制叫做角度制,1度的角等于周角的3601。

2.规定:长度等于半径长的圆弧所对的圆心角叫做1弧度的角,弧度单位用符号rad 表示,读作弧度。

3.半径为1的圆叫做单位圆。

4.角的弧度数的求法正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0。

如果半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值|α|=rl 。

二、角度与弧度的换算三、扇形的面积和弧长公式设扇形的半径为R ,弧长为l ,α为其圆心角,则一、选择题5.2.1 弧度制知识讲解 同步练习1.下列说法中,错误的是( )。

A.“度”与“弧度”是度量角的两种不同的度量单位B.1°的角是周角的1360,1rad 的角是周角的12πC.l rad 的角比1°的角要大D.用弧度制度量角时,角的大小与圆的半径有关【答案】D【解析】由角度制和弧度制的定义,知A ,B ,C 说法正确.用弧度制度量角时,角的大小与所对圆弧长与半径的比有关,而与圆的半径无关,故D 说法错误。

2.-225°化为弧度为( )。

A.π43 B.π47- C.π45- D.π43- 【答案】C【解析】-225°=-ππ45-2360225=•︒︒,故选C 。

3.若a=5 rad ,则角α的终边所在的象限为( )。

A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】∵π23<5<2π,∵α=5rad 为第四象限角,其终边位于第四象限。

故选D 。

4.已知k∵Z ,下列各组角中,终边相同的是( )。

A.2k π与k πB.2k π+π与4k π±πC.k π+6π与2k π±6π D.2πk 与k π±2π 【答案】B【解析】2k π(k∵Z)表示终边在x 轴非负半轴上的角的集合,k π(k∵Z)表示终边在x 轴上的角的集合,两组角终边不同;2k π+π与4k π±π(k∵Z)都表示终边在x 轴非正半轴上的角的集合,两组角终边相同;k π+6π(k∵Z)表示终边与6π和π67终边相同的角的集合,2k π±6π(k∵Z)表示终边与6-6ππ和终边相同的角的集合,两组角终边不同;)(2Z k k ∈π表示终边在坐标轴上的角的集合,k π±2π(k∵Z)表示终边在y 轴上的角的集合,两组角终边不同;故选B 。

人教A版数学高二弧度制精选试卷练习(含答案)1

人教A版数学高二弧度制精选试卷练习(含答案)1

人教A 版数学高二弧度制精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是 ( ) A .1 B .2 C .3 D .4【来源】黑龙江省鹤岗市第一中学2018-2019学年高一12月月考数学(理)试题【答案】B 2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为( ) A . B . C . D .【来源】同步君人教A 版必修4第一章1.1.2弧度制【答案】C3.扇形圆心角为3π,半径为a ,则扇形内切圆的圆面积与扇形面积之比为( ) A .1:3B .2:3C .4:3D .4:9【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(二)(带解析)【答案】B4.已知扇形的圆心角为2弧度,弧长为4cm , 则这个扇形的面积是( ) A .21cm B .22cm C .24cm D .24cm π【来源】陕西省渭南市临渭区2018—2019学年高一第二学期期末数学试题【答案】C5.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题【答案】B 6.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π- C .23π D .23π-【来源】浙江省台州市2019-2020学年高一上学期期末数学试题【答案】B7.实践课上小华制作了一副弓箭,如图所示的是弓形,弓臂BAC 是圆弧形,A 是弧BAC 的中点,D 是弦BC 的中点,测得10AD =,60BC =(单位:cm ),设弧AB 所对的圆心角为θ(单位:弧度),则弧BAC 的长为( )A .30θB .40θC .100θD .120θ【来源】安徽省池州市2019-2020学年高一上学期期末数学试题【答案】C8.已知扇形AOB 的半径为r ,弧长为l ,且212l r =-,若扇形AOB 的面积为8,则该扇形的圆心角的弧度数是( )A .14B .12或2C .1D .14或1 【来源】广西贵港市桂平市2019-2020学年高一上学期期末数学试题【答案】D9.已知扇形的圆心角为150︒,弧长为()5rad π,则扇形的半径为( )A .7B .6C .5D .4【来源】安徽省六安市六安二中、霍邱一中、金寨一中2018-2019学年高二下学期期末联考数学(文)试题【答案】B10.已知扇形AOB ∆的周长为4,当扇形的面积取得最大值时,扇形的弦长AB 等于( )A .2B .sin1C .2sin1D .2cos1【来源】湖北省宜昌市一中、恩施高中2018-2019学年高一上学期末联考数学试题【答案】C11.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)( )A .6.33平方寸B .6.35平方寸C .6.37平方寸D .6.39平方寸【来源】山东省潍坊市2018-2019学年高一下学期期中考试数学试题【答案】A12.已知扇形OAB 的面积为1,周长为4,则弦AB 的长度为( ) A .2 B .2/sin 1 C .2sin 1 D .sin 2【来源】黑龙江省部分重点高中2019-2020学年高一上学期期中联考数学试题【答案】C13.已知扇形OAB 的面积为4,圆心角为2弧度,则»AB 的长为( ) A .2 B .4 C .2π D .4π【来源】江苏省南京市2019-2020学年高一上学期期末数学试题【答案】B14.已知α 为第三象限角,则2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【来源】四川省南充高级中学2016-2017学年高一4月检测考试数学试题【答案】D15.若扇形的面积为216cm ,圆心角为2rad ,则该扇形的弧长为( )cm . A .4 B .8 C .12 D .16【来源】江苏省盐城市大丰区新丰中学2019-2020学年高一上学期期末数学试题【答案】B16.周长为6,圆心角弧度为1的扇形面积等于( )A .1B .32πC .D .2【来源】河北省邯郸市魏县第五中学2019-2020学年高一上学期第二次月考数学试题【答案】D17.已知一个扇形弧长为6,扇形圆心角为2rad ,则扇形的面积为 ( )A .2B .3C .6D .9【来源】2013-2014学年辽宁省实验中学分校高二下学期期末考试文科数学试卷(带解析)【答案】D18.集合{|,}42k k k Z ππαπαπ+≤≤+∈中角所表示的范围(阴影部分)是( ) A . B . C .D .【来源】2015高考数学理一轮配套特训:3-1任意角弧度制及任意角的三角函数(带解析)【答案】C19.已知⊙O 的半径为1,A ,B 为圆上两点,且劣弧AB 的长为1,则弦AB 与劣弧AB 所围成图形的面积为( )A .1122-sin 1B .1122-cos 1C .1122-sin 12D .1122-cos 12【来源】河北省衡水中学2019-2020学年高三第一次联合考试数学文科试卷【答案】A20.已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A .53π B .23π C .52π D .2π 【来源】河南省新乡市2018-2019学年高一下学期期末数学试题【答案】C21.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3π-B .1)πC .1)πD .2)π【来源】吉林省长春市2019-2020学年上学期高三数学(理)试题【答案】A22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .20【来源】上海市实验学校2018-2019学年高一下学期期末数学试题【答案】B23.已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是()A .45B .5C .12D .45或5 【来源】安徽省阜阳市太和县2019-2020学年高三上学期10月质量诊断考试数学(文)试题【答案】D24.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于( ). A .48 B .24 C .12 D .6【来源】湖南师范大学附属中学2016-2017学年高一下学期期中考试数学试题【答案】B25.已知扇形的圆心角23απ=,所对的弦长为 ) A .43π B .53π C .73π D .83π 【来源】河南省新乡市辉县市一中2018-2019高一下学期第一阶段考试数学试题【答案】D26.如果2弧度的圆心角所对的弦长为4,那么这个圆心所对的弧长为( ) A .2 B .2sin1 C .2sin1 D .4sin1【来源】黑龙江省大兴安岭漠河一中2019-2020学年高一上学期11月月考数学试题【答案】D27.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90α︒-B .90α︒+C .360α︒-D .180α︒+【来源】福建省厦门双十中学2017-2018学年高一下学期第二次月考数学试题【答案】C28.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )A B .2 C . D .【来源】河南省南阳市2016—2017学年下期高一期终质量评估数学试题【答案】B二、填空题29.已知大小为3π的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积为______. 【来源】安徽省马鞍山市第二中学2018-2019学年高一下学期开学考试数学试题【答案】23π. 30.135-=o ________弧度,它是第________象限角.【来源】浙江省杭州市七县市2019-2020学年高一上学期期末数学试题【答案】34π- 三 31.设扇形的半径长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是【来源】2011-2012学年安徽省亳州一中高一下学期期中考试数学试卷(带解析)【答案】32.在北纬60o 圈上有甲、乙两地,若它们在纬度圈上的弧长等于2R π(R 为地球半径),则这两地间的球面距离为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】3R π 33.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________.【来源】浙江省宁波市2019-2020学年高一上学期期末数学试题【答案】2 134.设O 为坐标原点,若直线l :102y -=与曲线τ0y =相交于A 、B 点,则扇形AOB 的面积为______.【来源】上海市普陀区2016届高三上学期12月调研(文科)数学试题 【答案】3π 35.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【来源】福建省漳州市2019-2020学年学年高一上学期期末数学试题 【答案】6π 36.在半径为5的圆中,5π的圆心角所对的扇形的面积为_______. 【来源】福建省福州市八县一中2019-2020学年高一上学期期末联考数学试题 【答案】52π37.已知集合M ={(x ,y )|x ﹣3≤y ≤x ﹣1},N ={P |PA PB ,A (﹣1,0),B (1,0)},则表示M ∩N 的图形面积为__.【来源】上海市复兴高级中学2015-2016学年高二上学期期末数学试题【答案】4338.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ .【来源】山东省泰安市2019届高三上学期期中考试数学(文)试题 【答案】91639.已知圆心角是2弧度的扇形面积为216cm ,则扇形的周长为________【来源】上海市向明中学2018-2019学年高三上学期第一次月考数学试题【答案】16cm40.扇形的圆心角为3π,其内切圆的面积1S 与扇形的面积2S 的比值12S S =______. 【来源】上海市七宝中学2015-2016学年高一下学期期中数学试题 【答案】2341.已知扇形的半径为6,圆心角为3π,则扇形的面积为__________. 【来源】江苏省苏州市2019届高三上学期期中调研考试数学试题【答案】6π42.若扇形的圆心角120α=o ,弦长12AB cm =,则弧长l =__________ cm .【来源】黑龙江省齐齐哈尔八中2018届高三8月月考数学(文)试卷43.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的半径是______cm ,面积是______2cm .【来源】浙江省杭州市西湖高级中学2019-2020学年高一上学期12月月考数学试题【答案】2 444.已知扇形的弧长是半径的4倍,扇形的面积为8,则该扇形的半径为_________【来源】江西省宜春市上高县第二中学2019-2020学年高一上学期第三次月考数学(理)试题【答案】2.45.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【来源】[同步]2014年湘教版必修二 3.1 弧度制与任意角练习卷1(带解析)【答案】二三、解答题46.已知角920α=-︒.(Ⅰ)把角α写成2k πβ+(02,k Z βπ≤<∈)的形式,并确定角α所在的象限;(Ⅱ)若角γ与α的终边相同,且(4,3)γππ∈--,求角γ.【来源】安徽省合肥市巢湖市2019-2020学年高一上学期期末数学试题【答案】(Ⅰ)α=8(3)29ππ-⨯+,第二象限角;(Ⅱ)289πγ=- 47.已知一扇形的圆心角为α,半径为R ,弧长为l .(1)若60α=︒,10cm R =,求扇形的弧长l ;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【来源】山东省济南市外国语学校三箭分校2018-2019学年高一下学期期中数学试题【答案】(1)()10cm 3π(2)2α= 48.已知一扇形的圆心角为60α=o ,所在圆的半径为6cm ,求扇形的周长及该弧所在的弓形的面积.【来源】江西省南昌市新建一中2019-2020学年高一上学期期末(共建部)数学试题【答案】2π+12,6π﹣49.已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少?【来源】宁夏大学附中2019-2020学年高一上学期第一次月考数学试题【答案】半径为1,圆心角为2,扇形的面积最大,最大值是2.50.已知扇形的圆心角为α(0α>),半径为R .(1)若60α=o ,10cm R =,求圆心角α所对的弧长;(2)若扇形的周长是8cm ,面积是24cm ,求α和R .【来源】安徽省阜阳市颍上二中2019-2020学年高一上学期第二次段考数学试题【答案】(1)10cm 3π(2)2α=,2cm R =。

最新弧度制练习题

最新弧度制练习题

目标测试题 弧度制1.已知α= –3,则α是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角 2.一条弦长等于半径的12,则此弦所对圆心角( ). A .等于6π弧度 B .等于3π弧度 C .等于12弧度 D .以上都不对 3.把01485-化为2(,02)k k z πααπ+∈≤<的形式是( ).A .84ππ-+ B .784ππ-- C .104ππ-- D .7104ππ-+ 4.扇形的周长是16,圆心角是2弧度,则扇形面积是( ).A .16πB .32πC .16D .32 二、填空题1.若4π<α<6π,且与π34角的终边相同,则α=____________________.2.3弧度的角的终边在第_____________象限,7弧度的角的终边在第_____________象限.3.半径为a (a>0)的圆中,6π弧度圆周角所对的弧长是_________________;长为2a 的弧 所对的圆周角为____________弧度.4.若01的圆心角所对的弧长为1m ,则此圆的半径为______________.三、解答题1.在半径为 的圆中,扇形的周长等于半圆的长,那么扇形的圆心角是多少度?扇形的面积是多少?2.在直径为10cm的滑轮上有一条弦,其长为6cm,且p为弦的中点,滑轮以每秒5弧度的角速度旋转,则经过5s后,p点转过的弧长是多少?1cm,它的周长为4cm,求扇形圆心角的弧度数及弦长AB.3.扇形AOB的面积为24.一扇形周长是32cm,扇形的圆心角为多少弧度时,这个扇形的面积最大?最大面积是多少?第一章文化产业管理概述第一节文化与文化产业一.文化1.文化活动:文化的提炼与凝结、文化作品的创作与存储、文化的传播、文化的消费、文化的促进等。

2.文化产业:文化活动发展到一定规模就促成产业的出现,并按照产业的运作规则促进文化活动的发展,进而生产出优秀的精神文化消费品。

人教A版高二弧度制精选试卷练习(含答案)4

人教A版高二弧度制精选试卷练习(含答案)4

人教A 版高二弧度制精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知扇形OAB 的圆心角...为8rad ,其面积是4cm 2,则该扇形的周长..是( )cm.A .10B .4C .D .【答案】A2.角90︒化为弧度等于( ). A .π3B .π2C .π4D .π6【答案】B3.将315︒化为弧度为( ) A .43π B .53π C .76π D .74π 【答案】D4.已知扇形的周长是12,面积是8,则扇形的中心角的弧度数是( ) A .1 B .4C .1或4D .2或4【答案】C5.矩形纸片ABCD 中,10,8.AB cm BC cm ==将其按图(1)的方法分割,并按图(2)的方法焊接成扇形;按图(3)的方法将宽BC 2等分,把图(3)中的每个小矩形按图(1)分割并把4个小扇形焊接成一个大扇形;按图(4)的方法将宽BC 3等分,把图(4)中的每个小矩形按图(1)分割并把6个小扇形焊接成一个大扇形;……;依次将宽BC n 等分,每个小矩形按图(1)分割并把2n 个小扇形焊接成一个大扇形.当n →∞时,最后拼成的大扇形的圆心角的大小为 ( )A .小于2π B .等于2π C .大于2π D .大于1.8【答案】C6.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( ) A .2 B . C .D .【答案】B7.如果扇形圆心角的弧度数为2,圆心角所对的弦长也为2,那么这个扇形的面积是( ) A .21sin 1B .22sin 1C .2sin 12 D .22sin 2【答案】A8.一个扇形的面积为15π,弧长为5π,则这个扇形的中心角为( ) A .6π B .3π C .23π D .56π 【答案】D9.中心角为60︒的扇形AOB ,它的弧长为2π,则三角形AOB 的内切圆半径为A .2BC .1D 【答案】B10.若扇形的周长是面积的4倍,则该扇形的面积的最小值为( ) A .4 B .3C .2D .1【答案】D11.一个扇形OAB 的面积是1,它的周长是4,则弦AB 的长是 ( ) A .2 B .2sin1C .sin1D .2sin 2【答案】B12.已知圆的半径为π,则060圆心角所对的弧长为( )A .3πB .23πC .23πD .223π13.1920︒转化为弧度数为( ) A .163B .323C .163π D .323π 【答案】D14.在(0,2)π 内,使sin cos x > 成立的x 取值范围为( )A .5(,)(,)424ππππU B .(,)4ππ C .5(,)44ππD .53(,)(,)442ππππU 【答案】C15.圆弧长度等于圆内接正三角形的边长,则其圆心角弧度数为( )A .3π B .23π C D .1【答案】C二、填空题16.扇形的圆心角是72°,半径为5 cm ,其面积为___________. 【答案】5π cm 217.半径为1cm 、圆心角为2rad 的扇形的面积是__________2cm . 【答案】118.已知0240的圆心角所对的弧长为8m π,则这个扇形的面积为_______2m . 【答案】24π19.已知扇形的面积为则扇形的周长为__________.【答案】4+20.把02130-化为()2,02k k Z απαπ+∈≤≤的形式是___________. 【答案】126ππ-21.若半径为2cm 的扇形面积为82cm ,则该扇形的周长是____________cm 【答案】1222.已知扇形的半径为3cm ,圆心角为2弧度,则扇形的面积为_________2cm .23.已知扇形的周长为4 cm ,当它的半径为________ cm 和圆心角为________弧度时,扇形面积最大,这个最大面积是________ cm 2. 【答案】1 2 1 24.扇形OAB 的圆心角为2π,则此扇形的面积与其内切圆的面积之比为__________.25.已知扇形的面积为23π平方厘米,弧长为23π厘米,则扇形的半径r 为_______厘米. 【答案】226.已知扇形的中心角为3π,所在圆的半径为10cm ,则扇形的弧长等于__________cm . 【答案】103π27.扇形的圆心角是60o ,半径为, 则扇形的面积为_______2cm . 【答案】2π28.将﹣300°化为弧度为_______. 【答案】5π3-29.若扇形的周长为10,半径为2,则扇形的面积为__________ . 【答案】630.一个扇形的周长为8,当圆心角为_______时,扇形的面积有最大值。

人教A版高二弧度制精选试卷练习(含答案)1

人教A版高二弧度制精选试卷练习(含答案)1

人教A 版高二弧度制精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π-C .23π D .23π-【答案】B2.实践课上小华制作了一副弓箭,如图所示的是弓形,弓臂BAC 是圆弧形,A 是弧BAC 的中点,D 是弦BC 的中点,测得10AD =,60BC =(单位:cm ),设弧AB 所对的圆心角为θ(单位:弧度),则弧BAC 的长为( )A .30θB .40θC .100θD .120θ【答案】C3.已知扇形AOB 的半径为r ,弧长为l ,且212l r =-,若扇形AOB 的面积为8,则该扇形的圆心角的弧度数是( ) A .14B .12或2 C .1 D .14或1 【答案】D4.已知圆O 与直线l 相切与点A ,点,P Q 同时从点A 出发,P 沿直线l 匀速向右、Q 沿圆周按逆时针方向以相同的速率运动,当点Q 运动到如图所示的位置时,点P 也停止运动,连接,OQ OP ,则阴影部分的面积12,S S 的大小关系是( )A .12S S ≥B .12S S ≤C .12S S =D .先12S S <,再12S S =,最后12S S >【答案】C5.已知扇形的圆心角为150︒,弧长为()5rad π,则扇形的半径为( ) A .7 B .6C .5D .4【答案】B6.已知扇形AOB ∆的周长为4,当扇形的面积取得最大值时,扇形的弦长AB 等于( ) A .2 B .sin1C .2sin1D .2cos1【答案】C7.已知扇形OAB 的面积为1,周长为4,则弦AB 的长度为( ) A .2 B .2/sin 1C .2sin 1D .sin 2【答案】C8.下列各式不正确的是 ( ) A .45°=π4B .60°=π3 C .-210°=-7π6D .725°=17π4【答案】D9.已知扇形OAB 的面积为4,圆心角为2弧度,则»AB 的长为( ) A .2 B .4 C .2π D .4π【答案】B10.若扇形的面积为216cm ,圆心角为2rad ,则该扇形的弧长为( )cm . A .4 B .8 C .12 D .16【答案】B11.周长为6,圆心角弧度为1的扇形面积等于( ) A .1 B .32πC .D .2【答案】D12.已知一个扇形弧长为6,扇形圆心角为2rad ,则扇形的面积为 ( ) A .2 B .3C .6D .9【答案】D13.已知⊙O 的半径为1,A ,B 为圆上两点,且劣弧AB 的长为1,则弦AB 与劣弧AB 所围成图形的面积为( )A .1122-sin 1 B .1122-cos 1 C .1122-sin 12D .1122-cos 12【答案】A14.已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A .53πB .23πC .52πD .2π【答案】C15.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3π-B .1)πC .1)πD .2)π【答案】A16.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .20【答案】B17.已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是()A .45B .5C .12D .45或5 【答案】D18.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于( ). A .48 B .24C .12D .6【答案】B19.已知扇形的圆心角23απ=,所对的弦长为 ) A .43π B .53π C .73π D .83π【答案】D20.如果2弧度的圆心角所对的弦长为4,那么这个圆心所对的弧长为( ) A .2 B .2sin1C .2sin1D .4sin1【答案】D21.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【答案】B22.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )A B .2C .D .【答案】B23.已知扇形的周长是5cm ,面积是322cm ,则扇形的中心角的弧度数是( ) A .3 B .43C .433或 D .2【答案】C24.已知扇形的周长为8cm ,圆心角为2,则扇形的面积为( ) A .1 B .2C .4D .5【答案】C25.《掷铁饼者》 取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为( )1.732≈≈)A .1.012米B .1.768米C .2.043米D .2.945米【答案】B26.已知扇形的周长为4,圆心角所对的弧长为2,则这个扇形的面积是( ) A .2 B .1C .sin 2D .sin1【答案】B27.已知α是第三象限角,且cos cos22αα=-,则2α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角【答案】B28.如图,2弧度的圆心角所对的弦长为2,这个圆心角所对应的扇形面积是( )A .1sin1B .21sin 1C .21cos 1D .tan1【答案】B二、填空题29.设扇形的半径长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是【答案】30.在北纬60o 圈上有甲、乙两地,若它们在纬度圈上的弧长等于2Rπ(R 为地球半径),则这两地间的球面距离为_______ . 【答案】3Rπ 31.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________. 【答案】2 132.设O 为坐标原点,若直线l :102y -=与曲线τ0y =相交于A 、B 点,则扇形AOB 的面积为______. 【答案】3π 33.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【答案】6π 34.在半径为5的圆中,5π的圆心角所对的扇形的面积为_______. 【答案】52π35.已知集合M ={(x ,y )|x ﹣3≤y ≤x ﹣1},N ={P |PAPB ,A (﹣1,0),B (1,0)},则表示M ∩N 的图形面积为__. 【答案】4336.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ . 【答案】91637.已知圆心角是2弧度的扇形面积为216cm ,则扇形的周长为________ 【答案】16cm38.扇形的圆心角为3π,其内切圆的面积1S 与扇形的面积2S 的比值12S S =______. 【答案】2339.已知扇形的半径为6,圆心角为3π,则扇形的面积为__________. 【答案】6π40.若扇形的圆心角120α=o,弦长12AB cm =,则弧长l =__________ cm .41.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的半径是______cm ,面积是______2cm . 【答案】2 442.已知扇形的弧长是半径的4倍,扇形的面积为8,则该扇形的半径为_________ 【答案】2.43.已知扇形的圆心角18πα=,扇形的面积为π,则该扇形的弧长的值是______.【答案】3π三、解答题44.已知一扇形的圆心角为α,半径为R ,弧长为l . (1)若60α=︒,10cm R =,求扇形的弧长l ;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大? 【答案】(1)()10cm 3π(2)2α= 45.已知一扇形的圆心角是α,所在圆的半径是R . (1)若,10cm R =,求扇形的弧长及该弧长所在的弓形面积;(2)若扇形的周长是30cm ,当α为多少弧度时,该扇形有最大面积?【答案】(1)10π(cm)3,2π50(cm )32⎛⎫- ⎪ ⎪⎝⎭;(2)当扇形的圆心角为2rad ,半径为15cm 2时,面积最大,为2225cm 446.已知一扇形的圆心角为60α=o ,所在圆的半径为6cm ,求扇形的周长及该弧所在的弓形的面积.【答案】2π+12,6π﹣47.已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少?【答案】半径为1,圆心角为2,扇形的面积最大,最大值是2.48.已知扇形的圆心角为α(0α>),半径为R . (1)若60α=o ,10cm R =,求圆心角α所对的弧长; (2)若扇形的周长是8cm ,面积是24cm ,求α和R . 【答案】(1)10cm 3π(2)2α=,2cm R = 49.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求其圆心角的大小.(2)求该扇形的面积取得最大时,圆心角的大小和弦长AB . 【答案】(1)或;(2);.50.已知一扇形的中心角是120︒,所在圆的半径是10cm ,求: (1)扇形的弧长; (2)该弧所在的弓形的面积【答案】(1)203π;(2)1003π-。

弧度练习题

弧度练习题

弧度练习题一、选择题1. 弧度制中,一个完整的圆周对应的角度是()弧度。

A. 180度B. 360度C. 90度D. 720度2. 角度制与弧度制的转换关系是()。

A. π弧度 = 180度B. 1弧度= 180/π度C. π弧度 = 360度D. 1度= π/180弧度3. 弧度制下,若一个角的弧度值为α,其对应的弧度值范围是()。

A. -∞ < α < ∞B. 0 ≤ α ≤ 2πC. -π ≤ α ≤ πD. π ≤ α ≤ 3π4. 弧度制下,若sin(α) = 1/2,且α为锐角,则α的值为()弧度。

A. π/6B. π/4C. π/3D. π/25. 弧度制下,若cos(α) = -√3/2,且α为钝角,则α的值为()弧度。

A. 5π/6B. 2π/3C. 4π/3D. 7π/6二、填空题6. 弧度制下,一个角的弧度值等于其弧长与半径之比,即α =_______。

7. 弧度制下,若sin(α) = √3/2,且α为锐角,则α的值为_______弧度。

8. 弧度制下,若tan(α) = 1,则α的值为_______弧度。

9. 弧度制下,若sin(α) = cos(α),则α的值为_______弧度。

10. 弧度制下,若sin(α) = cos(α),则α的值为_______弧度。

三、计算题11. 计算弧度制下,角度制为45度的弧度值。

12. 计算弧度制下,角度制为120度的弧度值。

13. 若弧度制下,α = 3π/4,求sin(α)、cos(α)和tan(α)的值。

14. 若弧度制下,α = 5π/3,求sin(α)、cos(α)和tan(α)的值。

15. 若弧度制下,已知sin(α) = √2/2,求α的可能值。

四、解答题16. 弧度制下,若一个角的弧度值为π/3,求其对应的角的度数。

17. 弧度制下,若一个角的弧度值为-2π,求其对应的角的度数。

18. 弧度制下,若已知sin(α) = 1/√2,求该角α的其余三角函数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目标测试题 弧度制
1.已知α= –3,则α是 ( )
A .第一象限角
B .第二象限角
C .第三象限角
D .第四象限角
2.一条弦长等于半径的12,则此弦所对圆心角( ). A .等于6π弧度 B .等于3π弧度 C .等于12弧度 D .以上都不对 3.把0
1485-化为2(,02)k k z πααπ+∈≤<的形式是( ). A .84π
π-+ B .784ππ-- C .104π
π-- D .7104
ππ-+ 4.扇形的周长是16,圆心角是2弧度,则扇形面积是( ).
A .16π
B .32π
C .16
D .32
二、填空题 1.若4π<α<6π,且与π3
4角的终边相同,则α=____________________.
2.3弧度的角的终边在第_____________象限,7弧度的角的终边在第_____________象限. 3.半径为a (a>0)的圆中,6
π弧度圆周角所对的弧长是_________________;长为2a 的弧 所对的圆周角为____________弧度.
4.若0
1的圆心角所对的弧长为1m ,则此圆的半径为______________.
三、解答题
1.在半径为 的圆中,扇形的周长等于半圆的长,那么扇形的圆心角是多少度扇形的面积是多少
2.在直径为10cm的滑轮上有一条弦,其长为6cm,且p为弦的中点,滑轮以每秒5弧度的角速度旋转,则经过5s后,p点转过的弧长是多少
1cm,它的周长为4cm,求扇形圆心角的弧度数及弦长AB.3.扇形AOB的面积为2
4.一扇形周长是32cm,扇形的圆心角为多少弧度时,这个扇形的面积最大最大面积是多少。

相关文档
最新文档