聚合物材料的动态力学全面分析和特性研究
第四篇 聚合物材料的动态力学分析DMTA

(1)扭摆法
由振幅A可求得对数减量Δ :
ln A1 ln A2 ln A2 ln A3 ...... ln A A1 A ln 2 ..... ln n A2 A3 An1
式中:A1、A2、A3……An、An+1分别为个相应振幅的宽 度。 剪切模量G’由曲线求得,与1/P2成正比; 损耗模量G”和内耗角正切tgδ计算:
E" tg E'
—损耗因子
2、聚合物力学性质与温度、频率、时间的关系
聚合物的性质与温度有关,与施加于材料上外力 作用的时间有关,与外力作用的频率有关。 为了了解聚合物的动态力学性能,我们有必要进 行宽广的温度范围对性能的测定,简称温度谱; 在宽广的频率范围内进行测定,简称频率谱。
动态力学曲线
动态力学曲线
频率谱—在恒温、恒应力下,测量 动态模量及损耗随频率变化的试验 ,用于研究材料力学性能与速率的 依赖性。图14-4是典型非晶态聚合 物频率谱图。 当外力作用频率ω» 链段运动最可 几频率ω0时,E’很高,E”和tanδ 都很小;当ω« ω0时,材料表现出 理想的高弹态,E’很小,E”和 tanδ都很小;当ω=ω0时链段运 动有不自由到自由,即玻璃化转变 ,此时E’急剧变化,E”和tanδ都 达到峰值。
图14-4 lgE’、lgE”和tanδ对lgω关系
通过测定聚合物的DMA谱图,可以了解到材料在 外力作用下动态模量和阻尼随温度和频率变化的 情况,所测的动力学参数有效地反映了材料分子 运动的变化,而分子运动是与聚合物的结构和宏 观性能紧密联系在一起的,所以动态力学分析把 了解到的分子运动作为桥梁,进而达到掌握材料 的结构与性能的关系。
(二)强迫共振法
指强迫试样在一定频率范围内的恒幅力作用下发生振 动,测定共振曲线,从共振曲线上的共振频率与共振 峰宽度得到储能模量与损耗因子的方法。 A 共振峰宽度:共振曲线上 2 处所对应的两个频率之 差 f r f2 f1;有时也取最大振幅的一半时两频率之 差。 2 f 或 f 储能模量正比于 r r ( fr为共振频率) ; tan f r f r 损耗因子: A
聚合物动态热力学分析

聚合物动态热力学分析是一种有效的方法,可以帮助我们深入了解聚合物材料的性能和行为。
在这篇文章中,我们将探讨的基本原理、应用以及未来的发展方向。
一、的基本原理是通过对聚合物材料在受力作用下的动态热力学响应进行测量和分析,来评估聚合物材料的性能和行为。
这种分析方法主要包括热分析、动态力学分析以及红外光谱分析等。
其中,热分析是通过对聚合物材料在不同温度、压力和气氛下进行加热或冷却,以及观察材料热发生变化的方法。
这种热发生变化可以包括热膨胀、热流和热容等。
动态力学分析是通过对聚合物材料在受力作用下的变形、振动和剪切等响应进行测量和分析。
这种分析可以通过旋转试验、剪切试验和拉伸试验等方法来完成。
红外光谱分析是通过对聚合物材料在不同波长下的吸收和散射来分析聚合物材料的化学成分和结构特征。
通过对这些方法的综合应用,我们可以获得聚合物材料各方面的性能和行为信息,从而更好地评估聚合物材料的质量和使用价值。
二、的应用的应用范围非常广泛。
以下是的几个常见应用:1、聚合物的热性能分析通过热分析的方法,可以分析聚合物材料的热容、热膨胀和热流等性能参数。
这些参数可以帮助人们评估聚合物材料的耐热性、抗热变形能力等性能,从而选择合适的材料用于各种特定的应用领域。
2、聚合物的力学性能分析通过动态力学分析的方法,可以评估聚合物材料的动态弹性模量、质量损耗、刚度和强度等力学性能参数。
这些参数可以帮助我们了解聚合物材料的强度和耐久性,从而更好地预测材料在各种环境下的维持寿命和使用寿命。
3、聚合物的结构分析通过红外光谱分析的方法,可以分析聚合物材料的化学成分和结构特征。
例如,可以分析聚乙烯中甲基基团的数量和位置,从而确定聚乙烯的分子结构和化学性质。
三、的未来发展随着人们对聚合物材料性能和行为的需求不断增加,在未来的发展中将扮演越来越重要的角色。
以下是未来的几个发展方向:1、数据分析和建模在未来,将逐渐向数据分析和建模方向发展。
通过建立精细的模型和算法,可以更好地预测聚合物材料在不同应变、温度和其他环境条件下的性能和行为。
聚合物动态力学性能的测定.

实验7 聚合物动态力学性能的测定聚合物材料,如塑料、橡胶、纤维及其复合材料等都具有粘弹性,用动态力学的方法研究聚合物材料的粘弹性,已证明是一种非常有效的方法。
材料的动态力学行为是指材料在振动条件下,即在交变应力(或交变应变)作用下作出的力学响应。
测定材料在一定温度范围内的动态力学性能的变化即为动态力学分析(dynamic mechanical thermal analysis, DMTA )一、二、实验目的了解动态力学分析的测量原理及仪器结构。
了解影响动态力学分析实验结果的因素,正确选择实验条件。
掌握动态力学分析的试样制备及测试步骤。
掌握动态力学分析在聚合物分析中的应用。
实验原理聚合物的粘弹性是指聚合物既有粘性又有弹性的性质,实质是聚合物的力学松弛行为。
研究聚合物的粘弹性常采用正弦的交变应力,使试样产生的应变也以正弦方式随时间变化。
这种周期性的外力引起试样周期性的形变,其中一部分所做功以位能形式贮存在试样中,没有损耗,而另一部分所做功,在形变时以热的形式消耗掉。
应变始终落后应力一个相位,以拉伸为例,当试样受到交变的拉伸应力作用时,其交变应力和应变随时间的变化关系如下: 应力 )sin(0δϖσσ+=t (7-1))900(0<<δ应变t ϖεεsin 0= (7-2) 式中0σ和0ε为应力和形变的振幅;ω是角频率;δ是应变相位角。
式(7-1)和式(7-2)说明应力变化要比应变领先一个相位差δ,见图7.1。
图7.1 应力应变和时间的关系将式(7-1)展开为:δϖσδωσσsin cos cos sin 00t t += (7-3)即认为应力由两部分组成,一部分)cos sin (δϖσt 与应变同相位,另一部分)sin cos (0δϖσt 与应变相差2/π。
根据模量的定义可以得到两种不同意义的模量,定义'E 为同相位的应力和应变的比值,而''E 为相位差2/π的应力和应变的振幅的比值,即t E t E ϖεωεσcos ''sin '00+= (7-4)此时模量是一个复数,叫复数模量*E 。
聚合物材料的力学性能与应用研究

聚合物材料的力学性能与应用研究聚合物是指由单体经聚合反应而成的高分子化合物,是材料科学领域中的一个重要研究方向。
聚合物由于具有优异的物理化学性质,广泛应用于各个领域中。
其中,聚合物材料的力学性能一直是研究的热点,对于实际应用有着重要的意义。
1. 聚合物材料力学性能的影响因素聚合物材料的力学性能受到多个因素的影响,包括结构、成分、加工工艺等。
其中,聚合物的结构对于其力学性能起着决定作用。
聚合物结构的一般特征主要取决于两种基础单位的组成比例和聚合反应的方式。
一种基础单位是链端上的单体——它构成了聚合物主体结构的基础;另一种是构成了链之间交联的单体——交联单体,它使聚合物成为一个三维结构,有利于提高聚合物的力学强度。
此外,分子量也是影响聚合物材料力学性能的因素之一,分子量越大,聚合物的强度、韧性和耐热性都会有所提高。
除了结构,成分也是影响聚合物材料力学性能的重要因素之一。
聚合物材料成分的差异会对聚合物的应力应变特性、刚度、弹性、热应力等产生明显影响。
例如,将不同的单体混合在一起聚合,可以得到具有不同性质的材料。
2. 聚合物材料力学性能的应用研究由于聚合物材料的力学性能十分重要,因此相关的应用研究也是不可或缺的。
目前,聚合物材料的应用范围非常广泛,主要包括以下几个方面。
(1)高分子合成高分子材料的制备是聚合物材料应用研究领域的重要方向之一。
通过合成不同类型的聚合物材料,可以得到具有不同性质的高分子材料,满足不同领域的应用需求。
例如,具有良好热稳定性和机械性能的聚酰亚胺材料被广泛应用于电子、航空、汽车等领域中。
(2)高分子复合材料高分子复合材料是应用最广泛的一种高分子材料,它是由两种或两种以上的材料组合而成,具有更加优异的物理、化学性质和机械性能。
例如,聚碳酸酯和玻璃纤维复合材料被广泛应用于汽车、航空等领域。
由于其具有优异的耐冲击性能,被用作制造车门、车顶等大型车身部件。
(3)高分子防护材料高分子防护材料是指具有优异的耐磨损、耐划伤、耐撞击、耐化学腐蚀等性能的材料。
聚合物材料的力学性能研究

聚合物材料的力学性能研究聚合物材料是一类由天然或人工合成的高分子化合物构成的材料。
由于其重要的特性,如轻质、柔软、可塑性强等,聚合物材料被广泛应用于工程、医学、电子等领域。
然而,为了确保聚合物材料的可靠性和安全性,深入研究其力学性能是必不可少的。
1. 引言聚合物材料是由重复单元组成的巨大分子链,其力学性能受多种因素影响,包括聚合物结构、分子量、晶型等。
研究聚合物材料的力学性能有助于优化其设计和制备工艺,并提高材料的可靠性和耐久性。
2. 聚合物材料的力学行为聚合物材料的力学行为在很大程度上受到其内部结构的影响。
聚合物材料可以呈现弹性、塑性或粘弹性行为。
通过应力-应变曲线可以了解材料的弹性模量、屈服强度、断裂强度等力学性能。
3. 影响聚合物材料力学性能的因素3.1 聚合物结构聚合物材料的结构对其力学性能有重要影响。
例如,线性聚合物通常具有高的弹性模量和屈服强度,而分支聚合物具有较低的强度和较高的塑性。
3.2 分子量聚合物材料的分子量对其力学性能具有显著影响。
较高的分子量通常与更高的强度和硬度相关,而较低的分子量则导致材料更易变形和断裂。
3.3 晶型聚合物材料可以具有不同的晶型结构,如无序、半结晶和结晶。
晶型结构对材料的力学性能产生重要影响,如硬度、抗拉强度和断裂韧性等。
4. 聚合物材料力学性能的研究方法4.1 拉伸试验拉伸试验是一种常用的研究聚合物材料力学性能的方法。
通过在拉伸机上施加力并测量应变和应力,可以得到材料的应力-应变曲线和弹性模量等参数。
4.2 硬度测试硬度测试可以评估材料的抗压能力和表面耐磨性。
常用的硬度测试方法包括洛氏硬度测试和布氏硬度测试。
4.3 压缩试验压缩试验用于评估材料在受到压缩力时的强度和变形能力。
通过施加压缩载荷并测量材料的应变和应力,可以得到材料的压缩强度和剪切模量等参数。
5. 聚合物材料力学性能的应用聚合物材料的力学性能对其在各个领域的应用具有重要意义。
例如,在航空航天领域,了解聚合物复合材料的力学性能可以帮助设计轻质而又强度足够的部件。
聚合物复合材料力学性能研究报告

聚合物复合材料力学性能研究报告摘要:本研究报告旨在探讨聚合物复合材料的力学性能。
通过实验研究和数值模拟方法,我们对聚合物复合材料的强度、刚度、断裂韧性以及疲劳性能进行了全面分析。
研究结果表明,聚合物复合材料在力学性能方面具有优异的表现,但也存在一些局限性。
本报告提供了对聚合物复合材料力学性能的深入理解,为材料设计和应用提供了重要参考。
1. 引言聚合物复合材料是由聚合物基体和增强剂组成的复合材料,具有轻质、高强度和良好的耐腐蚀性等优点。
随着科技的发展,聚合物复合材料在航空航天、汽车工业、建筑和体育器材等领域得到广泛应用。
为了更好地利用聚合物复合材料的优势,深入研究其力学性能至关重要。
2. 实验方法本研究采用了标准的拉伸、弯曲和压缩试验来评估聚合物复合材料的力学性能。
我们选择了几种常见的聚合物基体和增强剂进行实验,包括碳纤维、玻璃纤维和纳米填料等。
通过测量材料的应力-应变曲线,我们可以获得材料的强度、刚度和断裂韧性等参数。
3. 结果与讨论实验结果表明,聚合物复合材料具有较高的强度和刚度。
增强剂的加入可以显著提高材料的力学性能。
碳纤维增强聚合物复合材料在强度和刚度方面表现出色,适用于要求高强度和刚度的应用。
玻璃纤维增强聚合物复合材料具有较好的韧性和耐冲击性,适用于需要抗冲击性能的应用。
纳米填料的加入可以改善聚合物复合材料的疲劳性能,延长其使用寿命。
4. 数值模拟为了更全面地了解聚合物复合材料的力学性能,我们采用数值模拟方法对其进行了研究。
通过有限元分析,我们可以模拟材料在不同载荷下的应力分布和变形情况。
数值模拟结果与实验结果相吻合,验证了实验的准确性。
5. 局限性与展望尽管聚合物复合材料具有许多优点,但也存在一些局限性。
例如,聚合物基体材料在高温环境下容易软化,导致力学性能下降。
此外,复合材料的制造成本较高,限制了其广泛应用。
未来的研究可以重点关注这些问题,并寻找解决方案,进一步提高聚合物复合材料的力学性能。
聚合物材料的力学性能研究

聚合物材料的力学性能研究一、引言聚合物材料因其优异的物理性质和低成本的生产工艺在工业中被广泛使用,然而聚合物材料的力学性能成为了影响其应用范围的一个关键因素。
在工程应用中,聚合物材料必须具备一定的力学性能,例如强度、韧性、刚度等。
因此,研究聚合物材料的力学性能具有极其重要的意义。
本文将分别从强度、韧性和刚度三个方面探讨聚合物材料的力学性能研究。
二、聚合物材料的强度研究强度是指受力材料最大承受力的能力。
在聚合物材料中,强度受到化学结构、晶化程度和制备工艺等因素的影响。
其中,聚合物的化学结构对其强度性能的影响最大,因为它决定了聚合物的分子量、分子量分布和化学键的类型和数量。
此外,影响聚合物材料的强度还包括晶化程度和制备工艺等因素。
研究表明,化学结构和分子量是影响聚合物材料强度的最主要因素。
其中,分子量的大小和分子量分布的宽窄对聚合物材料的强度影响极大。
较高的分子量和较窄的分子量分布可以提高聚合物材料的强度。
而分子量过高或分子量分布过窄会导致聚合物材料的加工难度增加,从而影响其生产工艺。
此外,化学结构的差异也会对聚合物材料的强度产生不同的影响。
例如在聚乙烯和聚丙烯等同属于烯烃类聚合物材料中,不饱和度的增加会降低其强度,而在芳香族聚合物材料中,饱和度的增加反而会降低其强度。
三、聚合物材料的韧性研究韧性是指材料在受冲击载荷时形变和吸收能量的能力。
聚合物材料的韧性受到其结晶度、分子量和分子量分布等因素的影响。
研究表明,增加聚合物材料的结晶度可以提高其韧性。
这是由于高结晶度会使聚合物分子之间的相互作用变强,从而增加聚合物材料的强度和韧性。
分子量和分子量分布的影响也与强度类似,即分子量和分子量分布的增加可以提高聚合物材料的韧性,但过高的分子量和过窄的分子量分布会影响材料的加工和生产。
此外,制备工艺也对聚合物材料的韧性产生影响。
例如,在高速注塑成型中,熔融聚合物材料受到剪切力的作用,从而影响其晶化程度和结晶形态,进而影响聚合物材料的韧性。
聚合物材料的力学性能与失效分析

聚合物材料的力学性能与失效分析聚合物材料在现代工程中扮演着非常重要的角色。
由于其轻巧、可塑性强、成本低等优点,聚合物材料已经广泛应用于汽车、航空航天、电子设备等行业。
然而,聚合物材料的力学性能与失效问题也日益引起人们的关注。
本文将从力学性能与失效机理两个方面分析聚合物材料。
聚合物材料的力学性能是工程材料的重要指标之一。
其力学性能直接影响着产品的安全性和可靠性。
聚合物材料的力学性能包括强度、刚度、韧性和耐磨性等方面。
首先,聚合物材料的强度是指其所能承受的外力作用下不发生破坏的能力。
强度的高低直接与材料的分子结构和交联程度有关。
一般来说,聚合物材料的强度较低,但是通过优化材料的结构和添加增强剂等方法,可以显著提高聚合物材料的强度。
其次,刚度是指材料对外力的响应程度,刚度高的材料在受力时变形较小。
聚合物材料的刚度与分子量和交联程度相关。
韧性则是材料抵抗断裂的能力,较高的韧性意味着材料具有较强的抗冲击和抗疲劳性能。
最后,耐磨性是指材料在受到摩擦和磨损作用时的耐久性能。
聚合物材料的耐磨性与摩擦系数、摩擦界面温度和材料硬度等因素相关。
聚合物材料的失效机理是研究材料失效的关键。
聚合物材料的失效主要包括断裂、疲劳和老化等形式。
首先,断裂是指材料在外力作用下发生破坏。
聚合物材料的断裂形式有很多种,常见的有拉伸断裂、剪切断裂和压缩断裂等。
拉伸断裂是材料承受拉力时发生的破坏,而剪切断裂则是材料在剪切力的作用下发生的破坏。
其次,疲劳是指材料在反复加载下产生可见的裂纹和破坏。
聚合物材料的疲劳性能主要与材料的弹性恢复能力和分子链结构有关。
较好的疲劳性能意味着材料在长期使用过程中不易发生疲劳破坏。
最后,老化是指材料由于环境因素的作用而逐渐失去使用性能。
聚合物材料的老化形式有光老化、热老化和化学老化等。
光老化是由于紫外线的照射使材料发生降解,热老化则是由于高温的作用使材料发生失效。
化学老化则是由于接触到化学物质而使材料发生变质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、动态扭辫仪(TBA)
扭辫仪实际上是扭摆仪的扩展,两者的原理、数据测量、处 理基本相同。
两者的主要区别在于样品的制备方法:扭辫法中被测样品要 制成溶液或熔体,然后将其浸渍在多股(3000根以上)玻璃 丝编成的辫子上,再抽真空将溶剂除掉,得到被测材料与支 撑物组成的复合样品,供测试用。
TBA仪的缺点:由于这种方法使用的是复合体,其几何形状 不规则,所以测不出试样切变模量的绝对值,仅为相对刚度, 一般以 1/P2 表示,因此,不能与其它仪器测量得到的结果相 比较。
损耗因子
tanEGDJ
E G D J
如果测量的是聚合物熔体或溶液,其动态粘弹性可 用复粘度表示。
复合粘度
i
G
G
14.2 聚合物力学性质与温度、频率、 时间的关系
1. 温度谱
测温度谱时,原 则上维持应力和频 率不变。
温度由程序升温 控制。
模量等随温度的 变化如图所示。
G 8 IL r4P 2
对矩型样品:
G 64 2IL C D 3 P 2
式中 L——试样有效部分长度,cm; C——试样宽度,cm; D——试样厚度,cm; I/ D 之比值确定,可查表15-1。
表15-1
C/D 1 1.2 1.4 1.6 1.8 2.0
它最大的优点:1. 试样用量少 (100 mg以下);2. 试样制备简 单;3. 采用玻璃丝作支撑物,能在 –180~600℃温度范围内 研究材料的多重转变;试样可以从液态、凝胶态、橡胶态一 直研究到玻璃态;即能研究物理转变,又能研究化学转变。
2.25 2.5 2.75 3.0 3.5
C / D 与μ对照表
μ 2.249 2.658 2.99 3.25 3.479 3.658 3.842 3.990 4.111 4.213 4.373
C/D 4 4.5 5 6 7 8 10 20 50
100 ∞
μ 4.493 4.586 4.662 4.773 4.853 4.913 4.997 4.165 5.266 5.30 5.333
复柔量 计算:
D
D i D
1 E
D D cos
D D s i n
D——储能柔量 D——损耗柔量
D
E E 2 E 2
D E E 2 E 2
剪切复模量 剪切复柔量
G G + i G G G sin G G c o s
J J i J J J cos J J s i n
聚合物材料的动态力学全面分析和 特性研究
聚合物材料的一大特点就是具有粘弹性。如橡胶、塑料、纤 维、薄膜、复合材料等,都具有粘弹性。用动态力学法研究 聚合物的力学性能,已证明是一种非常有效的测试方法。
材料的动态力学性能可以与材料的宏观性能联系起来。动态 力学性能,如:动态模量、损耗模量、阻尼特性 (内耗) 。 宏观性能,如:疲劳寿命、韧性、冲击弹性、撕裂性能、耐 热性、耐寒、耐老化性能以及阻尼特性等。
第 14 章 动态力学测量分析的基本原理
14.1 材料在交变外力作用下应力与应变的关系
所谓动态力学性能的测量分析是研究材料在交变应力作用 下的应变响应。
材料受到交变的拉伸应力作用及其应变响应可表示为:
0 sint 0 sin(t )
式中 ε——交变的应变 (为时间的函数);ε0 ——应变幅值;
σ——应力 (为时间的函数);
σ0 ——应力幅值;
ω——角频率
ωt ——相位角;
δ——应力和应变的相位差,也称滞后角。
用复数形式表示的应力和应变为:
* 0eit * 0ei(t )
复模量
E
0 0
ei
E
ei
E E ei E sinicosEiE
E E cos
EE sin
式中: E´——储能模量; E“——损耗模量。
频率谱,即频率 扫描模式是在恒 温、恒应力下, 测定动态模量及 损耗随频率变化 的试验,用于研 究材料性能与速 度的依赖性。
2. 频率谱
3. 频率谱与温度的关系
从不同频率下测材 料在相同温度范围内 的温度谱(见图)可 知,当频率变化10 倍 时,随材料活化能不 同其温度谱曲线位移 7~10℃,也就是说, 如果频率变化三个数 量级时相当于温度位 移21~30℃,因此, 用频率谱扫描模式可 以更细致地观察较不 明显的次级松弛转变。
第15章 动态力学分析仪器
没有一种动态力学仪器是万能的,即适合于不同聚合 物材料,又适合于不同的频率和宽广的温度范围。
常用的动态力学仪器有三种类型:自由振动、强迫振 动、非共振式强迫振动。
15.1 自由振动法
自由振动法是在一小的形变范围内研究试样自由振动 时的振动周期、相邻两振幅间的对数减量以及它们与 温度的关系,扭摆仪和扭辫仪属于此范畴。
一、动态扭摆仪
扭摆仪的原理见图15-1, 试样两端夹在夹具中,一 端夹具固定,另一端夹具 与自由转动的惯性杆相连 接。若将一给定应力使惯 性杆扭转一小角度,随即 除去外力,试样则将产生 周期性扭转,振幅随时间 不断衰减,直至最后停止。
这 是 扭 摆 仪 的 详 细 结 构 图
P——周期,是试样每摆动一次所需要的时间; Ai ——振幅,是试样每次摆动的距离。 由于聚合物的内耗,使摆动的振幅逐渐衰减。
力学性能还能与材料的微观结构变化和分子运动联系起来。 如:相对分子量大小、分子取向、结晶度大小、交联和共聚、 共混等结构参数的变化会引起动力学性质的变化。
另一方面,随现代科学的发展,高科技的引入,精密仪器制 造技术迅速提高,使仪器的功能和测试的精度、分辨率不断 提高,计算机控制和对数据的处理分析有了巨大进步,为研 究聚合物材料创造新的分析方法提供了便利的条件。
由振幅 A 可求得对数减量Δ,由Δ和 P 可求出切变储能 模量G´、损耗模量G"、内耗角正切 tanδ。
对数减量Δ定义为相邻两个振幅之比的自然对数,即:
lnA1lnA2LlnAn
A2 A3
An1
式中 Ai ——第 i 个振幅的宽度(即幅值)。
G tan G
剪切模量由下式给出:
对圆柱型样品: