《高等数学》单元自测题

合集下载

高等数学练习题附答案

高等数学练习题附答案

第一章 自测题一、填空题(每小题3分,共18分)1. ()3limsin tan ln 12x x xx →=-+ .2. 21lim2x x x →=+- . 3.已知212lim31x x ax bx →-++=+,其中为b a ,常数,则a = ,b = . 4. 若()2sin 2e 1,0,0ax x x f x xa x ⎧+-≠⎪=⎨⎪=⎩在()+∞∞-,上连续,则a = . 5. 曲线21()43x f x x x -=-+的水平渐近线是 ,铅直渐近线是 . 6. 曲线()121e x y x =-的斜渐近线方程为 .二、单项选择题(每小题3分,共18分)1. “对任意给定的()1,0∈ε,总存在整数N ,当N n ≥时,恒有ε2≤-a x n ”是数列{}n x 收敛于a 的 .A. 充分条件但非必要条件B. 必要条件但非充分条件C. 充分必要条件D. 既非充分也非必要条件2. 设()2,02,0x x g x x x -≤⎧=⎨+>⎩,()2,0,x x f x x x ⎧<=⎨-≥⎩则()g f x =⎡⎤⎣⎦ .A. 22,02,0x x x x ⎧+<⎨-≥⎩B. 22,02,0x x x x ⎧-<⎨+≥⎩ C. 22,02,0x x x x ⎧-<⎨-≥⎩ D. 22,02,0x x x x ⎧+<⎨+≥⎩3. 下列各式中正确的是 .A .01lim 1e x x x +→⎛⎫-= ⎪⎝⎭ B.01lim 1e xx x +→⎛⎫+= ⎪⎝⎭C.1lim 1e x x x →∞⎛⎫-=- ⎪⎝⎭D. -11lim 1e xx x -→∞⎛⎫+= ⎪⎝⎭4. 设0→x 时,tan e1x-与n x 是等价无穷小,则正整数n = .A. 1B. 2C. 3D. 45. 曲线221e 1ex x y --+=- .A. 没有渐近线B. 仅有水平渐近线C. 仅有铅直渐近线D. 既有水平渐近线又有铅直渐近线 6.下列函数在给定区间上无界的是 . A.1sin ,(0,1]x x x ∈ B. 1sin ,(0,)x x x ∈+∞ C. 11sin ,(0,1]x x x ∈ D. 1sin ,(0,)x x x∈+∞三、求下列极限(每小题5分,共35分)1.22x →2.()120lim ex xx x -→+3.()1lim 123n nnn →∞++4.21sinlimx x →+∞5. 设函数()()1,0≠>=a a a x f x ,求()()()21lim ln 12n f f f n n →∞⎡⎤⎣⎦ .6.142e sin lim1exxxxx→⎛⎫+⎪+⎪⎪+⎝⎭7.limx+→四、确定下列极限中含有的参数(每小题5分,共10分)1.2212lim22xax x bx x→-+=-+-2.(lim1 xx→-∞+=五、讨论函数,0()(0,0,1,1)0,0x xa bxf x a b a bxx⎧-≠⎪=>>≠≠⎨⎪=⎩在0x=处的连续性,若不连续,指出该间断点的类型.(本题6分)六、设sin sin sin ()lim sin x t xt x t f x x -→⎛⎫= ⎪⎝⎭,求()f x 的间断点并判定类型. (本题7分)七、设()f x 在[0,1]上连续,且(0)(1)f f =.证明:一定存在一点10,2ξ⎡⎤∈⎢⎥⎣⎦,使得1()2f f ξξ⎛⎫=+ ⎪⎝⎭.(本题6分)第二章 自测题一、填空题(每小题3分,共18分)1.设()f x 在0x 可导,且00()0,()1f x f x '==,则01lim h hf x h →∞⎛⎫-= ⎪⎝⎭. 2.设21cos f x x ⎛⎫=⎪⎝⎭,则()f x '=. 3.d x = . 4.设sin (e )x y f =,其中()f x 可导,则d y = . 5.设y =12y ⎛⎫'=⎪⎝⎭. 6.曲线1sin xy x y =+在点1,ππ⎛⎫⎪⎝⎭的切线方程为 . 二、单项选择题(每小题3分,共15分)1.下列函数中,在0x =处可导的是 .A.||y x =B.|sin |y x =C.ln y x =D.|cos |y x =2.设()y f x =在0x 处可导,且0()2f x '=,则000(2)()limx f x x f x x x→+--= .A.6B.6-C.16D.16-3.设函数()f x 在区间(,)δδ-内有定义,若当(,)x δδ∈-时恒有2|()|f x x ≤,则0x =是()f x 的 .A.间断点B.连续而不可导的点C.可导的点,且(0)0f '=D.可导的点,且(0)0f '≠4.设2sin ,0(),x x f x x x <⎧=⎨≥⎩,则在0x =处()f x 的导数 .A.0B.1C.2D.不存在5.设函数()f u 可导,2()y f x =当自变量x 在1x =-处取得增量0.1x =- 时,相应的函数增量y 的线性主部为0.1,则(1)f '= .A.1-B.0.1C.1D.0.5三、解答题(共67分)1.求下列函数的导数(每小题4分,共16分)(1)(ln e x y =+(2))11y⎫=⎪⎭(3)aaxa x a y x a a =++(4)cos (sin )x y x =2.求下列函数的微分(每小题4分,共12分) (1)2ln sin y x x x =+ (2)21cot e xy =(3)y x =3.求下列函数的二阶导数(每小题5分,共10分) (1)2cos ln y x x = (2)11xy x-=+4.设e ,1(),1x x f x ax b x ⎧≤=⎨+>⎩在1x =可导,试求a 与b .(本题6分)5.设sin ,0()ln(1),0x x f x x x <⎧=⎨+≥⎩,求'()f x .(本题6分)6.设函数()y y x =由方程22ln 1x xy y-=所确定,求d y .(本题6分)7.设()y y x =由参数方程ln tan cos 2sin t x a t y a t⎧⎛⎫=+⎪ ⎪⎝⎭⎨⎪=⎩,求22d d ,d d y y x x .(本题6分)8.求曲线3213122t x t y t t +⎧=⎪⎪⎨⎪=+⎪⎩在1t =处的切线方程和法线方程.(本题5分)第三章 自测题一、填空题(每小题3分,共15分)1.若0,0a b >>均为常数,则30lim 2x xxx a b →⎛+⎫=⎪⎝⎭. 2.2011lim tan x x x x →⎛⎫-=⎪⎝⎭. 3.3arctan limln(12)x x xx →-=+ . 4.曲线2e x y -=的凹区间 ,凸区间为 . 5.若()e xf x x =,则()()n f x 在点x = 处取得极小值.二、单项选择题(每小题3分,共12分)1.设,a b 为方程()0f x =的两根,()f x 在[,]a b 上连续,(,)a b 内可导,则()f x '0=在(,)a b 内 .A.只有一个实根B.至少有一个实根C.没有实根D.至少有两个实根2.设()f x 在0x 处连续,在0x 的某去心邻域内可导,且0x x ≠时,0()()0x x f x '->,则0()f x 是 .A.极小值B.极大值C.0x 为()f x 的驻点D.0x 不是()f x 的极值点 3.设()f x 具有二阶连续导数,且(0)0f '=,0()lim1||x f x x →''=,则 . A.(0)f 是()f x 的极大值 B.(0)f 是()f x 的极小值C .(0,(0))f 是曲线的拐点D .(0)f 不是()f x 的极值,(0,(0))f 不是曲线的拐点 4.设()f x 连续,且(0)0f '>,则0δ∃>,使 .A.()f x 在(0,)δ内单调增加.B.()f x 在(,0)δ-内单调减少.C.(0,)x δ∀∈,有()(0)f x f >D.(,0)x δ∀∈-,有()(0)f x f >.三、解答题(共73分)1.已知函数()f x 在[0,1]上连续,(0,1)内可导,且(1)0f =,证明在(0,1)内至少存在一点ξ使得()()tan f f ξξξ'=-.(本题6分)2.证明下列不等式(每小题9分,共18分) (1)当0a b <<时,ln b a b b ab a a--<<.(2)当02x π<<时,2sin x x x π<<.3.求下列函数的极限(每小题8分,共24分)(1)0e e 2lim sin x x x xx x-→---(2)21sin 0lim(cos )xx x →(3)10(1)elimxx x x→+-4.求下列函数的极值(每小题6分,共12分) (1)1233()(1)f x x x =-(2)2,0()1,0x x x f x x x ⎧>=⎨+<⎩5.求2ln xy x=的极值点、单调区间、凹凸区间和拐点.(本题6分)6.证明方程1ln0ex x+=只有一个实根.(本题7分)第一章自测题一、填空题(每小题3分,共18分)1. 2. 3. , 4.5. 水平渐近线是,铅直渐近线是6.二、单项选择题(每小题3分,共18分)1. C2. D3. D4. A5. D 6.C三、求下列极限(每小题5分,共35分)解:1.. 2..3.,又.4.. 5.. 6.,,所以,原式.7..四、确定下列极限中含有的参数(每小题5分,共10分)解:1.据题意设,则,令得,令得,故.2.左边,右边故,则.五、解:,故在处不连续,所以为得第一类(可去)间断点.六、解:,而,故,都是的间断点,,故为的第一类(可去)间断点,均为的第二类间断点.七、证明:设,显然在上连续,而,,,故由零点定理知:一定存在一点,使,即.第二章自测题一、填空题(每小题3分,共18分)1. 2. 3. 4.5. 6.或二、单项选择题(每小题3分,共15分)1. D2. A3. C4. D5. D三、解答题(共67分)解:1.(1).(2).(3).(4) 两边取对数得,两边求导数得,.2.求下列函数的微分(每小题4分,共12分)(1) .(2).(3) .3.求下列函数的二阶导数(每小题5分,共10分)(1),.(2),.4.首先在处连续,故,故,其次,,,由于在处可导,故,故,.5.,,故,由于在,时均可导,故.6.方程可变形为,两边求微分得,故.7.,.8.,故.当时,. 故曲线在处的切线方程为,即,法线方程为,即.第三章自测题一、填空题(每小题3分,共15分)1.2.3. 4., 5.二、单项选择题(每小题3分,共12分)1.B 2.A3.B,提示:由题意得,,当时,;即当时,,当时,,从而在取得极小值4. C,提示:由定义,由极限的保号性得,当时,,即三、解答题(共73分)证明:1.令,则在上连续,内可导,且;由罗尔定理知,至少存在一点,使得,故,即.2.(1)令,则在区间上满足拉格朗日中值定理的条件.由拉格朗日中值定理得,至少存在一点,使得即,又,得到,从而.(2)令,则,从而当时单调递增,即,故;令,则,即当时单调递减,即,故;从而当时,.解:3.(1).(2).(3).4.⑴函数的定义域为;,令得驻点,不可导点;当时,;当时,;当时,;当时,;故为极大值点,极大值为;为极小值点,极小值为.⑵,令得驻点,为不可导点.当时,;当时,;当时,;故为极大值点,极大值为;为极小值点,极小值为.5.定义域为;,,令得驻点,令得;列表得:拐点6.证明:令,显然,;令得唯一驻点,且;故在上当时取得极小值;当时,,所以方程只有一个实根.。

高等数学(医药专业)自测题

高等数学(医药专业)自测题

第一章章节自测一、填空题(每小题 2 分,共20 分)1. 设函数,)(,ln )(12+==x e x g x x f 则=))((x g f 。

2. 函数)2ln(34+=x xy 的定义域为 。

3. =++-∞→323)2(123lim x x x x 。

4. =→xxx 2sin lim0 。

5. e xkx x =+∞→2)1(lim ,则=k 。

6. 设函数⎪⎩⎪⎨⎧>+=<-=01001)(x x x x x x f ,则)(lim 0x f x → 。

7. 若32lim22=-+-→x ax x x ,则=a 。

8. 设当0→x 时,2ax 与4tan 2x 为等价无穷小,则=a 。

9. 设函数)0(sin )(≠=a x ax x f 在0=x 处连续,且21)0(-=f ,则=a 。

10. 设函数⎪⎩⎪⎨⎧<<=<<-=2131113)(2x x x ax x x f 在1=x 处连续,则=a 。

二、选择题(每小题 3 分,共30 分)1. 函数)1()(+=x x x f 与1)(+=x x x g 在( )内表示同一个函数。

A. ]0,1[-; B . ]1,(-∞;C . ),0[+∞;D . ),1[+∞-。

2. 设函数)(x f 的定义域为]1,0[,则函数)12(-x f 的定义域为( )。

A. ]21,21[-; B. ]1,21[; C. ]1,0[; D. ]1,21[-。

3. 函数x x x f sin )(3=是( )。

A. 奇函数 ;B. 偶函数;C. 有界函数;D. 周期函数。

4. 220sin lim xmx x →(m 为常数)等于( )。

A. 0; B. 1; C. 2m ; D. 21m。

5. 当0→x 时,2x 与x sin 比较,则( )。

A. 2x 是较x sin 高阶的无穷小量; B. 2x 是较x sin 低阶的无穷小量;C. 2x 与x sin 为同阶无穷小量,但不是等价无穷小量;D. 2x 与x sin 为等价无穷小量。

《高等数学》测试题和答案自测题一答案 (4)

《高等数学》测试题和答案自测题一答案 (4)

自测题二一、单项选择题(每题2分,共30分).1.函数)(x f y =在0x 处连续是它在0x 处可导的( ).(A )充分条件;(B )充要条件;(C )必要条件;(D )既非充分条件也非必要条件. 2.函数)(x f y =在点0x 处的导数)(0x f '的几何意义就是曲线)(x f y =在( ). (A )在0x 处的切线的斜率; (B )在点))(,(00x f x 处切线的斜率; (C )在点))(,(00x f x 处的切线与x 轴所夹锐角的正切; (D )在点0x 处的切线的倾斜角.3. 设)(x f 是可导函数,当)(x f 为偶函数,则)(x f '是( ),当)(x f 是奇函数,则)(x f '是( ).(A )偶函数; (B )奇函数; (C )非奇非偶函数; (D )以上结论都不对. 4.函数在某点处不可导,函数所表示的曲线在相应点处的切线( ).(A )一定不存在;(B )不一定不存在; (C )一定存在; (D )以上结论都不对. 5. 设)()()(x a x x f ϕ-=,其中)(x ϕ在a x =处连续,则=')(a f ( ). (A ))(a a ϕ; (B ))(a a ϕ-; (C ))(a ϕ-; (D ))(a ϕ. 6. 函数|sin |x y =在0=x 处是( ).(A )连续可导; (B )不连续不可导; (C )不连续可导; (D )连续不可导.7. 函数⎪⎩⎪⎨⎧=≠=001sin)(2x x xx x f 在0=x 处是( ).(A )连续可导; (B )不连续不可导; (C )不连续但可导; (D )连续但不可导. 8. 设xe y 1=,则=dy ( ). (A )dx e x1; (B )dx ex 21-; (C )dx e x x 121; (D )dx e xx 121-.9. 函数||x x y =在点0=x 处的导数是( ).(A )x 2; (B )x 2-; (C )0; (D )不存在. 10. 函数||x e y =在0=x 处的导数是( ).(A )1; (B )1-; (C )0; (D )不存在. 11. 已知y x y ln =,则='x y ( ). (A )y x ; (B )y ln ; (C )x y y y -ln ; (D )yxy +ln . 12. 函数)ln(xxb a y +=的导数是( ).(A ))ln ln (1b b a a ba x x x xx ++; (B ))10ln(-a ; (C ))(10ln 1x x x x b a b a ++; (D ))ln ln (10ln b b a a ba xx x xx ++. 13. 设)(sin x f y =,则=dy ( ).(A )xdx x f sin )(sin '; (B )dx x f )(sin '; (C )xdx x f cos )(sin '; (D )xdx x f sin )(sin . 14. 若)(x f 是奇函数且)0(f '存在,则0=x 点是函数xx f x F )()(=的( ). (A )无穷间断点; (B )可去间断点; (C )连续点; (D )振荡间断点. 15. 若⎩⎨⎧>+≤=11cos )(x b ax x x x f ,且)1(f '存在,则必有( ).(A )1,1-==b a ; (B )1sin ==b a (C )1sin 1cos ,1sin +=-=b a ; (D )0,1==b a . 二、填空题(每题3分,共30分). 1.若)(x f 在a x =处可导,则=--+→hmh a f nh a f h )()(lim.2.若)]1[sin(sin )(2+='x x f ,4)0(=f ,则==4y dydx .3.若⎩⎨⎧==mty t x ln ,则1=t nn x d yd .4.若2sin x y =,则)(2x d dy. 5.若已知yx e xy +=,则dxdy. 6.=')(sin xx .7.='+)1(xx .8.设)1ln(ax y +=,a 为非零常数,则='y ,=''y .9.已知t e x tsin =,t e y tcos =则==2πt dxdy .10.已知)0()(≠='K Ke x f x,则)(x f y =的反函数的二阶导数=22dyxd .三、计算下列各题(每题10分,共60分).1.1ln 44+=xx e e y ,求0='x y . 2.设0tan ln arcsin 2=+-y e y x x ,求40π==y x dxdy .3.设⎪⎩⎪⎨⎧+=+=2arcsin 22tancos t y t t x t ,求0=t dx dy .4.设txx xt t f 2)11(lim )(+=∞→,求)(t f '.5.设⎩⎨⎧==-tt e y te x ,求dx dy ,22dx yd . 6.设函数⎩⎨⎧>+≤=0,2sin 0,)(x b x x e x f ax ,且)0(f '存在,求b a 、. 四、(5分)求由方程)ln()(2y x y x x y --=-所确定的函数)(x y y =的微分dy .五、(5分)设⎪⎩⎪⎨⎧=≠=0,00,1arctan )(2x x xx x f ,试讨论)(x f '在0=x 处的连续性.。

自测题(1-7章附参考答案)-高等数学上册

自测题(1-7章附参考答案)-高等数学上册

自测题(1-7章附参考答案)-高等数学上册第一章 函数与极限一、 选择题: 1.函数1arccos2x y +=的定义域是( ) (A)1x ≤; (B)31x -≤≤;(C)(3,1)-; (D){}{}131x x x x <⋂-≤≤. 2.函数23,401,03x x x x --≤≤⎧⎨+<≤⎩的定义域是( )(A)40x -≤≤;(B)3≤;(C)(4,3)-; (D){}{}4003x x x x -≤≤⋃<≤. 3、函数cos sin y x x x=+是( )(A)偶函数; (B)奇函数; (C)非奇非偶函数;(D)奇偶函数. 4、函数()1cos2f x xπ=+的最小正周期是( )(A)2π; (B)π; (C) 4 ; (D)12. 5、函数21x x +在定义域为( ) (A)有上界无下界; (B)有下界无上界; (C)有界,且1122()f x ≤≤; (D)有界,且 2221x x -≤≤+ .6、与()f x =等价的函数是( )(A) x ;(B) 2;(C)3; (D) x .7、当0x →时,下列函数哪一个是其它三个的高阶无穷小( )(A )2x ; (B )1cos x -;(C )tan x x -; (D )ln(1)x +. 8、设0,0,a b≠则当( )时有10101010........lim .........m m m n n x na x a x a ab x b x b b --→∞+++=+++ .(A)m n > ; (B)m n = ;(C)m n < ; (D),m n 任意取 .9、设1,10,01x x x x --<≤⎧⎨<≤⎩,则0lim ()x f x →=( ) (A)-1 ; (B)1 ; (C)0 ; (D)不存在 .10、0lim x xx →( ) (A)1; (B)-1;(C)0; (D)不存在.二、求下列函数的定义域: 1sin(21)arctan ;y x x =++、 2、()x φ=三、 设2(1)231g x x x -=--(1) 试确定,,a b c的值使 2(1)(1)(1)g x a x b x c-=-+-+ ; (2) 求(1)g x +的表达式 . 四、 求2()(1)sgn f x x x=+的反函数1()f x -.五、 求极限:1、2221lim (1)n n n n →∞++- ; 2、3x → ; 3、2lim(1)xx x →+ ; 4、1lim (1)xx x e→∞- ; 5、当x ≠时,limcos cos ........cos 242n n x x x→∞ ;6、21sinlimx x →+∞.六、 设有函数sin ,1()(1)1,1ax x f x a x x <⎧=⎨--≥⎩试确定a的值使()f x 在1x =连续 . 七、 讨论函数1arctan1()sin2x x f x xπ-=的连续性,并判断其间断点的类型 .八、 证明奇次多项式: 2120121()n n n P x a xa x a ++=+++L 0(0)a ≠至少存在一个实根 .第二章 导数与微分一、 选择题: 1、函数()f x 在点0x 的导数0()f x '定义为( ) (A )00()()f xx f x x+∆-∆; (B )000()()limx x f x x f x x →+∆-∆;(C )00()()limx x f x f x x →-∆; (D )000()()limx x f x f x x x →--;2、若函数()y f x =在点0x 处的导数0()0f x '=,则曲线()y f x =在点(0,()x f x )处的法线( )(A )与x 轴相平行;(B )与x 轴垂直;(C )与y 轴相垂直;(D )与x 轴即不平行也不垂直:3、若函数()f x 在点0x 不连续,则()f x 在0x ( )(A )必不可导; (B )必定可导;(C )不一定可导; (D )必无定义.4、如果()f x =( ),那么()0f x '=. (A) arcsin2arccos x x +;(B) 22sec tan x x +;(C) 22sin cos (1)x x +-;(D) arctan x +arc cot x .5、如果2,0()(1),0axe xf x b x x ⎧≤⎪=⎨->⎪⎩处处可导,那末( ) (A )1a b ==; (B )2,1a b =-=-; (C )1,0a b ==; (D )0,1a b ==. 6、已知函数()f x 具有任意阶导数,且[]2()()f x f x '=,则当n 为大于2的正整数时, ()f x 的n 阶导数()()n fx 是( )(A )1![()]n n f x +; (B ) 1[()]n n f x +; (C ) 2[()]nf x ; (D )2![()]nn f x . 7、若函数()x x t =,()y y t =对t 可导且()0x t '≠,又()x x t =的反函数存在且可导,则dydx =( )(A )()()y t x t '; (B )()()y t x t '-'; (C )()()y t x t ''; (D )()()y t x t '.8、若函数()f x 为可微函数,则dy ( )(A )与x ∆无关;(B )为x ∆的线性函数;(C )当0x ∆→时为x ∆的高阶无穷小;(D )与x ∆为等价无穷小. 9、设函数()y f x =在点0x 处可导,当自变量x 由0x 增加到0xx+∆时,记y ∆为()f x 的增量,dy 为()f x 的微分,0lim x y dy x ∆→∆-∆等于( )(A )-1; (B )0; (C )1; (D )∞.10、设函数()y f x =在点0x 处可导,且0()0f x '≠,则 0lim x y dy x ∆→∆-∆等于( ).(A )0; (B )-1; (C )1; (D )∞ .二、求下列函数的导数:1、2sin ln y x x =; 2、cosh xy a = (0a >); 3、2sec (1)xy x =+ ; 4、2ln[cos(103)]y x =+;5、设y 为x的函数是由方程arctanyx=确 定的;6、设2x yy=+,322()u xx =+,求dydu .三、证明sin tx e t =,cos ty e t =满足方程222()2()d y dyx y x y dx dx+=- .四、已知()cos ,0(),0g x xx f x xa x -⎧≠⎪=⎨⎪=⎩其中()g x 有二阶连续导数,且(0)1g =,1、确定a 的值,使()f x 在0X =点连续;2、求()f x ' 五、设ln ,y x x =求()(1)n f .的近似值 .七、一人走过一桥之速率为4公里/小时,同时一船在此人底下以8公里/小时之速率划过,此桥比船高200米,问3分钟后人与船相离之速率为多少?第三章 微分中值定理一、 选择题: 1、 一元函数微分学的三个中值定理的结论都有一个共同点,即( )(A ) 它们都给出了ξ点的求法 .(B ) 它们都肯定了ξ点一定存在,且给出了求ξ的方法。

大一高等数学单元自测题

大一高等数学单元自测题

1.设是以3为周期的奇函数,且,则()A.2B.-1C.1D.-2 正确答案:1解题思路:因为是以3为周期的奇函数,所以。

2.设,则=().A. B.6 C.0 D.2 正确答案:解题思路:因,故=.3.设则().A. B. C. D.正确答案:解题思路:.4.为无穷小量的条件是()。

A. B. C. D.正确答案:解题思路:,则所以.5.函数的微分().A. B. C.D.正确答案:解题思路:=.6.设,则().A. B. C. D.正确答案:解题思路:。

7.().A. B. C. D.正确答案:解题思路:。

8.已知曲线,则这条曲线平行于直线的切线方程为().A. B., C.,D.正确答案:,解题思路:因曲线在任意一点的切线斜率,故所求切线的斜率,从而,所以切点为和,所求切线方程为,和,即,.9.下列各对函数中,表示同一函数的是()A.和B.和C.和D.和正确答案:和解题思路:和是同一函数,其余三项中的函数定义域不同。

10.曲线在点处的切线斜率为().A. B. C. D.正确答案:解题思路:对此方程两边求的导数,得,故,从而切线的斜率为.11.=().A. B. C. D.正确答案:解题思路:==.12.函数的定义域为().A. B. C. D.正确答案:解题思路:要函数有意义,必有,故其定义域是:.13.=().A. B. C. D.正确答案:解题思路:因,故.14.函数的间断点为().A. B. C. D.正确答案:解题思路:因函数为初等函数,而初等函数在其定义域内都是连续的,故函数的间断点为其没有定义的点.15.=()。

A. B. C. D.不存在正确答案:解题思路:=.16.设,则().A. B. C. D.正确答案:解题思路:,以此类推,。

17.如果函数具有任意阶导数且,则().A.-B.-4C.4D.正确答案:-4解题思路:设。

18.=()。

A. B. C. D.正确答案:解题思路:===.19.设,则的值为()。

自测题(1-7章附参考答案)-高等数学上册.

自测题(1-7章附参考答案)-高等数学上册.

第一章函数与极限一、选择题:1.函数的定义域是()(A; (B; (C;(D.2.函数的定义域是()(A;(B;(C;(D.3、函数是()(A偶函数; (B奇函数;(C非奇非偶函数;(D奇偶函数.4、函数的最小正周期是()(A2; (B; (C 4 ; (D .5、函数在定义域为()(A有上界无下界; (B有下界无上界;(C有界,且;(D有界,且.6、与等价的函数是()(A ; (B ; (C ; (D .7、当时,下列函数哪一个是其它三个的高阶无穷小()(A);(B);(C);(D).8、设则当()时有.(A; (B;(C; (D任意取 .9、设,则((A-1 ; (B1 ; (C0 ; (D不存在 .10、()(A1; (B-1;(C0; (D不存在.二、求下列函数的定义域:2、 .三、设(1)试确定的值使;(2)求的表达式 .四、求的反函数.五、求极限:1、;2、;3、;4、;5、当时,;6、 .六、设有函数试确定的值使在连续 .七、讨论函数的连续性,并判断其间断点的类型 .八、证明奇次多项式:至少存在一个实根 .第二章导数与微分一、选择题:1、函数在点的导数定义为()(A);(B);(C);(D);2、若函数在点处的导数,则曲线在点(处的法线()(A)与轴相平行;(B)与轴垂直;(C)与轴相垂直;(D)与轴即不平行也不垂直:3、若函数在点不连续,则在 ((A)必不可导;(B)必定可导;(C)不一定可导;(D)必无定义.4、如果=(),那么.(A ;(B ;(C ;(D .5、如果处处可导,那末()(A);(B);(C);(D).6、已知函数具有任意阶导数,且,则当为大于2的正整数时,的n阶导数是()(A);(B);(C);(D).7、若函数,对可导且,又的反函数存在且可导,则=()(A);(B);(C);(D).8、若函数为可微函数,则()(A)与无关;(B)为的线性函数;(C)当时为的高阶无穷小;(D)与为等价无穷小.9、设函数在点处可导,当自变量由增加到时,记为的增量,为的微分,等于()(A)-1;(B)0;(C)1;(D).10、设函数在点处可导,且,则等于().(A)0;(B)-1;(C)1;(D) .二、求下列函数的导数:1、;2、();3、;4、;5、设为的函数是由方程确定的;6、设,,求.三、证明,满足方程.四、已知其中有二阶连续导数,且,1、确定的值,使在点连续;2、求五、设求.六、计算的近似值 .七、一人走过一桥之速率为4公里/小时,同时一船在此人底下以8公里/小时之速率划过,此桥比船高200米,问3分钟后人与船相离之速率为多少?第三章微分中值定理一、选择题:1、一元函数微分学的三个中值定理的结论都有一个共同点,即()(A)它们都给出了ξ点的求法 .(B)它们都肯定了ξ点一定存在,且给出了求ξ的方法。

高数笔记单元测试题及答案

高数笔记单元测试题及答案

高数笔记单元测试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是:A. 0B. 1C. 2D. 无定义2. 极限 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是:A. 0B. 1C. 2D. 无穷大3. 函数 \( y = \ln x \) 的定义域是:A. \( (-\infty, 0) \)B. \( (0, +\infty) \)C. \( (-\infty, +\infty) \)D. \( [0, +\infty) \)4. 曲线 \( y = x^3 \) 在 \( x = 1 \) 处的切线斜率是:A. 0B. 1C. 3D. 275. 函数 \( f(x) = 3x - 2 \) 的反函数是:A. \( x = 3y - 2 \)B. \( y = \frac{x + 2}{3} \)C. \( y = 3x + 2 \)D. \( x = \frac{y + 2}{3} \)6. 定积分 \( \int_{0}^{1} x^2 dx \) 的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{4} \)C. \( \frac{1}{2} \)D. 17. 函数 \( y = \sin x \) 的周期是:A. \( 2\pi \)B. \( \pi \)C. \( \frac{\pi}{2} \)D. \( \frac{1}{2} \)8. 函数 \( y = e^x \) 的导数是:A. \( e^x \)B. \( e^{-x} \)C. \( x \cdot e^x \)D. \( 1 \)9. 微分 \( dy \) 与 \( dx \) 的关系是:A. \( dy = f'(x) dx \)B. \( dy = f(x) dx \)C. \( dx = f'(x) dy \)D. \( dx = f(x) dy \)10. 若 \( \int f(x) dx = F(x) + C \),则 \( \int f'(x) dx \) 是:A. \( f(x) \)B. \( f'(x) \)C. \( F(x) \)D. \( C \)答案:1. A 2. B 3. B 4. C 5. D 6. B 7. A 8. A 9. A 10. A二、简答题(每题5分,共10分)1. 什么是泰勒级数?请给出 \( e^x \) 在 \( x = 0 \) 处的泰勒展开式。

高等数学测试题及答案1-9章全

高等数学测试题及答案1-9章全

高等数学测试题及答案1-9章全第1章自测题一、 选择题1. 若函数()f x 在点0x 处的极限存在,则( ) A ()f x 在点0x 处的函数值必存在,并且等于极限值; B ()f x 在点0x 处的函数值必存在,但不一定等于极限值; C ()f x 在点0x 处的函数值可以不存在; D 如果0()f x 存在的话,一定等于极限值 . 答案: C .提示:根据极限的定义.2.下列函数中,在点2x =处连续的是( ) .A ln(2)x -; B 22x -; C 242x y x -=-; D答案: B .提示:A 与C 在2x =处无意义,D 在2x =处左连续.3.函数53sin ln x y = 的复合过程是( )A x w w v v u u y sin ,,ln ,35====B x u u y sin ln ,53== ;C x u u y sin ,ln 53== ;D x v v u u y sin ,ln ,5=== . 答案:A .4.设,0(),0x e x f x a x x ⎧<⎪=⎨+⎪⎩≥ ,要使()f x 在0x =处连续,则a =( )A 2 ; B 1 ; C 0 ; D -1 .答案: B .提示:0lim ()lim e e 1x x x f x --→→===,00lim ()lim()x x f x a x a ++→→=+=. 二、填空题5. 函数()34f x x =-的反函数是 . 答案:43x y +=.提示:反表示为43y x +=.6. 函数y 的复合过程是 .答案:2ln ,,cos y u v v t t x ====.7. 若2()f x x =, ()x g x e =,则[()]f g x = ,[()]g f x = .答案: 22[()](e )e x x f g x ==,2[()]x g f x e =. 8. 函数1()ln(2)f x x =-的连续区间为 .答案:(2,3)和(3,)+∞. 提示:20x ->且ln 20x -≠.三、 解答题9.设函数ln ,01()1,122x x f x x x x ⎧<⎪=-<⎨⎪>⎩≤≤ ,(1) 求()f x 的定义域;(2) 作出函数图像;(3) 讨论()f x 在1x =及2x =处的连续性 .解 (1) 函数()f x 的定义域为(0,)+∞. (2) 函数图像为第1题图(3) 观察图像知,函数()f x 在1x =处连续,在2x =处不连续性.10.指出函数2πsin (3)4y x =-是有哪些简单函数复合而成的.解 2π,sin ,34y u u v v x ===-.11.计算下列各极限:(1) 22125lim 1x x x x →-+++ ; (2)221241lim 232x x x x →-+-; (3) 32lim(2)x x x →- ;(4)224lim 2x x x →--+;(5) 221lim()x x x→∞- ;(6)2241lim 232x x x x →∞-+-.解 (1) 22125125lim2111x x x x →-++-+==++; (2)2211122241(21)(21)214lim lim lim (21)(2)25232x x x x x x x x x x x x →→→--++===-+++-;(3) 33222lim(2)lim 2lim 484x x x x x x x →→→-=-=-=- ;(4)22224(2)(2)lim lim lim (2)422x x x x x x x x x →-→-→---+==-=-++;(5) 222121lim()lim lim 000x x x x x xx →∞→∞→∞-=-==-= ;(6)22221441limlim 2322322x x x x x x x x→∞→∞--==+-+-.12. 利用高级计算器计算下列各极限:(1)2lim sinx x x→∞ ; (2)3x → ;(3)lim x →+∞ (4)21lim()xx x x→∞+.解(1)2lim sin2x x x→∞= ; (2)314x →=; (3)x →∞=0; (4)221lim()e xx x x→∞+=.四、应用题1.若某厂每天生产某种产品60件的成本为300元,生产80件的成本为340元.求这种产品的线性成本函数,并求每天固定成本和生产一件产品的可变成本为多少?解 300602(),,()180234080180a b a C Q aQ b C Q Q a b b =+=⎧⎧=+⇒⇒∴=+⎨⎨=+=⎩⎩; 固定成本为180元,一件产品的变动成本为2元.2.甲向乙购买一套价值300万元的房子,乙提出三种付款方式:(1)全部付现款,可以优惠10万元;(2)先首付100万元,余款每隔一年付40万元,但每次付款必须加还40万元产生的利息(按年利率5%计算),5年后还清;(3)先首付200万元,一年后付余款100万元,但必须加还100万元的利息(按年利率5%计算);分别计算这三种付款方式实际付款金额. 解 (1)300—10=290(万元);(2)234510040(15%)40(15%)40(15%)40(15%)40(15%)332.076513++++++++++=万元;(3)(3)200100(15%)305++=万元.第2章 自测题一、 选择题1.过曲线2y x x =-上M 点处切线斜率为1,M 点坐标为( ). A.()1,0;B.()1,1;C.()0,0;D.()0,1.答案: A .提示:切线斜率为211,1k x x =-==,0y =.2.设在0x =处可导,则0(2)(0)lim h f h f h→-=( ).A.0;B.2(0)f '-;C.(0)f ';D.2(0)f '.答案: D .提示:00(2)(0)(02)(0)lim lim 22(0)2h h f h f f h f f h h→→-+-'=⋅=3.函数()f x 在点0x x =取得极大值,则必有( ). A.()00f x '=;B.()00f x '<;C ()00f x '=且()00f x =;D.()0f x '等于零或不存在.答案: D .提示:()0f x '等于零或不存在的点都是可能的极值点. 4.函数sin y x x =-在[]0,π上的最大值是( ).; B.0; C.π-; D.π. 答案: C. 提示:因为cos 10y x '=-≤,所以函数单调递减.最大值为()f ππ=-5.函数e arctan x y x =+在区间[]1,1-上( ). A.单调减少;B.单调增加;C.无最大值;D.无最小值.答案: B .提示:因为2101x y e x'=+>+. 6.d d yx=( ).C.D.答案: C .提示:0,y y ''==. 7. 设()211f x x =+ (0)x >,则()f x '=( ). A.21(1)x -+; B.21(1)x +;C.;. 答案: C .提示:()f x,所以y '= 8.设32,2t x te y t t -==+,则1t dydx =-=( ) A.2e -; B.2e -; C.2e; D.2e答案:C .提示:因为262ttdy t tdx e te--+=-,所以12t dy dx e =-= 9.设(),()y f u u x ϕ==,则dy =( )A.()f u dx ';B.()()f x x dx ϕ''C.()()f u x dx ϕ'';D.()()f u x du ϕ'' 答案: C .提示:根据复合函数求导法则. 二、填空题10.已知某商品的收益为375)(Q Q Q R -=,则其边际收益=')(Q R 解 2375)(Q Q R -='11.函数1x y e -=在2x =-处的切线斜率为 . 解 13222xx x k y e e -=-=-'==-=.12.曲线()21f x x =-在区间 上是单调增加函数. 解 ()2f x x '=-,所以在(,0)-∞上是单调增加函数. 13.如果2,0.01x x =∆=,则22()x d x == .解 2220.01()20.04x x x d x x x==∆==⋅∆=.14.函数x y xe -=在[]1,2-上的最大值为 .解 (1)x y e x -'=-,得驻点1x =,12(1),(1),(2)f f e f e e=-=-=,所以最大值为2(2)f e=.15.如果2sin 2y x =,则y '= . 解 2sin 2cos222sin 4y x x x '=⋅⋅=.16. 某需求曲线为1003000Q P =-+,则20P =时的需求弹性E = 解 202020()(100)21003000P P P P P E Q P Q P ==='=-=--=-+ . 17.已知ln 2y x =,则y ''= .解 211,y y x x'''==-.三、计算题18. 求下列函数的导数(1)(1y =+ (2)cos πy =+解y =解231(1)3y x -'=⋅+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学》单元自测题
第一章 极限与函数的连续性
专业 班级 姓名 学号
一、 填空题:
1.设()x
x x f +-=11,则()[]x f f =_____________。

2. =<<+-∞→)0(lim b a b a b a n
n n
n n ________ __。

3. ()x
x x 3021lim -→=_______ ___。

4. =++∞→x
x x x 1sin 2332lim 2___ _______。

5. 已知0→x 时()11312-+ax
与1cos -x 是等价无穷小,则=a __________。

6. 函数
()⎪⎪⎩⎪⎪⎨⎧>=<=0,1sin ,0, 0 ,0, e 1x x x x x x f x
的连续区间是_____ _____。

二、 选择题:
1.设函数()x f 的定义域是[]1,0,2
10<
<a ,则函数()()a x f x g +=()a x f -+的定义域是( )。

(A )[]a a -1,; (B )[]a a +1,; (C )[]a a --1,; (D) []a a +-1,。

2.已知极限0)2(lim 2=++∞→kn n
n n ,则常数=k ( )。

(A) 1- ; (B) 0 ;(C) 1; (D) 2 。

3.若()A x f x x =→0
lim ,则下面选项中不正确的是( )。

(A) α+=A x f )(,其中α为无穷小; (B))(x f 在0x 点可以无意义;
(C))(0x f A = ; (D) 若0>A ,则在0x 的某一去心邻域内0)(>x f 。

4. 当0→x 时,下列哪一个函数不是其他函数的等价无穷小( )。

(A) 2sin x ; (B) 2cos 1x -; (C) ()21ln x +; (D) ()
1e -x x 。

5.设函数⎪⎪⎩⎪⎪⎨⎧<-=>=0
),1ln(1
0,0,
sin )(x x x x b x x ax x f 在点0=x 处连续,则常数b a ,的值为( )。

(A) 0,0==b a ; (B) 1,1==b a ;
(C) 1,1-=-=b a ; (D)1,1-==b a 。

6. 方程014=--x x 至少有一个根的区间是( )。

(A) ⎪⎭⎫ ⎝⎛210,; (B) ⎪⎭⎫
⎝⎛121,; (C) ()21,; (D)
()32,。

三、 计算下列各题:
1.求函数1e e +=x x
y 的反函数,并求反函数的定义域。

2.求极限()11lim --+∞→n n n n 。

3.求极限⎪⎭⎫ ⎝
⎛++++++∞→n n n n n n 2222211lim 。

4.求极限⎪⎭⎫
⎝⎛---→1311
lim 31x x x 。

5.设82lim =⎪⎭⎫
⎝⎛-+∞→x
x a x
a x ,求常数a 。

6.求极限()212
0tan 31lim x x x +→。

7.讨论函数()()()1122--=
x x x x x f 的间断点及其类型。

四、 证明题:
1. 设21=x ,)1(211n
n n x x x +=+() ,2,1=n ,证明极限n n x ∞→lim 存在,并求极限值。

2. 设函数()x f 在[]b a ,上连续,且()b x f a <<。

证明至少存在一点()b a ,∈ξ,使()ξξ=f 。

相关文档
最新文档