图像分割方法综述
医学图像分割方法综述

医学图像分割方法综述林瑶,田捷1北京,中国科学院自动化研究所人工智能实验室,100080摘要: 图像分割是一个经典难题,随着影像医学的发展,图像分割在医学应用中具有特殊的重要意义。
本文从医学应用的角度出发,对医学图像分割方法,特别是近几年来图像分割领域中出现的新思路、新方法或对原有方法的新的改进给出了一个比较全面的综述,最后总结了医学图像分割方法的研究特点。
关键词:医学图像分割 综述1.背景介绍医学图像包括CT 、正电子放射层析成像技术(PET )、单光子辐射断层摄像(SPECT )、MRI (磁共振成像技术)、Ultrasound (超声)及其它医学影像设备所获得的图像。
随着影像医学在临床医学的成功应用,图像分割在影像医学中发挥着越来越大的作用[1]。
图像分割是提取影像图像中特殊组织的定量信息的不可缺少的手段,同时也是可视化实现的预处理步骤和前提。
分割后的图像正被广泛应用于各种场合,如组织容积的定量分析,诊断,病变组织的定位,解剖结构的学习,治疗规划,功能成像数据的局部体效应校正和计算机指导手术[2]。
所谓图像分割是指将图像中具有特殊涵义的不同区域区分开来,这些区域是互相不交叉的,每一个区域都满足特定区域的一致性。
定义 将一幅图像,其中g x y (,)0≤≤x Max x _,0≤≤y Max y _,进行分割就是将图像划分为满足如下条件的子区域...:g 1g 2g 3 (a) ,即所有子区域组成了整幅图像。
(b) 是连通的区域。
g k (c) ,即任意两个子区域不存在公共元素。
(d) 区域满足一定的均一性条件。
均一性(或相似性)一般指同一区域内的像素点之间的灰度值差异较小或灰度值的变化较缓慢。
g k 如果连通性的约束被取消,那么对像素集的划分就称为分类(pixel classification),每一个像素集称为类(class)。
在下面的叙述中,为了简单,我们将经典的分割和像素分类通称为分割。
图像分割方法综述

图像分割方法综述【摘要】本文简要介绍了几种典型的图像分割方法,主要有阈值分割算法、边缘检测算法、区域分割算法。
它们均是基于不同的理论,十分具有代表性,且在计算机上易于实现,实验效果比较好。
【关键词】图像分割;算法图像分割是一种基本的计算机视觉技术,是图像分割的需要解决的首要和基础问题,是图像处理到图像分析的关键步骤。
图像分割及目标表达和参数测量为图像分析和理解提供基本的信息。
1.图像分割的定义图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。
它是由图像处理到图像分析的关键步骤。
图像分割可以用数学描述如下:令集合R代表整幅图像,对R的划分可以看成满足五个条件的非空子集R1,R2,…,Rn。
(1)Ri=R;(2)对于所有的i和j,i≠j,RiRj=?;(3)对i=1,2,…,n,有P(Ri)=TRUE;(4)对i≠j,有P(RiRj)=TRUE;(5)对i=1,2,…,n,Ri是连通的区域。
上述的五个条件:(1)指出分割应将图像中的每个像素都分进某个子区域,也就是说分割结果中得到的全部子区域的总和要包括图像中的所有的像素点。
(2)指出分割结果得到的各个子区域之间是互不相交的。
(3)指出分割结果中每个子区域都有各自的特性。
(4)指出同一个区域的像素应该具有一些不同的特性。
(5)是指同一个子区域的任两个像素是连通的。
2.阈值分割算法灰度阈值分割法是一种最常用的并行区域技术,它是图像分割中应用数量最多的一类。
阈值分割方法实际上是输入图像到输出图像的如下变换:g(i,j)=1,f(i,j)≥T0,f(i,j)≥T其中,T为阈值,对于物体的图像元素g(i,j),对于背景的图像元素g(i,j)=0。
由此可见,阈值分割算法的关键是确定阈值,如果能确定一个合适的阈值就可准确地将图像分割开来。
阈值确定后,将阈值与像素点的灰度值比较和像素分割可对各像素并行地进行,分割的结果直接给出图像区域。
图像分割方法综述

图像分割方法综述
图像分割是图像处理的一个重要研究课题,它的目的是将图像分
割成若干个不重叠的区域,每一个区域对应着图像中的一个物体,分
割结果有助于进一步提取它们的相关信息。
近年来,已有许多图像分割方法被提出,其中包括基于标签传播、模板与聚类、基于特征聚类、图割等。
基于标签传播的图像分割是一种非监督学习方法,它的基本思想
是通过将图像的局部结构和对象的先验信息投影到相应的标签空间上,通过传播把他们之间的关系扩展到整个图像,从而实现分割的目的。
模板与聚类法是一种经典的图像分割方法,它的基本思想是基于
模板匹配机制,将图像区域进行分类,再利用聚类算法对区域进行聚类,从而实现图像分割。
基于特征聚类是一种基于计算机视觉的图像分割方法,它是基于
目标特征空间应用聚类的方法,通过分析图像的纹理、色彩、颜色变
化等,以实现图像分割的目的。
图割作为图像分割中的一个重要方法,它将图像分割问题转化为
求解图形分割问题,将图像分割问题转化为在相关能量函数中寻求使
能量函数最小值的最小割集。
以上是近年来几种图像分割方法的大致介绍,每种方法都有自己
的特点和优势,根据不同的图像情况选择合适的分割方法可以获得较
好的处理结果。
图像分割综述

图像分割综述对图像分割进行综合阐述,并详细介绍几种常用图像分割法,以及他们主要的特点。
标签:图像分割;阈值;区域1 图像分割概念图像分割是一种主要应用于图像处理及模式识别中的比较重要的分割图像的方式。
图像分割的根本目的是在整体或是大区域图像中分割出有意义或是感兴趣的局部区域,这些区域一般对应于现实世界的各类不同目标。
为了有效的辨别、分析目标,我们就有必要将目标区域单独划分出来,只有在基础上才有可能进一步对目标图像的特征进行提取、分析和测量。
因此,我们认为图像分割是进行图像分析、图像理解和图像描述的前提条件。
图像分割的一个主要方法就是阈值分割法。
阈值分割法主要利用阈值将一幅灰度图变成简单的二值图像,从而达到分割图像的目的。
该方法的主要难度在于确定合适的灰度值,将高于该值的像素归于一类,而将低于该值的像素归于另一类。
这个灰度值就是我们所说的“阈值”。
该方法是一种简单而有效的图像分割法,尤其是对于有较大对比度的图像,利用阈值分割法分割将会得到很好的分割效果。
阈值分割法一般作为图像处理、分析的第一步。
简单的阈值分割法只能产生一个二值图来区分两个不同的类,这是图像分割法要局限性之一。
阈值分割法的另一个局限性就是:在分割时,一般未考虑图像的空间特征,使得它对噪声特别敏感。
因此,就出现了一些针对阈值法的改进分割算法。
简单的理解,图像分割就是将一幅图像分成几个不同的区域,或是说在一幅图像中提取一个或是几个有用的区域。
在图像分割时,也需要考虑图像噪声的影响及图像特征的识别与提取。
其中,遥感图像的分割难度比较大,因为要饭图像一般被噪声污染较为严重,噪声会影响阈值的选取。
所以阈值法图像分割的关键问题是选取一个恰当的阈值。
2 图像分割的关键问题2.1 阈值选取阈值分割法的主要原理是:将高于设定阈值的像素确定为目标物体对象,而将低于设定阈值的像素全部确定为背景对象。
所以,该方法适用于物体和背景之间有着较大对比度的图像。
在现在的各种图形图像处理系统中,一般都会使用阈值法进行图像处理。
最全综述图像分割算法

最全综述图像分割算法重磅干货,第一时间送达图像分割是计算机视觉研究中的一个经典难题,已经成为图像理解领域关注的一个热点,图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。
所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。
简单的说就是在一副图像中,把目标从背景中分离出来。
对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。
关于图像分割技术,由于问题本身的重要性和困难性,从20世纪70年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力。
虽然到目前为止,还不存在一个通用的完美的图像分割的方法,但是对于图像分割的一般性规律则基本上已经达成的共识,已经产生了相当多的研究成果和方法。
本文对于目前正在使用的各种图像分割方法进行了一定的归纳总结,由于笔者对于图像分割的了解也是初窥门径,所以难免会有一些错误,还望各位读者多多指正,共同学习进步。
传统分割方法这一大部分我们将要介绍的是深度学习大火之前人们利用数字图像处理、拓扑学、数学等方面的只是来进行图像分割的方法。
当然现在随着算力的增加以及深度学习的不断发展,一些传统的分割方法在效果上已经不能与基于深度学习的分割方法相比较了,但是有些天才的思想还是非常值得我们去学习的。
1.基于阈值的分割方法阈值法的基本思想是基于图像的灰度特征来计算一个或多个灰度阈值,并将图像中每个像素的灰度值与阈值作比较,最后将像素根据比较结果分到合适的类别中。
因此,该方法最为关键的一步就是按照某个准则函数来求解最佳灰度阈值。
阈值法特别适用于目标和背景占据不同灰度级范围的图。
图像若只有目标和背景两大类,那么只需要选取一个阈值进行分割,此方法成为单阈值分割;但是如果图像中有多个目标需要提取,单一阈值的分割就会出现作物,在这种情况下就需要选取多个阈值将每个目标分隔开,这种分割方法相应的成为多阈值分割。
计算机视觉技术中的图像分割方法综述

计算机视觉技术中的图像分割方法综述计算机视觉技术已经成为了现代科学和工程领域中的重要研究方向之一。
在计算机视觉领域中,图像分割是一项关键技术,用于将图像分割成多个区域,以便进一步分析和理解图像的内容。
在本文中,我们将综述计算机视觉技术中的图像分割方法。
图像分割在许多应用中具有重要的作用,例如医学图像分析、目标检测和识别、图像编辑和增强等。
根据分割的目标和应用需求,可以将图像分割方法分为基于区域的方法、基于边缘的方法和基于深度学习的方法。
基于区域的方法是根据图像中的颜色、纹理、亮度等特征将图像分割成不同的区域。
其中,基于阈值分割是最简单和常用的方法。
它根据像素的灰度值和预定的阈值将图像分为前景和背景区域。
另外,基于区域增长的方法根据相似像素的邻域关系将图像分割成具有相似特征的区域。
这些方法在处理简单的图像场景时表现良好,但在复杂的场景下效果可能不理想。
基于边缘的方法主要关注图像中物体的边界。
这些方法首先检测出图像中的边缘,然后根据边缘将图像分割为不同的区域。
其中,基于边缘检测算子(如Canny 算子)的方法是最常用的。
它通过检测图像中的强边缘来实现分割。
此外,还有基于水平分割和基于边缘的分水岭算法等方法。
这些方法在处理具有复杂边缘结构的图像时表现较好。
基于深度学习的图像分割方法在最近的研究中取得了显著的进展。
深度学习模型,特别是卷积神经网络(CNN),可以学习到图像的高层特征和语义信息,从而实现准确的图像分割。
其中,全卷积网络(FCN)是最著名的方法之一,它使用卷积和反卷积操作来预测每个像素的类别。
另外,U-Net、DeepLab和Mask R-CNN等方法也被广泛应用于图像分割领域。
这些深度学习方法在处理复杂的图像场景时具有很强的鲁棒性和准确性。
除了上述方法,还有一些其他的图像分割方法值得关注。
例如,基于图割的方法可以将图像分割问题转化为图论中的最小割问题,并使用最小割算法求解。
此外,基于形状的方法将图像分割问题转化为形状匹配或曲线演化问题,并通过优化方法求解。
图像分割方法概述

图像分割方法概述图像分割是一种基本的计算机视觉任务,旨在将图像划分成不同的区域或对象。
图像分割在许多应用领域中都有重要的应用,如医学影像分析、目标检测与识别等。
本文将概述几种常用的图像分割方法。
一、阈值分割法阈值分割法是最简单且常用的图像分割方法之一。
它基于像素的灰度值,将图像按照灰度值的高低进行分类。
通过设定一个或多个阈值,将图像的像素划分为前景和背景。
根据不同的阈值选择方法,阈值分割法可以分为全局阈值分割和局部阈值分割两种。
二、基于边缘的分割法基于边缘的分割法是另一种常见的图像分割方法。
它利用图像中明显的边缘信息将图像分割成不同的区域。
常用的边缘检测方法有Sobel算子、Canny算子等。
通过检测边缘,可以将图像中的物体从背景中分离出来。
三、区域生长法区域生长法是一种基于相似性的图像分割方法。
它从某个种子像素开始,逐渐将与其相似的像素聚合到同一区域中。
相似性度量可以基于像素的灰度值、颜色、纹理等特征来定义。
区域生长法适用于分割相对均匀的区域,但对于高噪声或复杂纹理的图像效果可能不理想。
四、基于聚类的分割法基于聚类的分割法通过将图像像素聚类成不同的类别来实现图像分割。
常用的聚类算法有K均值聚类、高斯混合模型等。
聚类分割法适用于分割具有明显不同特征的目标,如自然景观图像中的不同物体。
综上所述,图像分割方法有多种多样,每种方法都有其适用的场景和局限性。
在实际应用中,我们需要根据图像的特点和任务需求选择合适的方法。
此外,还可以通过组合多个方法或使用深度学习等方法来提高图像分割的精度和鲁棒性。
随着计算机视觉技术的不断进步,图像分割将在更多领域发挥重要作用。
图像分割方法综述【文献综述】

文献综述电子信息工程图像分割方法综述摘要:图像分割是图像理解的基础,图像分割的算法研究越来越受到关注,早期的图像分割算法在之后的研究中得到完善。
活动轮廓模型是图像分割和边界提取的重要工具之一,主要包括了参数形式活动轮廓模型和几何形式活动轮廓模型两大类,本文对这两类模型进行了大概的说明,简单叙述了相对的优点,如几何活动轮廓模型在变形的过程中能处理曲线拓扑变化。
鉴于活动轮廓模型所存在的缺点,提出了水平集算法,使得计算的范围和简易程度有了很大的发展。
最后指出了图像分割的算法还有一些进一步优化的研究发展方向。
关键词:图像分割,参数活动轮廓模型,几何活动轮廓模型,水平集1.引言对图像进行处理,通过图像分割、目标分离、特征提取、参数测量等技术,将原始的图象转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。
其中图像分割已经越来越受到人们的关注,作为一种图像处理与计算机视觉操作的预处理手段,已经应用到了很多的领域,图像分割可以定义为:根据图像特征对图像进行区域划分[1]过程,图像分割的效果好坏会直接影响到后续的处理结果,所以图像分割是一个基本而又关键的技术,为此人们提出了很多有效的、具有鲁棒性的分割算法。
图像分割方法有很多,按知识的特点和层次可分为数据驱动和模型驱动两大类[2],前者有Roberts算子、Sobel算子和Canny算子、阈值分割、分水岭算法和模糊聚类分割算法等;后者是直接建立在先验知识的基础上的,如基于活动轮廓模型的图像分割。
水平集的应用领域是隐含曲线(曲面)的运动[3],现在水平集已经广泛应用于图像恢复、图像增强、图像分割、物体跟踪、形状检测与识别、曲面重建、最小曲面、最优化以及流体力学中的一些方面。
一个好的图像分割算法应具有以下特点:1、有效性,能将图像中感兴趣的区域或目标分割出来的有效规则。
2、整体性。
能得到图像中感兴趣区域或目标的无断点和离散点的封闭边界。
3、精确性,分割所得到的感兴趣区域或目标边界与实际情况贴近。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像分割方法综述摘要:图像分割是计算计视觉研究中的经典难题,已成为图像理解领域关注的一个热点,本文对近年来图像分割方法的研究现状与新进展进行了系统的阐述。
同时也对图像分割未来的发展趋势进行了展望。
关键词:图像分割;区域生长;活动边缘;聚类分析;遗传算法Abstract: Image segmentation is a classic problem in computer vision,and become a hot topicin the field of image understanding. the research actuality and new progress about image segmentation in recent years are stated in this paper. And discussed the development trend about the image segmentation.Key words: image segmentation; regional growing; active contour; clustering analysisgenetic algorithm1 引言图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。
所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。
简单的说就是在一副图像中,把目标从背景中分离出来。
对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。
关于图像分割技术,由于问题本身的重要性和困难性,从20世纪70年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力。
虽然到目前为止,还不存在一个通用的完美的图像分割的方法,但是对于图像分割的一般性规律则基本上已经达成的共识,已经产生了相当多的研究成果和方法。
本文根据图像发展的历程,从传统的图像分割方法、结合特定工具的图像分割方法、基于人工智能的图像分割方法三个由低到高的阶段对图像分割进行全面的论述。
2 传统的图像分割方法2.1 基于阀值的图像分割方法阀值分割法是一种传统的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。
阀值分割法的基本原理是通过设定不同的特征阀值,把图像像素点分为具有不同灰度级的目标区域和背景区域的若干类。
它特别适用于目标和背景占据不同灰度级范围的图,目前在图像处理领域被广泛应用,其中阀值的选取是图像阀值分割中的关键技术。
灰度阀值分割方法是一种最常用的并行区域技术,是图像分割中应用数量最多的一类。
图像若只用目标和背景两大类,那么只需要选取一个阀值,此分割方法称为单阀值分割。
单阀值分割实际上是输入图像f到输出图像g的如下变换:在上述表达式中,T为阀值,对于目标物体的图像元素g(i,j)=1,对于背景的图像元素g(i,j)=0。
但是如果图像中有多个目标需要提取,单一的阀值分割就会出错。
就需要选取多个阀值将每个目标分割开,这种分割方法称为多阀值分割。
阀值分割的结果取决于阀值的选择。
由此可见,阀值分割算法的关键是确定阀值。
阀值确定后,将阀值与像素点的灰度值比较以及对各像素的分割并行地进行。
常用的阀值选择方法有利用图像灰度直方图的峰谷法、最小误差法、基于过渡区法、利用像素点空间位置信息的变化阀值法、结合连通信息的阀值方法、最大相关性原则选择阀值和最大熵原则自动阀值法。
图1是利用单阀值方法和局部阀值方法对细胞图像分隔的结果,结果表明,在很多情况下,目标物体和背景的对比度在图像的不同位置并不是一样的,这是如果用一个统一的单阀值将目标与背景分开,效果是不理想的。
如果根据图像的局部特征分别用不同的阀值对图像进行分割,即局部阀值分割,则效果要比单阀值分割要好得多。
阀值分割方法的优点是图像分割的速度快,计算简单,效率较高。
但是这种方法只考虑像素点灰度值本身的特征,一般不考虑空间特征,因此对噪声比较敏感。
虽然目前出现了各种基于阀值分割的改进算法,图像分割的效果有所改进,但在阀值的设置上还是没有很好的解决方法,若将智能遗传算法应用在阀值筛选上,选取能最优分割图像的阀值,这可能是基于阀值分割的图像分割法的发展趋势。
2.2 基于区域的图像分割方法基于区域的分割方法是以直接寻找区域为基础的分割技术,具体算法有区域生长和区域分离与合并算法。
基于区域提取方法有两种基本形式:一种是区域生长,从单个像素出发,逐步合并以形成所需要的分割区域;另一种是从全局出发,逐步切割至所需的分割区域。
2.2.1 区域生长区域生长是串行区域技术,其分割过程后续步骤的处理要根据前面步骤的结果进行判断而确定。
常见的区域生长算法包括:同伦的区域生长方式、对称区域生长方式和模糊连接度方法与区域生长相结合等算法。
区域生长的基本思想是将具有相似性质的像素集合起来构成区域。
具体是先对每个需要分割的区域找一个种子像素点作为生长的起点,然后将种子像素周围领域中与种子像素有相同或相似性质的像素合并到种子像素所在的区域中。
将这些新像素当作新的种子像素继续进行上面的过程,直到再没有满足条件的像素可被包括进来。
这样一个区域就长成了。
区域生长的优点是计算简单,对于较均匀的连通目标有较好的分割效果。
它的缺点是需要人为的选取种子,对噪声较敏感,可能会导致区域内有空洞。
另外它是一种串行算法,当目标较大时分割速度较慢,因此在算法设计时应尽量提高运行效率。
2.2.2 区域分裂合并区域生长是从某个或者某些像素点出发,最后得到整个区域,进而实现目标的提取。
而分裂合并可以说是区域生长的逆过程。
它是从整个图像出发,不断分裂得到各个子区域,然后再把前景区域合并,得到前景目标,继而实现目标的提取。
分裂合并的假设是对于一幅图像,前景区域是由一些相互连通的像素组成的,因此如果把一幅图像分裂到像素级,那么就可以判定该像素是否为前景像素。
当所有像素点或者子区域完成判断以后,把前景区域或者像素合并就可以得到前景目标。
四叉树分解法就是一种典型的区域分裂合并法。
对Lena图的分割效果如图2所示。
设R代表整个正方形图像区域,P代表逻辑谓词。
基本分裂合并算法步骤如下:(1)对于任一区域,如果H(R i)=FALSE就将其分裂成不重叠的四等分;(2)对相邻的两个区域R i和R j,它们也可以大小不同(即不在同一层),如果条件H(R i U R j)=TURE满足,就将它们合并起来;(3)如果进一步的分裂或合并都不可能,则结束。
分裂合并法的关键是分裂合并准则的设计。
这种方法对复杂图像的分割效果较好,但算法较复杂,计算量大,分裂还可能破坏区域的边界。
在实际应用中,通常是将区域生长算法和区域分裂合并算法这两种基本形式结合使用。
该类算法对某些复杂物体定义的复杂场景的分割或者对某些自然景物的分割等类似先验知识不足的图像分割,效果较为理想。
2.3 基于边缘检测的图像分割方法基于边缘检测的分割方法试图通过检测包含不同区域的边缘来解决分割问题,它可以说是人们研究的最多的方法之一。
通常不同的区域之间的边缘上像素灰度值的变化往往比较剧烈,这是边缘检测方法得以实现的主要假设之一。
边缘检测方法一般利用图像一阶导数的极大值或二阶导数的过零点信息来提供判断边缘点的基本依据。
边缘检测技术通常可以按照处理的技术分为串行边缘检测和并行边缘检测。
串行边缘检测是要想确定当前像素点是否属于检测边缘上的一点,取决于先前像素的验证结果。
并行边缘检测是一个像素点是否属于检测边缘上的一点取决于当前正在检测的像素点以及与该像素点的一些相邻像素点。
最简单的边缘检测方法是并行微分算子法,它利用相邻区域的像素值不连续的性质,采用一阶或二阶导数来检测边缘点。
近年来还提出了基于曲面拟合的方法、基于边界曲线拟合的方法、基于反应-扩散方程的方法、串行边界查找、基于变形模型的方法。
常用的一阶导数算子有梯度算子、Prewitt算子和Sobel算子。
二阶导数算子有Laplacian 算子、Kirsch算子和Wallis算子。
图3是分别用Sobel、LoG和Canny算子对Lena图做的边缘检测。
有图3可以看出,Canny算子的分割效果比Sobel和LoG算子的好。
虽然边缘检测的优点是边缘定位准确、运算速度快,但它有两大难点限制了其在图像分割中的应用,即:a不能保证边缘的连续性和封闭性;b在高细节区存在大量的碎边缘,难以形成一个大区域,但是又不宜将高细节区分为小碎片。
由于上述两个难点,因此无论采用什么方法,单独的边缘检测只能产生边缘点,而不是完整意义上的图像分割过程。
这也就是说,边缘点信息需要后续处理或与其它相关算法相结合,才能完成分割任务。
常用的方法是边缘生长技术最大程度的保证边缘的封闭性,或用有向势能函数(DPF)将有缺口的两边缘强制连接,得到封闭边缘图。
在未来的研究中,用于提取初始边缘点的自适应阀值选取、用于图像的层次分割的更大区域的选取以及如何确认重要边缘以去除假边缘将变得非常重要。
3 结合特定工具的图像分割算法3.1 基于小波分析和小波变换的图像分割方法小波变换是近年来得到广泛应用的数学工具,它在时域和频域都具有良好的局部化性质,能将时域和频域统一于一体来研究信号。
而且小波变换具有多尺度特性,能够在不同尺度上对信号进行分析,因此在图像分割方面得到了应用。
二进小波变换具有检测二元函数的局部突变能力,因此可作为图像边缘检测工具。
图像的边缘出现在图像局部灰度不连续处,对应于二进小波变换的模极大值点。
通过检测小波变换模极大值点可以确定图像的边缘小波变换位于各个尺度上,而每个尺度上的小波变换都能提供一定的边缘信息,因此可进行多尺度边缘检测来得到比较理想的图像边缘。
图4是运用小波变换方法对图像进行的有效分割。
另外,将小波方法与其他方法结合起来处理图像分割也得到广泛研究。
文献[8]提出把Hilbert图像扫描方法和小波变换相结合,获得了连续光滑的阀值曲线,从而建立了一种局部自适应阀值法进行图像分割。
3.2 基于马儿可夫随机场模型的图像分割方法马儿可夫随机场(Markov Random Field)方法建立在马尔可夫模型和Bayes理论基础上,根据统计决策和估计理论中的最优化准则确定分割问题的目标函数,求解满足这些约束条件下的最大可能分布,从而将分割问题转化为优化问题。
MRF最重要的一个特点是,图像中每个点的取值由其领域像素决定,其本质上是一种基于局部区域的分割方法。
如果我们把图像理解为定义在矩形点阵上的随即过程,则Markov性很好的描述了各个像素之间的空间依赖性,即一个像素可以由它周围的像素确定。