2011相似三角形(含答案)
(完整版)相似三角形难题集锦(含答案),推荐文档

2.如图,在△ABCABC,动点P以2m/s的速度从移动.同时,动点Q以1m/s的中,ACB90°,平分CDB点到达B点时,Q点随之的速度移动.如果P、Q同时出发,用<t<6)。
中,点A的坐标为(2,1),的图象与线段OA的夹角是45°,在△ABCAB=,为边在C建议收藏下载本文,以便随时学习!我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙,∠ACB=90°,点M是AC上的一轴上,.那么D点的坐标为()A. B.C. D.10..已知,如图,直线y=﹣2x+——A、X字型上一点,AD=AC,BC边上的AE交CD于F求证:求证:中,AB∥CD,AB=b,CD=a,E为边上的任意一点,EF∥AB,且EF交BC于点F,某同学在研究这一问题时,发现如下事实:(1)当时,EF=;当时,;(3)当时,EF=.当时,参照上述研究结论,请你猜已知:如图,在△ABC中,M是AC的中点,E、建议收藏下载本文,以便随时学习!我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙离等于该顶点对边上中线长的.)角平分线定理:三角形一个AB于点E、F.求证:.O,过O作EF//AB求证:.的四个顶点分别在△ABC 求证:.长为a.求证:.,点在平行延长线于点Q,S,交于点.求证:)如图2,图,当点在平行四边形ABCD的对角线或的延长线上时,是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明)建议收藏下载本文,以便随时学习!我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙建议收藏下载本文,以便随时学习!、G、H.求证:为直角.求证:求证:的延长线交于点E.))求证:.是BC的中点,连接、CG,AE与CG相交于点证:.分别是△ABC的两边上的高,过D作BA的延长线于F、H。
;(2)BG·CG=GF·GH交于点M,EF与AC交于点旋转,使得DE与BA三角形并证明你的结论.)请写出图中各对相似三角形(相似比为1除外)建议收藏下载本文,以便随时学习!我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙中,AD⊥BC 于D 。
经典相似三角形练习题(附参考答案)

经典练习题相似三角形(附答案)一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=_________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s 的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t 的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ 与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=135°°,BC= ;(2)判断△ABC与△DEC是否相似,并证明你的结论.BC==22、,可得BC=∵BC=EC=;∴,∴8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.面积的面积的则有:(×3×6,即面积的因此有①,或t=(t=t=都符合题意,同时出发后,经过秒或9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.P=,即相似三角形的证明.还考查了相似三角形的判定.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.CE=.AE=∴sin∠AEF=,∴AF=AE•sin∠AEF=∴.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.∴QM=PM=AB=12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.∴CM=MD=∴PC=BC=AD=∴.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s 的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t 的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.(AB=∴tan∠ADP=tan∠C==∴=,∴t=∴tan∠APD=tan∠C==,∴=∴t=∴t=t=时,△PAD∴PD=∵CE=t QE=t∴QH=BE=8﹣t t∴PH=t﹣t=t∴PQ=,,,>∴t=t=14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?时,有:;时,有:∴经过15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ 与△ABC相似.=,即=,解得对应时,有=,即=16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.解:∵AC=∴CD==.要使这两个直角三角形相似,有两种情况:时,有=,∴AB==3时,有=,∴AB=.317.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.a①若△CDM∽△MAN,则=∴AN=②若△CDM∽△NAM,则AN=18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?或)当,∴x=;)当,∴x=.所以,经过秒或19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.∴=,∴=,∴=,∴=,∴=,∴AP=.AP=时,由BP=,∴=,、20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.∴∴中有21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.所以所以;=,即=,;=,即=,t=时,以点22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?∴,23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.∴∴,∴.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)∴,即与①类似得:∴∴,与①类似得:,∴,∴MN=r(25.(2007•白银)阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.AE∥BD,所以△ECA∽△DCB,则有∴∴26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.∵∴∴解得:.∴,,即.∴同理可得:,∴=是定值.)可知,即,同理可得:∴,由等比性质得:∴,所以人影顶端在地面上移动的速度为27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.===∴∴28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.BC=∴==,==,∴BD=CD=;=BE•CD=∴BE==30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.)设=k,。
经典相似三角形练习题(附参考答案)

经典练习题相似三角形(附答案)一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=_________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问: (1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE. (1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t 的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是: _________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离O O′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S 1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S 3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.考点:相似三角形的判定;平行线的性质。
相似三角形经典题(含答案)

类似三角形经典习题之杨若古兰创作例1 从上面这些三角形中,选出类似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,如果2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 以下命题中哪些是准确的,哪些是错误的?(1)所有的直角三角形都类似.(2)所有的等腰三角形都类似.(3)所有的等腰直角三角形都类似.(4)所有的等边三角形都类似. 例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,而且点D 、点E 和ABC ∆的一个顶点构成的小三角形与ABC ∆类似.尽可能多地画出满足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮忙小明计算一下楼房的高度(精确到0.1m ).例8格点图中的两个三角形是否是类似三角形,说明理由.例9 根据以下各组条件,判定ABC ∆和C B A '''∆是否类似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A .(2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,以下每个图形中,存不存在类似的三角形,如果存在,把它们用字母暗示出来,并简要说明识此外根据.例115、12、13例1226例13在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高米的竹竿竖立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时候目测旗杆顶部A 与竹竿顶部E恰好在同不断线上,又测得C、D两点的距离为3米,小芳的目高为米,如许即可晓得旗杆的高.你认为这类测量方法是否可行?请说明理由.例14.如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点EA,再在河的这一边选点B和C定BC与AE的交点为D岸之间AB的大致距离吗?例15.如图,为了求出海岛上的山峰AB的高度,在D和F处树立标杆DC 和FE,标杆的高都是3丈,相隔1000步(1步等于5尺),而且AB、CD 和EF在同一平面内,从标杆DC退后123步的G处,可看到山峰A和标杆顶端C在不断线上,从标杆FE退后127步的H处,可看到山峰A和标杆顶端E在不断线上.求山峰的高度AB及它和标杆CD的水平距离BD各是多少?(古代成绩)例16如图,已知△ABC的边AB AC=2,BC边上的高AD (1)求BC的长;(2)如果有一个正方形的边在AB上,另外两个顶点分别在AC,BC上,求这个正方形的面积.类似三角形经典习题答案例1.解①、⑤、⑥类似,②、⑦类似,③、④、⑧类似例2.1:3.例3分析证实例4.分析(1)不准确,因为在直角三角形中,两个锐角的大小不确定,是以直角三角形的外形分歧.(2)也不准确,等腰三角形的顶角大小不确定,是以等腰三角形的外形也分歧.(3)准确.设有等腰直角三角形ABCa、b、c(4答:(1)、(2)不准确.(3)、(4)准确.例5.解:画法略.例6.分析BCBC的长.解,∴,∴∽.∴杆的高为6米.例7.分析的类似关系就明确了.解m).例8.分析这两个图如果不是画在格点中,那是没法判断的.实际上格点有形中给图形增加了条件——长度和角度.解说明碰到格点的题目必定要充分发现其中的各种条件,勿使漏掉.例9.解(1(2(3两角相等;(2两角相等;例10.解(1(3(5角相等.例11.分析有一个角是65°的等腰三角形,它的底角是72°,而BD是底成比例推出线段之间的比例关系.∴说明(1)有两个角对应相等,那么这两个三角形类似,这是判断两个三角形类似最经常使用的方法,而且根据相等的角的地位,可以确定哪些边是对应边.(2方式.例12分析26,可以求解三边顺次为∴例13.分析判断方法是否可行,应考虑利用这类方法加之我们现有的常识能G,交CE于H,可知否求出旗杆的高.按这类测量方法,过FGF、HF、EH可求,如许可求得AG,故旗杆AB可求.F G,交CE于H所解(米)所以旗杆的高为米.说明在具体测量时,方法要理想、切实可行.例14.AB大致相距100米.例15.例16. 分析:请求BC的长,需画图来解,因AB、AC都大于高AD,那么有两种情况存在,即点D在BC上或点D在BC的耽误线上,所以求BC 的长时要分两种情况讨论.求正方形的面积,关键是求正方形的边长.解:(1)如上图,由AD⊥BC,由勾股定理得BD=3,DC=1,所以BC =BD+DC=3+1=4.如下图,同理可求BD=3,DC=1,所以BC=BD-CD=3-1=2.(2)如下图,由题目中的图知BC=4,ABC是直角三角形.由AE G F是正方形,设G F=x,则FC=2-x,∵G F∥AB,∴,即.∴,∴如下图,当BC=2,AC=2,△ABC是等腰三角形,作CP⊥AB于P,∴AP在Rt△APC中,由勾股定理得CP=1,∵GH∥AB,∴△C GH∽△CBA,∵,∴。
相似三角形经典题(含答案)

相似三角形典范习题之阳早格格创做例1 从底下那些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,供AEF ∆取CDF ∆的周少的比,如果2cm 6=∆AEF S ,供CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,供证:ABC ∆∽ADE ∆.例4 下列命题中哪些是透彻的,哪些是过失的?(1)所有的曲角三角形皆相似.(2)所有的等腰三角形皆相似.(3)所有的等腰曲角三角形皆相似.(4)所有的等边三角形皆相似. 例5 如图,D 面是ABC ∆的边AC 上的一面,过D 面绘线段DE ,使面E 正在ABC ∆的边上,而且面D 、面E ABC ∆的一个顶面组成的小三角形取ABC ∆相似.尽大概多天绘出谦脚条件的图形,并道明线段DE 的绘法.例6 如图,一人拿着一收刻有厘米分绘的小尺,站正在距电线杆约30米的场合,把脚臂背前伸曲,小尺横曲,瞅到尺上约12个分绘恰佳遮住电线杆,已知脚臂少约60厘米,供电线杆的下.例7 如图,小明为了丈量一下楼MN 的下,正在离N 面20m 的A 处搁了一个仄里镜,小明沿NA 退却到C 面,正佳从镜中瞅到楼顶M 面,若5.1=AC m ,小明的眼睛离大天的下度为1.6m ,请您助闲小明估计一下楼房的下度(透彻到0.1m ).例8格面图中的二个三角形是可是相似三角形,道明缘由.例9 根据下列各组条件,判决ABC ∆战C B A '''∆是可相似,并道明缘由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A .(2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,下列每个图形中,存没有存留相似的三角形,如果存留,把它们用字母表示出去,并简要道明识别的根据.例11例125、12、1326S.例13正在一次数教活动课上,教授让共教们到操场上丈量旗杆的下度,而后回去接流各自的丈量要领.小芳的丈量要领是:拿一根下米的竹竿曲坐正在离旗杆27米的C处(如图),而后沿BC目标走到D处,那时目测旗杆顶部A取竹竿顶部E恰佳正在共背去线上,又测得C、D二面的距离为3米,小芳的目下为米,那样即可知讲旗杆的下.您认为那种丈量要领是可可止?请道明缘由.例14.如图,为了估算河的宽度,咱们不妨正在河对于岸选定一个目标动做E,使面A,再正在河的那一边选面B战CBC取AE的接面为D您能供出二岸之间AB的大概距离吗?例15.如图,为了供出海岛上的山峰AB的下度,正在D战F处横坐标杆DC战FE,标杆的下皆是3丈,相隔1000步(1步等于5尺),而且AB、CD战EF正在共一仄里内,从标杆DC退后123步的G处,可瞅到山峰A战标杆顶端C正在背去线上,从标杆FE退后127步的H处,可瞅到山峰A战标杆顶端E正在背去线上.供山峰的下度AB及它战标杆CD的火仄距离BD 各是几?(古代问题)例16如图,已知△ABC的边AB AC=2,BC边上的下AD (1)供BC的少;(2)如果有一个正圆形的边正在AB上,其余二个顶面分别正在AC,BC 上,供那个正圆形的里积.相似三角形典范习题问案例1.解①、⑤、⑥相似,②、⑦相似,③、④、⑧相似例2.1:3.例3分解道明例4.分解(1)没有透彻,果为正在曲角三角形中,二个钝角的大小没有决定,果此曲角三角形的形状分歧.(2)也没有透彻,等腰三角形的顶角大小没有决定,果此等腰三角形的形状也分歧.(3)透彻.设有等腰曲角三角形ABCa、b、c(4问:(1)、(2)没有透彻.(3)、(4)透彻.例5.解:绘法略.例6.分解BCBC的少.解,∴,∴∽.∴杆的下为6米.例7.分解的相似闭系便透彻了.解m).例8.分解那二个图如果没有是绘正在格面中,那是无法推断的.本量上格面无形中给图形删加了条件——少度战角度.解道明逢到格面的题目一定要充散创造其中的百般条件,勿使遗漏.例9.解(1(2(3例10.解(1二角相等;(2二角相等;(3二角相等;(4二边成比率夹角相等;6二边成比率夹(5角相等.例11.分解有一个角是65°的等腰三角形,它的底角是72°,而BD是底角的比率推出线段之间的比率闭系.∴道明(1)有二个角对于应相等,那么那二个三角形相似,那是推断二个三角形相似最时常使用的要领,而且根据相等的角的位子,不妨决定哪些边是对于应边.(2或者仄办法.例12分解26,不妨供解三边依次为∴例13.分解推断要领是可可止,应试虑利用那种要领加之咱们现有的知识是可供出旗杆的下.按那种丈量要领,过FG,接CE于H,可知GF、HF、EH可供,那样可供得AG,故旗杆AB可供.F G,接CE于H所解(米)所以旗杆的下为米.道明正在简曲丈量时,要领要现真、确真可止.例14.AB大概相距100米.例15.例16. 分解:央供BC的少,需绘图去解,果AB、AC皆大于下AD,那么有二种情况存留,即面D正在BC上或者面D正在BC的延少线上,所以供BC的万古要分二种情况计划.供正圆形的里积,闭键是供正圆形的边少.解:(1)如上图,由AD⊥BC,由勾股定理得BD=3,DC=1,所以BC =BD+DC=3+1=4.如下图,共理可供BD=3,DC=1,所以BC=BD-CD=3-1=2.(2)如下图,由题目中的图知BC=4,ABC是曲角三角形.由AE G F是正圆形,设G F=x,则FC=2-x,∵G F∥AB,∴,即.∴,∴如下图,当BC=2,AC=2,△ABC是等腰三角形,做CP⊥AB于P,∴AP正在Rt△APC中,由勾股定理得CP=1,∵GH∥AB,∴△C GH∽△CBA,∵,∴。
相似三角形压轴题含答案

相似三角形压轴题含答案LT1、(2011学年度九年级第二学期普陀区期终调研)如图,四边形ABCD 中,BC AD //,点E 在CB 的延长线上,联结DE ,交AB 于点F ,联结DB ,AFD DBE ∠=∠,且2DE BE CE =⋅.(1) 求证:DBE CDE ∠=∠;(2)当BD 平分ABC ∠时,求证:四边形ABCD 是菱形. 答案:(1)证明:∵CE BE DE⋅=2, ∴DE BE CE DE =. …………………………………………(2分)∵E E ∠=∠, …………………………………………(1分) ∴DBE ∆∽CDE ∆.……………………………………… (1分)∴CDEDBE ∠=∠. ………………………………………21F E C A B ……(1分)(2) ∵CDE DBE ∠=∠, 又∵AFD DBE ∠=∠, ∴=∠CDE AFD ∠.………………………………………………(1分) ∴DC AB //. ………………………………………………(1分) 又∵BC AD //, ∴四边形ABCD 是平行四边形 ………………………………………(1分) ∵BC AD //, ∴ACB=90°,C D ⊥AB 于D ,E 是AC 的中点,ED 的延长线与CB 的延长线交于点F 。
(1) 求证:FD 2=F B ·FC 。
(2) 若G 是BC 的中点,连接GD ,GD 与EF 垂直吗?并说明理由。
【答案】证明:(1)∵E 是R t △ACD 斜边中点 ∴DE=EA∴∠A=∠2∵∠1=∠2∴∠1=∠A …∵∠FDC=∠CDB+∠1=90°+∠1,∠FBD=∠ACB+∠A=90°+∠A∴∠FDC=∠FBD∵F 是公共角∴△FB D ∽△FDC ∴FCFD FD FB = ∴FC FB FD •=2(2)GD⊥EF理由如下:∵DG是R t△CDB斜边上的中线,∴DG=GC∴∠3=∠4由(1)得∠4=∠1∴∠3=∠1∵∠3+∠5=90°∴∠5+∠1=90°∴DG⊥EF4、(2010 广东珠海)如图,在平行四边形ABCD 中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC(2)若AB=4,AD=33,AE=3,求AF的长.【答案】(1)证明:∵四边形ABCD 是平行四边形∴AD ∥BC AB ∥CD∴∠ADF=∠CED ∠B+∠C=180°∵∠AFE+∠AFD=180 ∠AFE=∠B ∴∠AFD=∠C∴△ADF ∽△DEC(2)解:∵四边形ABCD 是平行四边形∴AD ∥BC CD=AB=4又∵AE ⊥BC ∴ AE ⊥AD 在Rt △ADE 中,DE=63)33(2222=+=+AE AD∵△ADF ∽△DEC∴ CD AF DE AD = ∴4633AF = AF=325、(2010广东肇庆)如图5,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE与AB 交于F.(1)求证:△CEB≌△ADC;(2)若AD=9cm,DE=6cm,求BE和EF的长.【答案】解:(1)因为∠ACB=90°,所以∠BCE+∠ECA=90°.因为AD⊥CE于D,所以∠CAD+∠ECA=90°.所以∠BCE=∠CAD.因为BE⊥CE于E,所以∠BEC=∠CDA=90°. 又因为AC=BC,所以△CEB≌△ADC(AAS). (3)因为△CEB≌△ADC,所以CE=AD=9cm,CD=BE.因为DE=6cm,所以CD=CE-DE=3cm.所以BE=3cm.因为∠BEF=∠ADF=90°,∠EFB=∠DFA,所以△EFB ∽△DFA.所以BE EF =AD FD .设EF=x cm ,所以DF=(6-x)cm,所以3=96-x x ,所以x =32cm.6、.(2009年潍坊)已知ABC △,延长BC 到D ,使CD BC =.取AB 的中点F ,连结FD 交AC 于点E .(1)求AE AC 的值;(2)若AB a FB EC ==,,求AC 的长.解:(1)过点F 作FM AC ∥,交BC 于点M . F 为AB 的中点M∴为BC 的中点,12FM AC =. 由FM AC ∥,得CED MFD ∠=∠,ECD FMD FMD ECD ∠=∠∴,△∽△23DC EC DM FM ∴== 22113323EC FM AC AC ∴==⨯=1233AC ACAE AC EC AC AC AC --∴=== (2)1122AB a FB AB a =∴==,又12FB EC EC a =∴=, 13332EC AC AC EC a =∴==,.7、(2011•东莞市)21.如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC ,将△DEF 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE ,DF(或它们的延长线)分别交BC(或它的延长线) 于G ,H 点,如图(2)(1)问:始终与△AGC 相似的三角形有 及 ;(2)设CG=x ,BH=y ,求y 关于x 的函数关系题21图B HF AG CECBFA题21图式(只要求根据图(2)的情形说明理由) (3)问:当x 为何值时,△AGH 是等腰三角形. 【答案】解:(1)△HAB ,△HGA 。
中考数学压轴题---因动点产生的相似三角形问题[含答案]
![中考数学压轴题---因动点产生的相似三角形问题[含答案]](https://img.taocdn.com/s3/m/52f3b304de80d4d8d15a4fac.png)
因动点产生的相似三角形问题例1(2011年上海市闸北区中考模拟第25题)直线113y x =-+分别交x 轴、y 轴于A 、B 两点,△AOB 绕点O 按逆时针方向旋转90°后得到△COD ,抛物线y =ax 2+bx +c 经过A 、C 、D 三点.(1) 写出点A 、B 、C 、D 的坐标;(2) 求经过A 、C 、D 三点的抛物线表达式,并求抛物线顶点G 的坐标;(3) 在直线BG 上是否存在点Q ,使得以点A 、B 、Q 为顶点的三角形与△COD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.图1满分解答(1)A (3,0),B (0,1),C (0,3),D (-1,0).(2)因为抛物线y =ax 2+bx +c 经过A (3,0)、C (0,3)、D (-1,0) 三点,所以930,3,0.a b c c a b c ++=⎧⎪=⎨⎪-+=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩所以抛物线的解析式为y =-x 2+2x +3=-(x -1)2+4,顶点G 的坐标为(1,4).(3)如图2,直线BG 的解析式为y =3x +1,直线CD 的解析式为y =3x +3,因此CD //BG .因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB ⊥CD .因此AB ⊥BG ,即∠ABQ =90°. 因为点Q 在直线BG 上,设点Q 的坐标为(x ,3x +1),那么22(3)10BQ x x x =+=±.Rt △COD 的两条直角边的比为1∶3,如果Rt △ABQ 与Rt △COD 相似,存在两种情况: ①当3B Q B A =时,10310x ±=.解得3x =±.所以1(3,10)Q ,2(3,8)Q --.②当13B Q B A=时,101310x ±=.解得13x =±.所以31(,2)3Q ,41(,0)3Q -.图2 图3考点伸展第(3)题在解答过程中运用了两个高难度动作:一是用旋转的性质说明AB ⊥BG ;二是22(3)10BQ x x x =+=±.我们换个思路解答第(3)题:如图3,作GH ⊥y 轴,QN ⊥y 轴,垂足分别为H 、N .通过证明△AOB ≌△BHG ,根据全等三角形的对应角相等,可以证明∠ABG =90°. 在Rt △BGH 中,1sin 110∠=,3cos 110∠=.①当3B Q B A=时,310B Q =.在Rt △BQN 中,sin 13QN BQ =⋅∠=,cos 19BN BQ =⋅∠=. 当Q 在B 上方时,1(3,10)Q ;当Q 在B 下方时,2(3,8)Q --. ②当13B Q B A=时,1103B Q =.同理得到31(,2)3Q ,41(,0)3Q -.例2(2011年上海市杨浦区中考模拟第24题)Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)k y k x =≠在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m 与n 的数量关系; (2)当tan ∠A =12时,求反比例函数的解析式和直线AB 的表达式;(3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO 与△EFP 相似,求点P 的坐标.图1满分解答(1)如图1,因为点D (4,m )、E (2,n )在反比例函数ky x =的图像上,所以4,2.m k n k =⎧⎨=⎩ 整理,得n =2m .(2)如图2,过点E 作EH ⊥BC ,垂足为H .在Rt △BEH 中,tan ∠BEH =tan ∠A =12,EH =2,所以BH =1.因此D (4,m ),E (2,2m ),B (4,2m +1).已知△BDE 的面积为2,所以11(1)2222B D E H m ⋅=+⨯=.解得m =1.因此D (4,1),E (2,2),B (4,3).因为点D (4,1)在反比例函数k y x=的图像上,所以k =4.因此反比例函数的解析式为4y x=.设直线AB 的解析式为y =kx +b ,代入B (4,3)、E (2,2),得34,22.k b k b =+⎧⎨=+⎩ 解得12k =,1b =.因此直线AB 的函数解析式为112y x =+.图2 图3 图4(3)如图3,因为直线112y x =+与y 轴交于点F(0,1),点D 的坐标为(4,1),所以FD // x 轴,∠EFP =∠EAO .因此△AEO 与△EFP 相似存在两种情况:①如图3,当E A EF A O F P =时,2552FP =.解得FP =1.此时点P 的坐标为(1,1).②如图4,当E A F P A OE F=时,2525F P =.解得FP =5.此时点P 的坐标为(5,1).考点伸展本题的题设部分有条件“Rt △ABC 在直角坐标系内的位置如图1所示”,如果没有这个条件限制,保持其他条件不变,那么还有如图5的情况:第(1)题的结论m 与n 的数量关系不变.第(2)题反比例函数的解析式为12y x=-,直线AB 为172y x =-.第(3)题FD 不再与x 轴平行,△AEO 与△EFP 也不可能相似.图5例3(2010年义乌市中考第24题)如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3). (1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O 1、A 1、C 1、B 1,得到如图2的梯形O 1A 1B 1C 1.设梯形O 1A 1B 1C 1的面积为S ,A 1、 B 1的坐标分别为 (x 1,y 1)、(x 2,y 2).用含S 的代数式表示x 2-x 1,并求出当S =36时点A 1的坐标;(3)在图1中,设点D 的坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.图1 图2(1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-).(2) 梯形O 1A 1B 1C 1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=. 当S =36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A 1的坐标为(6,3).(3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x 轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G .在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF . 因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD . 由于3tan 4G A F ∠=,tan 5DQ t PQD QPt∠==-,所以345t t=-.解得207t =.图3 图4考点伸展第(3)题是否存在点G 在x 轴上方的情况?如图4,假如存在,说理过程相同,求得的t 的值也是相同的.事实上,图3和图4都是假设存在的示意图,实际的图形更接近图3.例4(2010年上海市宝山区中考模拟第24题)如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22y m x m x n =++上.(1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的交点为C ,试在x 轴上找一个点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.图1满分解答(1) 因为点A (-2,4) 和点B (1,0)都在抛物线22y m x m x n =++上,所以444,20.m m n m m n -+=⎧⎨++=⎩ 解得43m =-,4n =.(2)如图2,由点A (-2,4) 和点B (1,0),可得AB =5.因为四边形A A ′B ′B 为菱形,所以A A ′=B ′B = AB =5.因为438342+--=x x y ()2416133x =-++,所以原抛物线的对称轴x =-1向右平移5个单位后,对应的直线为x =4.因此平移后的抛物线的解析式为()3164342,+--=x y .图2(3) 由点A (-2,4) 和点B ′ (6,0),可得A B ′=45. 如图2,由AM //CN ,可得''''B N B C B MB A=,即2'845B C =.解得'5B C =.所以35AC =.根据菱形的性质,在△ABC 与△B ′CD 中,∠BAC =∠CB ′D .①如图3,当''A B B C A C B D =时,55'35B D=,解得'3B D =.此时OD =3,点D 的坐标为(3,0).②如图4,当''A B B D A CB C=时,5'355B D =,解得5'3B D =.此时OD =133,点D 的坐标为(133,0).图3 图4考点伸展在本题情境下,我们还可以探求△B ′CD 与△ABB ′相似,其实这是有公共底角的两个等腰三角形,容易想象,存在两种情况.我们也可以讨论△B ′CD 与△C B B ′相似,这两个三角形有一组公共角∠B ,根据对应边成比例,分两种情况计算.例5(2009年临沂市中考第26题)如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点. (1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.图1满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x .①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4.如果2==CO AO PM AM ,那么24)4)(1(21=----xx x .解得5=x 不合题意.如果21==COAO PMAM ,那么214)4)(1(21=----xx x .解得2=x .此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM .解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4.解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---xx x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4(3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y .设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m mm ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m mDE m m2212+-=.因此4)221(212⨯+-=∆m mS DAC m m 42+-=4)2(2+--=m .当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6考点伸展第(3)题也可以这样解:如图6,过D 点构造矩形OAMN ,那么△DCA 的面积等于直角梯形CAMN 的面积减去△CDN 和△ADM 的面积.设点D 的横坐标为(m ,n ))41(<<m ,那么42)4(21)2(214)22(21++-=--+-⨯+=n m m n n m n S .由于225212-+-=m mn ,所以m m S 42+-=.例6(2009年上海市闸北区中考模拟第25题)如图1,△ABC 中,AB =5,AC =3,cos A =310.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域;(2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.图1 备用图备用图满分解答(1)如图2,作BH⊥AC,垂足为点H.在Rt△ABH中,AB=5,cosA=310A HA B=,所以AH=32=12AC.所以BH垂直平分AC,△ABC 为等腰三角形,AB=CB=5.因为DE//BC,所以A B A CD BE C=,即53y x=.于是得到53y x=,(0x>).(2)如图3,图4,因为DE//BC,所以D E A EB C A C=,M N A NB C A C=,即|3|53D E x-=,1|3|253xM N-=.因此5|3|3xD E-=,圆心距5|6|6xM N-=.图2 图3 图4在⊙M中,115226Mr B D y x===,在⊙N中,1122Nr C E x==.①当两圆外切时,5162x x+5|6|6x-=.解得3013x=或者10x=-.如图5,符合题意的解为3013x=,此时5(3)15313xD E-==.②当两圆内切时,5162x x-5|6|6x-=.当x<6时,解得307x=,如图6,此时E在CA的延长线上,5(3)1537xD E-==;当x>6时,解得10x=,如图7,此时E在CA的延长线上,5(3)3533xD E-==.图5 图6 图7(3)因为△ABC 是等腰三角形,因此当△ABC 与△DEF 相似时,△DEF 也是等腰三角形.如图8,当D 、E 、F 为△ABC 的三边的中点时,DE 为等腰三角形DEF 的腰,符合题意,此时BF =2.5.根据对称性,当F 在BC 边上的高的垂足时,也符合题意,此时BF =4.1.如图9,当DE 为等腰三角形DEF 的底边时,四边形DECF 是平行四边形,此时12534B F =.图8 图9 图10 图11考点伸展第(3)题的情景是一道典型题,如图10,如图11,AH 是△ABC 的高,D 、E 、F 为△ABC 的三边的中点,那么四边形DEHF 是等腰梯形.例7(2008年杭州市中考第24题)如图1,在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b ).平移二次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B 、C 两点(∣OB ∣<∣OC ∣),连结A ,B .(1)是否存在这样的抛物线F ,使得OC OB OA ⋅=2?请你作出判断,并说明理由;(2)如果AQ ∥BC ,且tan ∠ABO =23,求抛物线F 对应的二次函数的解析式.满分解答(1)因为平移2tx y -=的图象得到的抛物线F 的顶点为Q (t ,b ),所以抛物线F 对应的解析式为b t x t y +--=2)(.因为抛物线与x 轴有两个交点,因此0>b t .令0=y ,得-=t OB tb ,+=t OC tb .所以-=⋅t OC OB (|||||tb )( +t tb )|-=2|t22|OA ttb ==.即22b t t t-=±.所以当32t b =时,存在抛物线F 使得||||||2OC OB OA ⋅=.(2)因为AQ //BC ,所以t =b ,于是抛物线F 为t t x t y +--=2)(.解得1,121+=-=t x t x . ①当0>t 时,由||||OC OB <,得)0,1(-t B .如图2,当01>-t 时,由=∠ABO tan 23=||||OB OA =1-t t ,解得3=t .此时二次函数的解析式为241832-+-=x x y .如图3,当01<-t 时,由=∠ABO tan 23=||||OB OA =1+-t t ,解得=t 53.此时二次函数的解析式为-=y 532x +2518x +12548.图2 图3②如图4,如图5,当0<t 时,由||||OC OB <,将t -代t ,可得=t 53-,3-=t .此时二次函数的解析式为=y 532x+2518x -12548或241832++=x x y .图4 图5考点伸展第(2)题还可以这样分类讨论:因为AQ //BC ,所以t =b ,于是抛物线F 为2()y t x t t =--+.由3tan 2O A A B O O B∠==,得23O B O A =.①把2(,0)3B t 代入2()y t x t t =--+,得3t =±(如图2,图5).②把2(,0)3B t -代入2()y t x t t =--+,得35t =±(如图3,图4).。
相似三角形的判定(含答案)

学生做题前请先回答以下问题问题1:相似三角形的判定:①________________________________________;②________________________________________;③________________________________________;④_________________________________________________________.在证明两个三角形相似时,首先考虑角度信息,其次考虑对应边成比例.问题2:想一想相似三角形的判定与性质的区别是什么?问题3:如果两个图形___________,而且____________________________,那么这样的两个图形叫做位似图形,这个点叫做________;位似图形上__________________________________________________.相似三角形的判定一、单选题(共9道,每道11分)1.如图,下列条件不能判定△ADB∽△ABC的是( )A.∠ABD=∠ACBB.∠ADB=∠ABCC. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的判定2.如图,在△ABC中,DE∥BC,,则下列结论中正确的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:相似三角形的判定与性质3.如图,在平行四边形ABCD中,点E在AD边上,连接CE并延长,交BA的延长线于点F,若,CD=3,则AF的长为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的判定与性质4.如图,已知AD为△ABC的角平分线,DE∥AB,交AC于点E,若,则的值为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:相似三角形的判定5.如图,在△ABC中,∠BAC=90°,D是BC中点,AE⊥AD交CB的延长线于点E,则下列结论正确的是( )A.△AED∽△ACBB.△AEB∽△ACDC.△BAE∽△ACED.△AEC∽△DAC答案:C解题思路:试题难度:三颗星知识点:相似三角形的判定6.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是( )A.2DE=3MNB.3DE=2MNC.3∠A=2∠FD.2∠A=3∠F答案:B解题思路:试题难度:三颗星知识点:位似变换7.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大为原来的2倍,得到△.若点A的坐标是(1,2),则点的坐标是( )A.(2,4)B.(-1,-2)C.(-2,-4)D.(-2,-1)答案:C解题思路:试题难度:三颗星知识点:相似三角形的性质和判定8.如图,在△ABC中,AB=6,AC=4,P是AC的中点,过点P的直线交AB于点Q,若以A,P,Q为顶点的三角形和以A,B,C为顶点的三角形相似,则AQ的长为( )A.3B.3或C.3或D.答案:B解题思路:试题难度:三颗星知识点:相似三角形的性质和判定9.如图,在Rt△ABO中,∠AOB=90°,∠ABO=60°,,D为BO的中点,若E是线段AB上的一动点,连接DE,当△BDE与△AOB相似时,点E的坐标为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的性质和判定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11题ABCEF DG 2011相似三角形判定和性质一、选择题1. (荆州)如图,P 为线段AB 上一点,AD 与BC 交干E , ∠CPD=∠A=∠B ,BC 交PD 于E ,AD 交PC 于G ,则图中相似三角形有( )A 、1对B 、2对C 、3对D 、4对2. (无锡)如图,四边形ABCD 的对角线AC 、BD 相交于O ,且将这个四边形分成①、②、③、④四个三角形.若OA :OC=0B :OD ,则下列结论中一定正确的是( ) A .①与②相似 B .①与③相似 C .①与④相似 D .②与③相似3. (山西)如图,△ABC 中,AB =AC ,点D 、E 分别是边AB 、AC 的中点,点G 、F 在BC 边上,四边形DEFG 是正方形.若DE =2㎝,则AC 的长为( ) A .33cm B .4cm C .23cm D .25cm4. (陕西)如图,在□ABCD 中,E 、F 分别是AD 、CD 边上的点,连接BE 、AF ,他们相交于点G ,延长BE 交CD 的延长线于点H ,则图中的相似三角形共有( )A .2对B .3对C .4对D .5对5. (乌鲁木齐)如图,等边三角形ABC 的边长为3,点P 为BC 边上一点,且BP =1,点D 为AC 边上一点,若∠APD =60°,则CD 的长为( )A 、21B 、32C 、43 D 、16.(江津)已知如图:(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB 、CD交于O 点,对于各图中的两个三角形而言,下列说法正确的是( ) A 、都相似 B 、都不相似 C 、只有(1)相似 D 、只有(2)相似 7. (沈阳)如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC 的边长为( ) A 、9 B 、12 C 、15 D 、188. (泰安)如图,点F 是▱ABCD 的边CD 上一点,直线BF 交AD 的延长线与点E , 则下列结论错误的是( )A .ABDFEA ED =B .FB EF BC DE = C .BEBFDE BC =D .AEBCBE BF =9. (泰安)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2, 则S 1+S 2的值为( ) A .16 B .17 C .18 D .1910. (威海)在▱ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则AF :CF=( )A 、1:2B 、1:3C 、2:3D 、2:511. (达州)如图,在▱ABCD 中,E 是BC 的中点,且∠AEC =∠DCE ,则下列结论不正确的是( ) A 、s △AFD =2s △EFB B 、BF =12DF C 、四边形AECD 是等腰梯形 D 、∠AEB =∠ADC 12. (北京)如图,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O ,若AD =1,BC =3, 则CO AO 的值为( ) A .21B .31 C .41D .9113. (厦门)如图,铁道口的栏杆短臂OA 长1m ,长臂OB 长8m .当短臂外端A 下降0.5m 时,长臂外端B 升高( ) A 、2m B 、4m C 、4.5m D 、8m14. (漳州)如图,小李打网球时,球恰好打过网,且落在离网4m 的位置上,则球拍击球的高度h 为 A 、0.6m B 、1.2m C 、1.3m D 、1.4m ( ) 15. (天水)如图,有一块矩形纸片ABCD ,AB =8,AD =6.将纸片折叠,使得AD 边落在AB 边上,折痕为A E ,再将△A E D 沿D E 向右翻折,A E 与BC 的交点为F ,则C F 的长为( )A 、6B 、4C 、2D 、116. (遵义)如图,在直角三角形ABC 中(∠C =900),放置边长分别3, 4, x 的三个正方形,则x 的值为( ) A. 5 B. 6 C. 7 D. 1217. (河北)如图,在△ABC 中,∠C =90°,BC =6,D ,E 分别在 AB .AC 上,将△ABC 沿DE 折叠,使点A 落在点A ′处,若A ′为CE 的中点,则折痕DE 的长为( )A .B .2C .3D .418. (鸡西)如图,A 、B 、C 、D 是⊙O 上的四个点,AB =AC ,AD 交BC 于点E ,AE =3,ED =4,则AB 的长为 ( )A .3B .23 C.21 D .3519. (湖州)如图,已知AB 是⊙O 的直径,C 是AB 延长线上一点,BC =OB ,CE 是⊙O 的切线,切点为D ,过点A 作AE ⊥CE ,垂足为E ,则CD :DE 的值是( ) A.21B.1C.2D.320. (义乌)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连接CE 交AD 于点F ,连接BD 交CE 于点G ,连接BE .下列结论中:①CE =BD ; ②△ADC 是等腰直角三角形; ③∠ADB =∠AEB ; ④CD •AE =EF •CG ;一定正确的结论有( ) A .1个 B .2个 C .3个 D .4个二、填空题 1. (宁夏)如图,在△ABC 中,DE ∥AB ,CD :DA=2:3,DE=4,则AB 的长为 .2. (日照)正方形ABCD 的边长为4, M 、N 分别是BC 、CD 上的两个动点,且始终保持AM ⊥MN . 当BM= 时,四边形ABCN 的面积最大.3. (凉山)已知菱形ABCD 的边长是8,点E 在直线AD 上,若DE =3,连接BE 与对角线AC 相交于点M ,则MCAM的值是 . 4. (青海)如图,△ABC 是一块锐角三角形的材料,边BC=120mm ,高AD=80mm ,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是 mm . 5.(河池)如图,在Rt △ABC 中,∠ABC 是直角,AB=3,BC=4,P 是BC 边上的动点,设BP=x ,若能在AC 边上找到一点Q ,使∠BQP=90°,则x 的取值范围是 .6.(台州)点D .E 分别在等边△ABC 的边AB .BC 上,将△BDE 沿直线DE 翻折,使点B 落在B 1处,DB 1.EB 1分别交边AC 于点F .G .若∠ADF =80°,则∠CGE =.7.(清远)如图,在□ABCD 中,点E 是CD 中点,AE ,BC 的延长线交于点F .若△ECF 的面积为1.则四边形ABCE 的面积为 .8.(丹东)已知:如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q , 那么S △DPQ :S △ABC = .9. (牡丹江)在△ABC 中,AB =6,AC =9,点D 在边AB 所在的直线上,且AD =2,过点D 作DE ∥BC 交边AC 所在直线于点E ,则CE 的长为 .10. (张家界)在△ABC 中,AB=8,AC=6,在△DEF 中,DE=4,DF=3,要使△ABC 与△DEF 相似, 则需添加的一个条件是 (写出一种情况即可). 三、解答题1. (南充)如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠为△BFE ,点F 落在AD 上. (1)求证:△ABF ∽△DFE (2)若sin ∠DFE=13,求tan ∠EBC 的值.2. (遂宁)已知AB 是⊙O 的直径,弦AC 平分∠BAD , AD ⊥CD 于D ,BE ⊥CD 于E . 求证:(1)CD 是⊙O 的切线;(2)CD 2=AD•BE . 3.(鄂州)在圆内接四边形ABCD 中,CD 为∠BCA 外角的平分线, F 为弧AD 上一点,BC=AF ,延长DF 与BA 的延长线交于E . ⑴求证△ABD 为等腰三角形. ⑵求证AC •AF=DF •FE第3题图BAF DC M4. (郴州)如图,Rt △ABC 中,∠A=30°,BC=10cm ,点Q 在线段BC 上从B 向C 运动,点P 在线段BA 上从B 向A 运动.Q 、P 两点同时出发,运动的速度相同,当点Q 到达点C 时,两点都停止运动.作PM ⊥PQ 交CA 于点M ,过点P 分别作BC 、CA 的垂线,垂足分别为E 、F . (1)求证:△PQE ∽△PMF ;(2)当点P 、Q 运动时,请猜想线段PM 与MA 的大小有怎样的关系?并证明你的猜想; (3)设BP=x ,△PEM 的面积为y ,求y 关于x 的函数关系式, 当x 为何值时,y 有最大值,并将这个值求出来.5. (眉山)如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长,交AD 于E ,交BA 的延长线于F .(1)求证:∠DCP=∠DAP ;(2)若AB=2,DP :PB=1:2,且PA ⊥BF ,求对角线BD 的长.6. (襄阳)如图,点P 是正方形ABCD 边AB 上一点(不与点A ,B 重合),连接PD 并将线段PD 绕点P 顺时针方向旋转90°得到线段PE ,PE 交边BC 于点F ,连接BE ,DF . (1)求证:∠ADP =∠EPB ; (2)求∠CBE 的度数; (3)当ABAP的值等于多少时,△PFD ∽△BFP ?并说明理由.7.(怀化)如图,△ABC 是一张锐角三角形的硬纸片.AD 是边BC 上的高,BC =40cm ,AD =30cm . 从这张硬纸片剪下一个长HG 是宽HE 的2倍的矩形EFGH .使它的一边EF 在BC 上,顶点G ,H 分别在AC ,AB 上.AD 与HG 的交点为M . (1)求证:AM AD =HGBC; (2)求这个矩形EFGH 的周长.8.(益阳)如图是小红设计的钻石形商标,△ABC 是边长为2的等边三角形, 四边形ACDE 是等腰梯形,AC ∥ED ,∠EAC =60°,AE =1. (1)证明:△ABE ≌△CBD ;(2)图中存在多对相似三角形,请你找出一对进行证明,并求出其相似比 (不添加辅助线,不找全等的相似三角形); (3)小红发现AM =MN =NC ,请证明此结论; (4)求线段BD 的长.9. (枣庄) 如图,在平面直角坐标系中,把抛物线2y x =向左平移1个单位,再向下平移4个单位,得到抛物线2()y x h k =-+.所得抛物线与x 轴交于A B 、两点(点A 在点B 左边),与y 轴交于点C ,顶点为D . (1)写出h k 、的值;(2)判断ACD △的形状,并说明理由;(3)在线段AC 上是否存在点M ,使AOM △∽ABC △?若存在,求出点M 的坐标;若不存在,说明理由.ADCB O xy第9题图2011相似三角形判定和性质 参考答案一、选择题 BBDCB AACBA ABBDC CBCCD 二、填空题 10 258或118 48 3≤x≤4 80° 3 1:24 6或12 三、解答题1. (南充)22. 2. (四川遂宁) 3.(湖北鄂州) 4.(郴州)证明:(1)∵PE ⊥BC ,PF ⊥AC ,∠C=90°,∴∠PEQ=∠PFM=90°,∠EPF=90°, 即∠EPQ+∠QPF=90°,又∵∠FPM+∠QPF=∠QPM=90°,∴∠EPQ=∠FPM ,∴△PQE ∽△PMF ; (2)相等.∵PB=BQ ,∠B=60°,∴△BPQ 为等边三角形,∴∠BQP=60°,∵△PQE ∽△PMF ,∴∠PMF=∠BQP=60°, 又∠A+∠APM=∠PMF ,∴∠APM=∠A=30°,∴PM=MA ; (3)AB===20,BP=x ,则AP=20﹣x ,PE=xcos30°=x ,PF=(20﹣x )•,S △PEM =PE×PF ,∴y=•x•=(20x ﹣x 2)=﹣(x ﹣10)2+(0≤x≤10).∴当x=10时,函数的最大值为.5.(四川眉山)(1)证明:∵四边形ABCD 为菱形,∴CD=AD ,∠CDP=∠ADP , ∴△CDP ≌△ADP ,∴∠DCP=∠DAP ;(2)解:∵四边形ABCD 为菱形,∴CD ∥BA ,CD=BA ,∴△CPD ∽△FPB ,∴PF CP BF CD PB DP ===21,∴CD=21BF ,CP=21PF ,∴A 为BF 的中点, 又∵PA ⊥BF ,∴PB=PF ,由(1)可知,PA=CP ,∴PA=21PB ,在Rt △PAB 中,222)21(2PB PB +=解得PB=334,则PD=332,∴BD=PB+PD=23.6. (襄阳)证明:(1)∵四边形ABCD 是正方形.∴∠A =∠PBC =90°,AB =AD , ∴∠ADP +∠APD =90°,∵∠DPE =90°,∴∠APD +∠EPB =90°,∴∠ADP =∠EPB ;(2)过点E 作EG ⊥AB 交AB 的延长线于点G ,则∠EGP =∠A =90°, 又∵∠ADP =∠EPB ,PD =PE ,∴△P AD ≌△EGP ,∴EG =AP ,AD =AB =PG ,∴AP =EG =BG ,∴∠CBE =∠EBG =45°;(3)当AB AP =21时, △PFD ∽△BFP , 7.(湖南怀化)(1)证明:∵四边形EFGH 为矩形,∴EF ∥GH ,∴∠AHG =∠ABC , 又∵∠HAG =∠BAC ,∴△AHG ∽△ABC ,∴HG BC =AMAD; (2)解:由(1)HG BC =AMAD得:设HE =x ,则HG =2x ,AM =AD ﹣DM =AD ﹣HE =30﹣x , 可得3030x -=240x ,解得,x =12,2x =24 所以矩形EFGH 的周长为:2×(12+24)=72cm . 8.(湖南益阳)(1)证明△ABE ≌△CBD . (2)存在.答案不唯一.如△ABN ∽△CDN . (3)由(2)得AN CN =AB CD=2,∴CN =12AN =13AC ,同理AM =13AC ,∴AM =MN =NC .(4)作DF ⊥BC 交BC 的延长线于F ,∵∠BCD =120°,∴∠DCF =60°. 在Rt △CDF 中,∴∠CDF =30°,∴CF =12CD =12,∴DF =22CD CF += 2211()2+=3; 在Rt △BDF 中,∵BF =BC +CF =2+12=52,DF =3, ∴BD =22BF DF +=2253()()22+=7. 9.(1) 1h k =-,=-4. (2) 直角三角形.(3)存在.作OM ∥BC 交AC 于M ,M点即为所求点. 由(2)知,A O C △为等腰直角三角形,45B A C ∠=︒,1832A C ==.由A O M A B C △∽△, 得AO AMAB AC =.即333292432A M ⨯===,.过M 点作M G AB ⊥于点G,29248192164A G M G ⎛⎫ ⎪⎝⎭∴====,93344O G A O A G =-=-=. 又点M 在第三象限,所以39--44M (,).ADCB O x y M FE G。