2013年西南大学线性代数作业及答案

合集下载

(完整word版)线性代数习题集(带答案)

(完整word版)线性代数习题集(带答案)

第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C ) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B )k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项。

(A) 0 (B )2-n (C ) )!2(-n (D) )!1(-n4.=0001001001001000( )。

(A ) 0 (B)1- (C) 1 (D) 25. =0001100000100100( ).(A) 0 (B)1- (C ) 1 (D) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B )1- (C) 1 (D) 27。

若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A ) 4 (B) 4- (C) 2 (D ) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( )。

(A)ka (B)ka - (C )a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( )。

(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A )1- (B )2- (C )3- (D )011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( )。

全国2013年1月高等教育自学考试线性代数(经管类)试题与答案解析

全国2013年1月高等教育自学考试线性代数(经管类)试题与答案解析
1 2 1 3 3 D.
2
2 2 1 2 1 1 A 1 2 A1 A 2 A b b 0 b 1 1 2 3 3 3 3 3 3 3 2 是 Ax b 的解. ,3
2 0 0 0 0 0 0 0 3 相似,则下列说法错误的是( 7.若 3 阶方阵 A 与对角阵
1 1 3 4 4 5 0 k1 1 k 2 0 0 0 1
1 3 1 4 5 4 0 0 0 ,
0 2 1 1 0 0 0 0
1 4 3 2 6 2 1 3 1 2 6 2
1 1 0 2 0 0 0 0
1 2 3 1 0 0 0 0 ,
向量组的秩是 2, 1 , 2 是向量组的一个极大无关组.
第 4页
2013-2015 在最痛的日子里 自考真题--本科(会计)
2013-2015 在最痛的日子里 自考真题--本科(会计)
全国 2013 年 1 月高等教育自学考试线性代数(经管类)试题课程代码:04184
说明:本卷中,AT 表示矩阵 A 的转置,αT 表示向量 的转置,E 表示单位矩阵,|A|表示方阵 A 的行列式,A-1 表示 方阵 A 的逆矩阵,R(A)表示矩阵 A 的秩.
1 1 2 2 3 3 3 4 4 4

1 2 3 4 0 4 6 8 0 0 6 8 0 0 0 8 1 4 6 8 192
1 2
解:
1 2 3 4

5 2 1 A 0 4 2 4 3 1 , B 是三阶方阵,且满足 AB A 2 B E ,求 B . 22.设

2013线性代数试题及答案

2013线性代数试题及答案

试卷得分评卷人 一、填空题(每空2分,共分)1.若二阶行列式11122122a a a a a =,11112121b a b b a =,则111211212221a a b a a b +=+ . 2.已知12⨯矩阵(1,2)A =,则T AA = ;T A A = .3.设,A B 为三阶矩阵,3,2A B ==-,则12T A B --= .4.矩阵312101214A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭的伴随矩阵*A 中的第一行第二列的元素是 . 5.向量(1,2,1)a =-与(1,1,1)b =-的内积[,]a b = .6.若线性方程组202020x y z x y z x y az ++=⎧⎪++=⎨⎪++=⎩存在基础解系,则a = .得分评卷人 二、选择题(每小题 3分,共 15 分)1.若同阶方阵,A B 满足AB O =,则( )(A )必有A O = (B )当B O ≠时,A O =(C ),A B 都可能不是零阵 (D ),A B 至少有一个为零阵2.若m 个n 维向量线性无关,则( )(A )再增加一个向量后也线性无关 (B )再去掉一个向量后仍线性无关(C )其中只有一个向量不能被其余的线性表出 (D )以上都不对3.若三阶矩阵123a b A cd e f -⎛⎫ ⎪= ⎪ ⎪⎝⎭有两个特征值为1-和1,则另一个特征值为( ) (A )0 (B )2 (C )3 (D )44.若三阶方阵A 与对角阵111⎛⎫ ⎪- ⎪ ⎪⎝⎭相似,则2006A =( ) (A )E (B )A (C )E - (D )2006A5.若n 阶方阵A 与B 合同,则必有( )(A )A 与B 等价(B )A 与B 相似(C )A B =(D )AX O =与BX O =同解 得分 评卷人 三、计算题(共8 分)计算行列式45103113124523271------得分评卷人 四、计算题(共12 分)设矩阵201020103A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,121212B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,且X AX B =+,求矩阵X .得分评卷人 五、计算、判别题(共12 分)判别向量组(1,1,0,1)a =--,(1,2,1,2)b =--,(1,1,0,1)c =-,(1,0,1,0)d =的线性相关性;若线性相关,求出一个极大无关组.得分评卷人六、计算、讨论题(共12分)讨论k为何值时,线性方程组12312312312202x x xx kx xkx x x k+-=-⎧⎪+-=⎨⎪++=⎩(1)无解?(2)有唯一解?(3)有无穷多解?并求通解.得分评卷人 七、计算题(共12分)设矩阵320200002A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求(1)A 的全部特征值;(2)A 的最大的特征值所对应的一个特征向量.得分评卷人 八、计算题(共9分)求a 取何值时,22212313(1)42f x a x x ax x =+-++是正定二次型.得分评卷人 九、证明题(共6分)设A 为n 阶方阵,若A 是正交矩阵,求证:伴随矩阵*A 也是正交矩阵.。

西南大学线性代数次网上作业

西南大学线性代数次网上作业

一、填空题(每小题3分,共15分)1.设矩阵A = ⎪⎪⎪⎭⎫ ⎝⎛100012021,B =⎪⎪⎪⎭⎫⎝⎛310120001,则A + 2B =⎪⎪⎪⎭⎫⎝⎛. 2.设向量⎪⎪⎪⎭⎫ ⎝⎛=1111α,⎪⎪⎪⎭⎫ ⎝⎛=0112α,⎪⎪⎪⎭⎫ ⎝⎛=0013α,⎪⎪⎪⎭⎫ ⎝⎛=110β,则β由α1,α2,α3线性表出的表示式为( ).3.设α1,α2是非齐次线性方程组Ax = b 的解,k 1,k 2为常数,若k 1α1+ k 2α2也是Ax = b 的一个解,则k 1+k 2 = ( ).4.设A 为n 阶可逆矩阵,已知A 有一个特征值为2,则(2A )-1必有一个特征值为( ). 5.若实对称矩阵A = ⎪⎪⎪⎭⎫ ⎝⎛a a a 000103为正定矩阵,则a 的取值应满足( ).二、单选题(每小题3分,共15分)1.设行列式2211b a b a = 1,2211c a c a = 2,则222111c b a c b a++ = ( ).(A) -3 (B) -1 (C) 1(D) 32.设A 为2阶可逆矩阵,且已知(2A )-1 =⎪⎪⎭⎫⎝⎛4321,则A = ( ).(A) 2⎪⎪⎭⎫⎝⎛4321(B) 214321-⎪⎪⎭⎫⎝⎛(C) ⎪⎪⎭⎫⎝⎛432121 (D) 1432121-⎪⎪⎭⎫⎝⎛ 3.设向量组α1,α2,…,αs 线性相关,则必可推出( ).(A) α1,α2,…,αs 中至少有一个向量为零向量 (B) α1,α2,…,αs 中至少有两个向量成比例(C) α1,α2,…,αs 中至少有一个向量可以表示为其余向量的线性组合 (D) α1,α2,…,αs 中每一个向量都可以表示为其余向量的线性组合4.设3阶矩阵A 与B 相似,且已知A 的特征值为2,2,3. 则|B -1| = ( ).(A) 121 (B) 71(C) 7 (D) 125.设3阶实对称矩阵A 与矩阵B = ⎪⎪⎪⎭⎫ ⎝⎛-200010001合同,则二次型x T Ax 的规范形为( ).(A) 2322212z z z ++- (B) 232221z z z ++- (C) 232221z z z +- (D) 232221z z z -+ 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.设矩阵A ,B ,C 为同阶方阵,则(ABC )T = A T B T C T . ( ) 2.设A 为3阶方阵,且已知|-2A | = 2,则|A | = -1. ( )3.设A 为m×n 矩阵,则齐次线性方程组Ax = 0仅有零解的充分必要条件是A 的列向量组线性无关. ( )4.设A 为3阶矩阵,且已知|3A+2E | = 0,则A 必有一个特征值为32. ( )5.二次型312123222132142),,(x x x x x x x x x x f ++++=的矩阵为⎪⎪⎪⎭⎫ ⎝⎛104012421. ( )四、 (10分) 求4阶行列式1111112113114111的值. 五、(10分) 设2阶矩阵A 可逆,且A -1 = ⎪⎪⎭⎫⎝⎛2121b b a a ,对于矩阵P 1 = ⎪⎪⎭⎫⎝⎛1021,P 2 = ⎪⎪⎭⎫⎝⎛0110,令B = P 1AP 2,求B -1.六、(10分) 设向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=31111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=15312α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+-=21233t α,⎪⎪⎪⎪⎪⎭⎫⎝⎛--=t 10624α,试确定当t 为何值时,向量组α1,α2,α3,α4线性相关,并在线性相关时求它的一个极大线性无关组.七、(15分) 设线性方程组⎪⎩⎪⎨⎧-=++-=++-=++223321321321ax x x x ax x a x x x(1) 问a 为何值时,方程组有无穷多个解.(2) 当方程组有无穷多个解时,求出其通解(要求用它的一个特解和导出组的基础解系表示).八、(10分) 设p1,p2依次为n阶矩阵A的属于特征值λ1,λ2的特征向量,且λ1 ≠λ2. 证明p1- p2不是A的特征向量.。

西南大学《线性代数》网上作业及参考答案

西南大学《线性代数》网上作业及参考答案

===================================================================================================1:[论述题]线性代数模拟试题三参考答案:线性代数模拟试题三参考答案 1:[论述题]线性代数模拟试题四参考答案:线性代数模拟试题四参考答案 1:[论述题]线性代数模拟试题五参考答案:线性代数模拟试题五参考答案 1:[论述题]线性代数模拟试题六 一、填空题(每小题3分,共15分) 1. 行列式332313322212312111b a b a b a b a b a b a b a b a b a = ( ). 2. 设A 是4×3矩阵,R (A ) = 2,若B = ⎪⎪⎪⎭⎫ ⎝⎛300020201,则R (AB ) = ( ).3. 设矩阵A = ⎪⎪⎪⎭⎫⎝⎛54332221t ,若齐次线性方程组Ax = 0有非零解,则数t = ( ).4. 已知向量,121,3012⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k βαα与β的内积为2,则数k = ( ).5. 已知二次型232221321)2()1()1(),,(x k x k x k x x x f -+-++=正定,则数k 的取值范围为( ).二、单项选择题(每小题3分,共15分) 1. 设A 为m ×n 矩阵,B 为n ×m 矩阵,m ≠n , 则下列矩阵中为n 阶矩阵的是( ). (A) B T A T (B) A T B T (C) ABA (D) BAB2. 向量组α1,α2,…,αS (s >2)线性无关的充分必要条件是( ). (A) α1,α2,…,αS 均不为零向量(B) α1,α2,…,αS 中任意两个向量不成比例 (C) α1,α2,…,αS 中任意s -1个向量线性无关(D) α1,α2,…,αS 中任意一个向量均不能由其余s -1个向量线性表示===================================================================================================3. 设3元线性方程组Ax = b ,A 的秩为2,η1,η2,η3为方程组的解,η1 + η2 = (2,0,4)T ,η1+ η3 =(1,-2,1)T ,则对任意常数k ,方程组Ax = b 的通解为( ).(A) (1,0,2)T + k (1,-2,1)T (B) (1,-2,1)T + k (2,0,4)T (C) (2,0,4)T + k (1,-2,1)T (D) (1,0,2)T + k (1,2,3)T 4. 设3阶方阵A 的秩为2,则与A 等价的矩阵为( ).(A) ⎪⎪⎪⎭⎫ ⎝⎛000000111(B) ⎪⎪⎪⎭⎫⎝⎛000110111(C) ⎪⎪⎪⎭⎫ ⎝⎛000222111(D) ⎪⎪⎪⎭⎫ ⎝⎛3332221115. 二次型f (x 1,x 2,x 3,x 4,)=43242322212x x x x x x ++++的秩为( ).(A) 1 (B) 2 (C) 3 (D) 4三、判断题(正确的打“√”,错误的打“×”,每小题3分,共15分)1. 设A 为n 阶方阵,n ≥2,则|-5A |= -5|A |. ( )2. 设行列式D =333231232221131211a a a a a a a a a = 3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为5. ( ) 3. 设A = ⎪⎪⎭⎫⎝⎛4321, 则|A *| = -2. ( )4. 设3阶方阵A 的特征值为1,-1,2,则E - A 为可逆矩阵. ( )5. 设λ = 2是可逆矩阵A 的一个特征值,则矩阵(A 2)-1必有一个特征值等于41. ( ) 四、(10分) 已知矩阵A = ⎪⎪⎪⎭⎫⎝⎛-210011101,B =⎪⎪⎪⎭⎫⎝⎛410011103, (1) 求A 的逆矩阵A -1. (2) 解矩阵方程AX = B .===================================================================================================五、(10分)设向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=42111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=21302α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=147033α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=02114α,求向量组的秩和一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.六、(10分) 求线性方程组⎪⎩⎪⎨⎧=++=+++=+++322023143243214321x x x x x x x x x x x 的通解(要求用它的一个特解和导出组的基础解系表示)七、(15分) 用正交变换化二次型f (x 1, x 2, x 3)=2331214x x x x +-为标准形,并写出所用的正交变换.八、(10分) 设a ,b ,c 为任意实数,证明向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111a α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0112b α,⎪⎪⎪⎪⎪⎭⎫⎝⎛=0013c α,线性无关.参考答案:线性代数模拟试题六参考答案 一、填空题1. 0.2. 23.2.4.32. 5. k > 2. 二、单项选择题1(B). 2(D). 3(D). 4(B). 5(C). 三、判断题1. (⨯). 2(⨯). 3(√). 4(⨯). 5(√).===================================================================================================四、Solution (1)由于⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛-+-100210011110001101100210010011001101211r r⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛----→+-++111100122010112001111100011110001101132332111r r r r r r ⎪⎪⎪⎭⎫ ⎝⎛-----→-11110012201011200121r ,因此,有⎪⎪⎪⎭⎫ ⎝⎛-----=-1111221121A .(2) 因为B AX =,所以⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----==-3222342254100111031111221121B A X .五、Solution 因为()⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=+-+400027120330130101424271210311301,,,4321214321r r r r αααα⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔+--+-00001000011013011000000001101301100001100110130143324231141312r r r r r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛→+-0000100001100301131r r , 于是,421,,ααα是极大无关组且2133ααα+=.===================================================================================================六、Solution 将增广矩阵B 化为行最简形得⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛=+-322103221011111322100112311111213r r B⎪⎪⎪⎭⎫ ⎝⎛-------→⎪⎪⎪⎭⎫ ⎝⎛----→++000003221021101000003221011111123211r r r r ⎪⎪⎪⎭⎫ ⎝⎛---→-00000322102110121r , 这时,可选43,x x 为自由未知量.令0,043==x x 得特解⎪⎪⎪⎪⎪⎭⎫⎝⎛-=0032*η.分别令⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛10,0143x x 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1021,012121ξξ. 原线性方程组的通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=00321021012121k k x ,其中21,k k 为任意常数.七、Solution 所给二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛--=102000201A ,)3)(1(122110200201||λλλλλλλλλλ-+=-----=-----=-E A ,===================================================================================================所以A 的特征值为-1,0,3.当1-=λ时,齐次线性方程组=+x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1011ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛=210211p . 当0=λ时,齐次线性方程组=-x E A )0(0的基础解系为⎪⎪⎪⎭⎫⎝⎛=0102ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0102p .当3=λ时,齐次线性方程组=-x E A )3(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1013ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210213p .取()⎪⎪⎪⎪⎪⎭⎫⎝⎛-==2102101021021,,321p p p P ,在正交变换Py x =下得二次型的标准型为23213y y f +-=.===================================================================================================八、Proof 因为()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=+-+-001010100001011100001011111,,341311321c b a c b a c b ar r r r ααα ⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔↔↔+-+-+-00010*********0000010001001010000100433241212324r r r r r r r cr r br r ar , 于是321,,ααα的秩为3,所以321,,ααα线性无关.1:[论述题]一、填空题(每小题3分,共15分)1. 设A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023, B =,010201⎢⎣⎡⎥⎦⎤则AB = ⎪⎪⎪⎭⎫⎝⎛. 2. 设A 为33⨯矩阵, 且方程组Ax = 0的基础解系含有两个解向量, 则R (A ) = ( ). 3. 已知A 有一个特征值-2, 则B = A 2+ 2E 必有一个特征值( ). 4. 若α=(1, -2, x )与),1,2(y =β正交, 则x y = ( ). 5. 矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-301012121所对应的二次型是( ).二、单选题(每小题3分,共15分)1. 如果方程⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则k = ( ).(A) -2 (B) -1===================================================================================================(C) 1 (D) 22. 设A 为n 阶可逆方阵,下式恒正确的是( ). (A) (2A )-1 = 2A -1 (B) (2A )T = 2A T (C) [(A -1)-1]T = [(A T )-1]T (D) [(A T )T ]-1 = [(A -1)-1]T3. 设β可由向量α1 = (1,0,0),α2 = (0,0,1)线性表示,则下列向量中β只能是( ). (A) (2,1,1) (B) (-3,0,2) (C) (1,1,0) (D) (0,-1,0)4. 向量组α1 ,α2 …,αs 的秩不为s (s 2≥)的充分必要条件是( ). (A) α1 ,α2 …,αs 全是非零向量 (B) α1 ,α2 …,αs 全是零向量(C) α1 ,α2 …,αs 中至少有一个向量可由其它向量线性表出 (D) α1 ,α2 …,αs 中至少有一个零向量 5. 与矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( ).(A) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001(B) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011(C) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001(D) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020101三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A 为三阶方阵且|A | = -2,则|3A T A | = -108. ( )2. 设A 为四阶矩阵,且|A | = 2,则|A *| = 23. ( ) 3. 设A 为m n ⨯矩阵,线性方程组Ax = 0仅有零解的充分必要条件是A 的行向量组线性无关. ( )4. 设A 与B 是两个相似的n 阶矩阵,则E B E A λλ-=-. ( )5. 设二次型,),(23222132,1x x x x x x f +-=则),(32,1x x x f 负定. ( )四、 (10分) 计算四阶行列式1002210002100021的值.===================================================================================================五、(10分) 设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-200200011, B =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤300220011,且A , B , X 满足E X B A B E =--T T 1)( . 求X , X .1-六、(10分) 求矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-311111002的特征值和特征向量.七、(15分) 用正交变换化二次型322322213214332),,(x x x x x x x x f +++=为标准型,并写出所作的变换.八、(10分) 设21,p p 是矩阵A 的不同特征值的特征向量. 证明21p p +不是A 的特征向量.参考答案: 一、填空题1.⎪⎪⎪⎭⎫ ⎝⎛241010623. 2. 1. 3. 6. 4. 0.5. 2322312121324x x x x x x x +-++. 二、单项选择题1(B). 2(B) . 3(B) . 4(C) . 5(A) . 三、判断题1.( ⨯). 2(√). 3(⨯). 4(√). (5) (⨯). 四、Solution 按第1列展开,得===================================================================================================210021002)1(2100210021)1(110022100021000211411++-⋅+-⋅= 158)1(21-=⋅-⋅+=.五、Solution 由于E X B A B E =--T T 1)(,即[]E X A B E B =--T1)(,进而()E X A B =-T ,所以()[]1T --=A B X .因为()⎪⎪⎪⎭⎫ ⎝⎛=-100020002TA B ,所以⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-100021000211000200021X . 六、Solution 因为λλλλλλλ----=----=-3111)2(31111102||E A321)2(3111)2(3212)2(12λλλλλλλ-=--=----=+c c , 所以A 的特征值为2.对于2=λ时,齐次线性方程组=-x E A )2(0与0321=+-x x x 同解,其基础解系为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=101,01121ξξ,于是,A 的对应于2的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛10101121k k ,其中21,k k 不全为0. 七、Solution 所给二次型的矩阵⎪⎪⎪⎭⎫ ⎝⎛=320230002A .===================================================================================================因为λλλλλλλ---=---=-3223)2(32023002||E A )1)(5)(2(3121)5)(2(3525)2(121λλλλλλλλλλ---=---=----=+c c , 所以A 的特征值为1, 2, 5.当1=λ时,齐次线性方程组=-x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1101ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=212101p . 当2=λ时,齐次线性方程组=-x E A )2(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=0012ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0012p .当5=λ时,齐次线性方程组=-x E A )5(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1103ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=212103p .===================================================================================================取()⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==2102121021010,,321p p p P ,在正交变换Py x =下得二次型的标准型为23222152y y y f ++=. 八、Proof 令21,p p 是A 的对应于不同特征值21,λλ的特征向量,即111p Ap λ=,222p Ap λ=.假设21p p +是A 的对应于λ的特征向量,即)()(2121p p p p A +=+λ. 由于22112121)(p p Ap Ap p p A λλ+=+=+,所以)(212211p p p p +=+λλλ,于是=-+-2211)()(p p λλλλ0. 根据性质4,知021=-=-λλλλ,进而21λλ=,矛盾.。

西南交大线性代数习题参考答案

西南交大线性代数习题参考答案

西南交大线性代数习题参考答案第一章 行列式§1 行列式的概念1. 填空(1) 排列6427531的逆序数为 ,该排列为 排列。

(2) i = ,j = 时, 排列1274i 56j 9为偶排列。

(3) n 阶行列式由 项的代数和组成,其中每一项为行列式中位于不同行不同列的 n 个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n 元排列。

若该排列为奇排列,则该项的符号为 号;若为偶排列,该项的符号为 号。

(4) 在6阶行列式中, 含152332445166aa a a a a 的项的符号为 ,含324314516625a a a a a a的项的符号为 。

2. 用行列式的定义计算下列行列式的值(1)1122233233000a a a a a解: 该行列式的3!项展开式中,有 项不为零,它们分别为 ,所以行列式的值为 。

(2)12,121,21,11,12,100000n n n nn n n n n n n n nna a a a a a a a a a ------解:该行列式展开式中唯一不可能为0的项是 ,而它的逆序数是 ,故行列式值为 。

3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。

证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。

对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n1n ,所以1n 2n 。

4. 若一个n 阶行列式中等于0的元素个数比nn-2多,则此行列式为0,为什么?5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少?(提示:利用3题的结果)6. 利用对角线法则计算下列三阶行列式 (1)21141183---(2)222111a b c a b c§2 行列式的性质1.利用行列式的性质计算系列行列式。

(1) 2141 3121 1232 5062-(2)100 110 011 001abcd ---(3)ab ac ae bd cd de bf cf ef ---2. 证明下列恒等式 (1)()33ax byay bzaz bxxy z D ay bz az bx ax by a b yz x az bx ax by ay bz zxy+++=+++=++++(提示:将行列式按第一列分解为两个行列式之和,再利用性质证明)(2) ()()()()()()()()()()()()22222222222222221231230123123a a a a b b b b cc c cd d d d ++++++=++++++(3)1111221100001000001n n n nnn n xx x a x a x a x a a a a x a ------=++++-+(提示:从最后一列起,后列的x 倍加到前一列)3. 已知四阶行列式D 的第三行元素分别为:1,0,2,4-;第四行元素的对应的余子式依次是2,10,a ,4,求a 的值。

2013春西南大学《线性代数》第5次作业答案

2013春西南大学《线性代数》第5次作业答案

一、填空题(每小题3分,共15分)1.设B 为方阵,且|B | = 3,则|B 4| = ( 81 ).2. 设A ,B 为6阶方阵,且秩R (A ) = 6,R (B ) = 4,则秩R (AB ) = ( 4 ).3. 已知3阶方阵A 的特征值为1,-3,9,则A31 = ( -1 ).4. 设A 为3阶方阵,若|A T | = 2,则|-3A | = ( -54 ).5. 已知向量α = (1,2,-1)与向量β = (0,1,y )正交,则y = ( 2 ). 二、单项选择题(每小题3分,共15分)1. 设A 为n 阶方阵,若A 3= 0,则必有( D ).(A) A = 0 (B) A 2 = 0 (C) A T = 0 (D) |A | = 02. 设A 为5×4矩阵,若秩R (A ) = 4,则秩R (5A T)为( C ).(A) 2(B) 3(C) 4 (D) 53. 设向量α = (4,-1,2,-2),则下列向量中是单位向量的是( B ).(A) 31α (B) 51α (C)91α(D)251α4. 设矩阵A = ⎪⎪⎭⎫⎝⎛3421,则矩阵A 的伴随矩阵A *= ( B ).(A) ⎪⎪⎭⎫⎝⎛1423 (B) ⎪⎪⎭⎫⎝⎛--1423 (C) ⎪⎪⎭⎫ ⎝⎛1243 (D) ⎪⎪⎭⎫⎝⎛--1243 5. 设矩阵A =⎪⎪⎪⎪⎪⎭⎫⎝⎛300130011201111,则A 的线性无关的特征向量的个数是( D ).(A) 1 (B) 2 (C) 3 (D) 4三、判断题(正确的打“√”,错误的打“×”,每小题3分,共15分) 1. 设A ,B 都是n 阶方阵,且|A | = 3,|B | = -1,则|A T B -1| =-3. ( √ )2. 设A 为5阶方阵,若秩R (A ) = 3,则齐次线性方程组Ax = 0的基础解系中包含的解向量的个数是2. ( √ )3. 向量空间W ={(0, x , y , z ) |x + y = 0}的维数是3. ( × )4. 设A ,B 分别为m ×n 和m ×k 矩阵,向量组(I)是由A 的列向量构成的向量组,向量组(II)是由(A ,B )的列向量构成的向量组. 若(I)线性无关,则(II)线性无关. ( × )5. 二次型f (x 1, x 2) = 522213x x +的规范形是y 21+y 22. ( √ )四、(10分) 计算行列式D =5333353333533335.解:.五、(10分) 设A = ,⎪⎪⎪⎪⎭⎫ ⎝⎛-2100110011B = ⎪⎪⎪⎭⎫ ⎝⎛011021,又AX = B ,求矩阵X . 解:因为, 所以. 由可知.六、(15分) 用正交变换化二次型f (x 1,x 2,x 3) =32312123222124444x x x x x x x x x ---++为标准形,并给出所用的正交变换、判别其正定性.解:所给二次型的矩阵.,令得出A 的所有不同的特征值为(二重根)和(单根).当时,齐次线性方程组0的系数矩阵可化为.令,得基础解系为.将正交化. 取,.再将单位化,得,.当时,齐次线性方程组0的系数矩阵可化为.,同解的齐次线性方程组为令,得基础解系为,单位化得.令,则P 是正交矩阵且,因此f 不正定.七、(10分) 求方阵A =⎪⎪⎪⎭⎫⎝⎛30320321的特征值和特征向量. 解:因为,所以A 的特征值为1,2,3.当时,齐次线性方程组的基础解系为,于是对应于的特征向量为,.当时,齐次线性方程组的基础解系为,于是对应于的特征向量为,.当时,齐次线性方程组的基础解系为,于是对应于的特征向量为,.八、(10分) 设向量组α1,α2,α3线性无关,证明:向量组α1 + 2α3,α2 - α3,α1 + 2α2线性相关.证明:假设,于是.因为线性无关,所以. 由于,所以存在不全为o的数使得成立,因此α1 + 2α3,α2 - α3,α1 + 2α2线性相关。

2013年10月自学考试02198线性代数试题和答案

2013年10月自学考试02198线性代数试题和答案

线性代数---2013年10月1.设行列式,,则A、-3B、-1C、1D、3正确答案:B解析:由行列式的性质2.设4阶矩阵A的元素均为3,则r(A)=A、1B、2C、3D、4正确答案:A解析:所以A的秩为13.设A为2阶可逆矩阵,若,则A*=A、B、C、D、正确答案:A解析:因为,所以4.设A为m×n矩阵,A的秩为r,则A、r=m时,Ax=0必有非零解B、r=n时,Ax=0必有非零解C、r<m时,Ax=0必有非零解D、r<n时,Ax=0必有非零解正确答案:D解析:齐次线性方程组的判定方法为:r5.二次型f(xl,x2,x3)=的矩阵为A、B、C、D、正确答案:C解析:二次型的矩阵为。

故选C。

6.设A为3阶矩阵,且|A|=2,则|2A|=______.正确答案:167.设A为2阶矩阵,将A的第1行加到第2行得到B,若B=,则A=______.正确答案:8.设矩阵A=,B=,且r(A)=1,则r(B)=______.正确答案:19.设向量α=(1,0,1)T,β=(3,5,1)T,则β-2α=________.正确答案:10.设向量α=(3,-4)T,则α的长度||α||=______.正确答案:511.若向量αl=(1,k)T,α2=(-1,1)T线性无关,则数k的取值必满足______.12.齐次线性方程组xl+x2+x3=0的基础解系中所含解向量的个数为______.正确答案:213.已知矩阵A=与对角矩阵D=相似,则数a=______正确答案:514.设3阶矩阵A的特征值为-1,0,2,则|A|=______.正确答案:015.已知二次型f (x1,x2,x3)=正定,则实数t的取值范围是______.正确答案:16.计算行列式D=.正确答案:17.已知向量α=(1,2,k),β=,且βαT=3,A=αTβ,求 (1)数k的值; (2)A10.18.已知矩阵A=,B=,求矩阵X,使得AX=B.正确答案:19.求向量组α1=(1,0,2,0)T, α2=(-1,-1,-2,0)T, α3=(-3,4,-4,l)T, α4=(-6,14,-6,3)T的秩和一个极大线性无关组,并将向量组中的其余向量由该极大线性无关组线性表出.正确答案:20.设线性方程组,问:(1)λ取何值时,方程组无解?(2)λ取何值时,方程组有解?此时求出方程组的解.正确答案:21.求矩阵A=的全部特征值与特征向量.正确答案:22.用配方法化二次型f (x1,x2,x3)=为标准形,并写出所用的可逆线性变换.正确答案:23.设向量组α1,α2线性无关,且β=clα1+c2α2,证明:当cl+c2≠1时,向量组β-α1,β-α2线性无关.正确答案:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年春 西南大学《线性代数》作业及答案(共5次,已整理)第一次作业【单选题】9.下列n 阶(n>2)行列式的值必为0的有: B:行列式非零元素的个数小于n 个。

【单选题】1.有二阶行列式,其第一行元素是(1,3),第二行元素是(1,4),该行列式的值是: B:1【单选题】2.有二阶行列式,其第一行元素是(2,3),第二行元素是(3,-1),则该行列式的值是:A:-11【单选题】3.有三阶行列式,其第一行元素是(0,1,2),第二行元素是(-1,-1,0),第三行元素是(2,0,-5),则该行列式的值是:B:-1【单选题】4.有三阶行列式,其第一行元素是(1,1,1),第二行元素是(3,1,4),第三行元素是(8,9,5),则该行列式的值是:C:5【单选题】5. 行列式A 的第一行元素是(k,3,4),第二行元素是(-1,k,0),第三行元素是(0,k,1),如果行列式A 的值等于0,则k 的取值应是:C:k=3或k=1【单选题】6. 6.排列3721456的逆序数是:C:8【单选题】7. .行列式A 的第一行元素是(-3,0,4),第二行元素是(2,a ,1),第三行元素是(5,0,3),则其中元素a 的代数余子式是:B:-29【单选题】8.已知四阶行列式D 中第三行元素为(-1,2,0,1),它们的余子式依次分别为5,3,-7,4,则D 的值等于. C:-15【论述题】行列式部分主观题 行列式部分的填空题1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符号应取 + 号。

2.排列45312的逆序数为 5 。

3.行列式25112214---x中元素x 的代数余子式是 8 . 4.行列式10232543--中元素-2的代数余子式是 —11 。

5.行列式25112214--x 中,x 的代数余子式是 —5 。

6.计算00000d c b a = 0行列式部分计算题 1.计算三阶行列式38114112--- 解:原式=2×(—4)×3+0×(—1)×(—1)+1×1×8—1×(—1)×(—4)—0×1×3—2×(—1)×8=—42.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列.解:i =8,j =5。

3.(7分)已知0010413≠x x x,求x 的值.解:原式=3x 2—x 2—4x=2 x 2—4x=2x(x —2)=0 解得:x 1=0;x 2=2所以 x={x │x ≠0;x ≠2 x ∈R } 4.(8分)齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000z y x z y x z y x λλ 有非零解,求λ。

解:()211110100011111111-=--==λλλλλD由D=0 得 λ=15.用克莱姆法则求下列方程组:⎪⎩⎪⎨⎧=+-=++=++10329253142z y x z y x z y x 解:因为331132104217117021042191170189042135113215421231312≠-=⨯-⨯=-------=-------=)(r r r r r r D 所以方程组有唯一解,再计算:811110212942311-=-=D 1081103229543112-==D1351013291531213=-=D 因此,根据克拉默法则,方程组的唯一解是: x=27,y=36,z=—45第二次作业【论述题】矩阵部分主观题 矩阵部分填空题1.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---453641126= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---126641453 2.已知矩阵A=(1,2,3),则=A A T ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963642321 3.若4阶方阵A 的行列式|A|=2,则|A 3|= 8 。

4.设A 为3阶矩阵,若已知=-=mA m A 则,4m -.5. 矩阵⎪⎪⎭⎫ ⎝⎛-2311的伴随矩阵是2131⎡⎤⎢⎥-⎣⎦ 6.设A 是3阶方阵,且A 2=0,则A 3= 0 . 7.设A 为2阶方阵,|A|=2,则=-1A 12矩阵部分计算题1.已知矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-2110154214321,求矩阵A的秩. 解:对矩阵作以下初等变换:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2110154214321A →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---228011404321 →791012342211110101444404110000⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--→--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎢⎥⎢⎥⎣⎦可以看出:r (A )=22.设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡120340005,求1-A 解:A =11500420435(1)5(2)10031021+=⨯-=⨯-=-≠,所以A 可逆。

111143(1)221A +=-=-,121204(1)002A +=-=,131304(1)002A +=-=, 同法可得:210A =,225A =,2310A =-,310A =,3215A =-,3320A =.112131122232132333200051501020A A A A A A A A A A *-⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦12001105151001020A A A -*-⎡⎤⎢⎥==--⎢⎥⎢⎥-⎣⎦=100513022012⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦3.设A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡543022001,求A *和A -1解:100220100345A ==≠,所以A 可逆。

易得:1110A =,1210A =-,132A =, 210A =,225A =,234A =-,310A =,320A =,332A =。

于是:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=*24205100010A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==*-51525102110012420510001010111A A A 4.设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡312021001,求A -1。

解:10012060213A ==≠,所以A 可逆。

易得:116A =,123A =-,133A =-,210A =,223A =,231A =-, 310A =,320A =,332A =。

于是:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=*213033006A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==*-316121021210012130330066111A A A 5.设)(ij a A = 为三阶矩阵,若已知|A|=2,求||A|A|. 解:162443===⋅=A A A A A第三次作业【单选题】11. 矩阵A适合下面哪个条件时,它的秩为r.B:A中线性无关的列向量最多有r个。

【单选题】10.矩阵A的第一行元素是(1,0,5),第二行元素是(0,2,0),则矩阵A乘以A的转置是:C:第一行元素是(26,0),第二行元素是(0,4)。

【判断题】9. 若矩阵A的行数不等于矩阵B的列数,则矩阵A乘以B没有意义。

正确答案:错误【多选题】8. 齐次线性方程组AX=0是线性方程组AX=b的导出组,则C:u是AX=0的通解,X1是AX=b的特解时,X1+u是AX=b的通解。

D:V1,V2是AX=b的解时,V1-V2是AX=0的解。

【多选题】7. n阶矩阵可逆的充要条件是:A:r(A)=n B:A的列秩为n。

【多选题】6.向量组a1,a2,...,as的秩不为零的充分必要条件是:A:a1,a2,…,as 中至少有一个非零向量。

D:a1,a2,…,as中有一个线性无关的部分组。

【多选题】5. 向量组a1,a2,...,as线性相关的充分必要条件是:C:a1,a2,…,as 中至少有一个向量可由其余向量线性表示。

D:a1,a2,…,as中至少有一部分组线性相关【单选题】4. 矩阵A为三阶矩阵,若已知|A|=m,则|-mA|的值为C:-m*m*m*m【判断题】3.若矩阵A可逆,则它一定是非奇异的。

正确答案:正确【多选题】1. 向量组a1,a2,...,as线性无关的必要条件是:A:a1,a2,…,as都不是零向量。

C:a1,a2,…,as中任意两个向量都不成比例D:a1,a2,…,as中任一部分组线性无关【判断题】2. 若矩阵A的列数等于矩阵B的行数,则矩阵A乘以B有意义正确答案:正确【论述题】关于线性方程组的主观题线性方程组部分填空题1.设齐次线性方程组A x=0的系数阵A的秩为r,当r= n 时,则A x=0 只有零解;当A x=0有无穷多解时,其基础解系含有解向量的个数为n-r .2.设η1,η2为方程组A x=b的两个解,则η1-η2或η2-η1是其导出方程组的解。

3.设α0是线性方程组A x =b 的一个固定解,设z 是导出方程组的某个解,则线性方程组A x =b 的任意一个解β可表示为β= α0+z .4.若n 元线性方程组A x =b 有解,R (A )=r ,则当 [r =n 时,有惟一解;当 ,r <n 时,有无穷多解。

5.A 是m ×n 矩阵,齐次线性方程组A x =0有非零解的充要条件是 R (A )<n .6.n 元齐次线性方程组Ax=0仅有零解的充分必要条件是 |A|不等于0 。

7 线性方程组Ax =b 有解的充要条件是r (Ab )=r (A ) 。

8.设1u 是线性方程组A x =b 的一个特解,r n v v v -,,,21 是其导出组的基础解系,则线性方程组A x =b 的全部解可以表示为u = r n r n v c v c v c u --++++ 221111.求线性方程组⎪⎩⎪⎨⎧-=++-=+-+-=+-22334731243214321421x x x x x x x x x x x 的通解.答案:通解为:x = k 1),(001010110121212R k k k ∈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡2.求齐次线性方程组⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x 的一个基础解系. 答案:基础解系为v 1=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-1001,00122v3.求非齐次线性方程组的通解⎪⎩⎪⎨⎧=+++=-++=+-+322212432143214321x x x x x x x x x x x x 答案:同解方程组为⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=-=+121023123434241x x x x x x ,通解为)(21330101R k k x ∈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4 求方程组的通解⎪⎩⎪⎨⎧-=+-+=-+-=--+2534432312432143214321x x x x x x x x x x x x 答案:化为同解方程组⎪⎩⎪⎨⎧-=--=+-757975767171432431x x x x x x通解为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=00757610797101757121k k x 5.已知线性方程组1324321=+++x x x x 4324321-=-++x x x x 4234321-=---x x x x 6324321-=--+x x x x(1)求增广矩阵(Ab )的秩r (Ab )与系数矩阵A 的秩r (A ); (2)判断线性方程组解的情况,若有解,则求解。

相关文档
最新文档