第二章流体的运动2精品PPT课件
合集下载
工程流体力学 第二章

( x , y , z , t ) t
只反映 在空间点(x,y,z) 处的时间变化特性 (即不同时刻经过该空间点的流体质点具有不 同的 ),不代表同一质点物理量的变化,所 以不是质点导数。
30
2.2.4 质点导数
( x , y , z , t ) t
反映了物理量在空间点(x,y,z)处的时间变化 特性,故可用来判定流场是否是稳态流场, 若是稳态的,则
或以速度分量表示为: dx vx v x ( a, b, c, t ) dt dy vy v y ( a, b, c, t ) dt dz vz v z ( a, b, c, t ) dt
16
2.2.1 拉格朗日法
一般地,流体任意运动参数或物理量(无 论矢量或标量)都同样可表示成拉格朗日 变量函数:
(a, b, c, t )
( x, y , z , t )
23
2.2.3欧拉表达式变换为拉格朗日
已知欧拉法描述的速度场:u=x,v=-y和 初始条件: x=a,y=b. 求速度和加速度的拉格朗日描述。
24
2.2.3欧拉表达式变换为拉格朗日表达式
已知流场速度和压力分布为:
xy v vxi v y j vz k i yj ztk t 1 e At 2 p 2 x y2 z2
的有限空间或微元空间作为研究对象,通过
研究该空间的流体运动及其受力,建立相应动
力学关系。
3
2-1 流场及流动分类
流场的概念 流场所占据的空间。为描述流体在流场内各 点的运动状态,将流体的运动参数表示为流 场空间坐标(x,y,z)和时间t的函数。
v v( x, y, z, t ) vx i v y j vz k
只反映 在空间点(x,y,z) 处的时间变化特性 (即不同时刻经过该空间点的流体质点具有不 同的 ),不代表同一质点物理量的变化,所 以不是质点导数。
30
2.2.4 质点导数
( x , y , z , t ) t
反映了物理量在空间点(x,y,z)处的时间变化 特性,故可用来判定流场是否是稳态流场, 若是稳态的,则
或以速度分量表示为: dx vx v x ( a, b, c, t ) dt dy vy v y ( a, b, c, t ) dt dz vz v z ( a, b, c, t ) dt
16
2.2.1 拉格朗日法
一般地,流体任意运动参数或物理量(无 论矢量或标量)都同样可表示成拉格朗日 变量函数:
(a, b, c, t )
( x, y , z , t )
23
2.2.3欧拉表达式变换为拉格朗日
已知欧拉法描述的速度场:u=x,v=-y和 初始条件: x=a,y=b. 求速度和加速度的拉格朗日描述。
24
2.2.3欧拉表达式变换为拉格朗日表达式
已知流场速度和压力分布为:
xy v vxi v y j vz k i yj ztk t 1 e At 2 p 2 x y2 z2
的有限空间或微元空间作为研究对象,通过
研究该空间的流体运动及其受力,建立相应动
力学关系。
3
2-1 流场及流动分类
流场的概念 流场所占据的空间。为描述流体在流场内各 点的运动状态,将流体的运动参数表示为流 场空间坐标(x,y,z)和时间t的函数。
v v( x, y, z, t ) vx i v y j vz k
流体运动学(课件)

由于流线不会相交,根据流管的定 义可以知道,在各个时刻,流体质点不 可能通过流管壁流出或流入,只能在流 管内部或沿流管表面流动。
因此,流管仿佛就是一条实际的管 道,其周界可以视为像固壁一样,日常 生活中的自来水管的内表面就是流管的 实例之一。
图3-13 流管
3.2流体运动的若干基本概念
2. 流束
流管内所有流体质点所形成的流动称为流束,如图3-14所示。流 束可大可小,根据流管的性质,流束中任何流体质点均不能离开流束。 恒定流中流束的形状和位置均不随时间而发生变化。
3.2流体运动的若干基本概念
3.2. 6.2非均匀流
流场中,在给定的某一时刻,各点流速都随位置而变化的流动称 为非均匀流,如图3-21所示。 非均匀流具有以下性质:
1)流线弯曲或者不平行。 2)各点都有位变加速度,位变加速度不为零。 3)过流断面不是一平面,其大小和形状沿流程改变。 4)各过流断面上点速度分布情况不完全相同,断面平均流速沿程 变化。
3.2流体运动的若干基本概念
控制体是指相对于某个坐标系来说,有流体流过的固定不变的空 间区域。
换句话说,控制体是流场中划定的空间,其形状、位置固定不变, 流体可不受影响地通过。
站在系统的角度观察和描述流体的运动及物理量的变化是拉格朗 日方法的特征,而站在控制体的角度观察和描述流体的运动及物理量 的变化是欧拉方法的特征。
图3-1 拉格朗日法
3.1流体运动的描述方法
同理,流体质点的其他物理量如密度ρ、压强p等也可以用拉格朗p=p(a,b,c,t)。
从上面的分析可以看到:拉格朗日法实质上是应用理论力学中的 质点运动学方法来研究流体的运动。
它的优点是:物理概念清晰,直观性强,理论上可以求出每个流 体质点的运动轨迹及其运动参数在运动过程中的变化。
《流体力学》第二章流体静力学

z4
p z C g
pa 4 3 真空 1
p2 g
p=0
z1
z3
2
z=0
p 为压强水头 g
z 为位置水头
2.3 重力场中的平衡流体 重要结论
p p0 gh
(1) 在重力作用下的静止液体中,静压强随深度按线性 规律变化,即随深度的增加,静压强值成正比增大。 (2)在静止液体中,任意一点的静压强由两部分组成: 一部分是自由液面上的压强P0;另一部分是该点到自由 液面的单位面积上的液柱重量ρgh。 (3)在静止液体中,位于同一深度(h=常数)的各点的静 压强相等,即任一水平面都是等压面。
2.2 流体平衡微分方程 一、欧拉平衡方程
p dx 1 p dx 1 p dx p 2 3 x 2 2 x 2 6 x 2
2 3
2
3
p dx 1 p dx 1 p dx p 2 3 x 2 2 x 2 6 x 2
dA dA n
dF pdAn
F pdAn
A
流体静压力:作用在某一面积上的总压力; (矢量) 流体静压强:作用在某一面积上的平均压强或某一点的 (标量) 没有方向性 压强。
2.1 平衡流体上的作用力 证明:
z A
pn px
微元四面体受力分析
py
dx C x
dz O dy B y
y
p x p y p z pn
C x
pz
f
↑
z
表 面 力 质 量 力
1 d yd z 2 1 Py p y d zd x 2 1 P p d yd x z z 2 P n pn d A P x px
p z C g
pa 4 3 真空 1
p2 g
p=0
z1
z3
2
z=0
p 为压强水头 g
z 为位置水头
2.3 重力场中的平衡流体 重要结论
p p0 gh
(1) 在重力作用下的静止液体中,静压强随深度按线性 规律变化,即随深度的增加,静压强值成正比增大。 (2)在静止液体中,任意一点的静压强由两部分组成: 一部分是自由液面上的压强P0;另一部分是该点到自由 液面的单位面积上的液柱重量ρgh。 (3)在静止液体中,位于同一深度(h=常数)的各点的静 压强相等,即任一水平面都是等压面。
2.2 流体平衡微分方程 一、欧拉平衡方程
p dx 1 p dx 1 p dx p 2 3 x 2 2 x 2 6 x 2
2 3
2
3
p dx 1 p dx 1 p dx p 2 3 x 2 2 x 2 6 x 2
dA dA n
dF pdAn
F pdAn
A
流体静压力:作用在某一面积上的总压力; (矢量) 流体静压强:作用在某一面积上的平均压强或某一点的 (标量) 没有方向性 压强。
2.1 平衡流体上的作用力 证明:
z A
pn px
微元四面体受力分析
py
dx C x
dz O dy B y
y
p x p y p z pn
C x
pz
f
↑
z
表 面 力 质 量 力
1 d yd z 2 1 Py p y d zd x 2 1 P p d yd x z z 2 P n pn d A P x px
流体力学课件(全)

X 1 p 0 x
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。
流体力学ppt课件

6
三、特例 ❖ 火箭在高空非常稀薄的气体中飞行以及高真空技术中,如真空泵,其分子距与设备
尺寸可以比拟,不再是可以忽略不计了。这时不能再把流体看成是连续介质来研究。 ❖ 流体性质有局部突变时,如汽化。 ❖ 研究区域很小时。
7
第三节 作用在流体表面上的力 表面力 质量力
两类作用在流体上的力:表面力和质量力
M V d M V d d V 0
V dV d
E1 pd1V 1d d p0.0 1% 25 140 2.5 18P 0 a
Vdp
13
二、流体的膨胀性 当压强一定时,流体温度变化体积改变的性质称为流体的膨胀性,膨胀性的大小用
温度膨胀系数来表示。 1.膨胀系数
单位温度增加所引起的体积相对变化量
17
三种圆板的衰减时间均相等。 库仑得出结论:衰减的原因,不是圆板与液体之间的相互摩擦 ,而是液体内部的摩擦 。
18
2.牛顿内摩擦定律
(1) 牛顿平板实验
当h和u不是很大时,两平板间沿y方向的流速呈线性分布,
uUy 或duUdy
h
h
h
dy
y U
uu+du
y
dudt
Aa
Bb
o
dy
d
d(dud)/tdtdu
3
第二节 流体作为连续介质的假设 问题的引出:
微观:流体是由大量做无规则热运动的分子所组成, 分子间存有空隙,在空间是不连续的。 宏观:一般工程中,所研究流体的空间尺度要比分子 距离大得多。
4
一、流体的连续介质假设 定义:不考虑流体分子间的间隙,把流体视为由
无数连续分布的流体微团组成的连续介质。这就是1755年欧拉提出的“连续介质 假设模型”。
三、特例 ❖ 火箭在高空非常稀薄的气体中飞行以及高真空技术中,如真空泵,其分子距与设备
尺寸可以比拟,不再是可以忽略不计了。这时不能再把流体看成是连续介质来研究。 ❖ 流体性质有局部突变时,如汽化。 ❖ 研究区域很小时。
7
第三节 作用在流体表面上的力 表面力 质量力
两类作用在流体上的力:表面力和质量力
M V d M V d d V 0
V dV d
E1 pd1V 1d d p0.0 1% 25 140 2.5 18P 0 a
Vdp
13
二、流体的膨胀性 当压强一定时,流体温度变化体积改变的性质称为流体的膨胀性,膨胀性的大小用
温度膨胀系数来表示。 1.膨胀系数
单位温度增加所引起的体积相对变化量
17
三种圆板的衰减时间均相等。 库仑得出结论:衰减的原因,不是圆板与液体之间的相互摩擦 ,而是液体内部的摩擦 。
18
2.牛顿内摩擦定律
(1) 牛顿平板实验
当h和u不是很大时,两平板间沿y方向的流速呈线性分布,
uUy 或duUdy
h
h
h
dy
y U
uu+du
y
dudt
Aa
Bb
o
dy
d
d(dud)/tdtdu
3
第二节 流体作为连续介质的假设 问题的引出:
微观:流体是由大量做无规则热运动的分子所组成, 分子间存有空隙,在空间是不连续的。 宏观:一般工程中,所研究流体的空间尺度要比分子 距离大得多。
4
一、流体的连续介质假设 定义:不考虑流体分子间的间隙,把流体视为由
无数连续分布的流体微团组成的连续介质。这就是1755年欧拉提出的“连续介质 假设模型”。
第二章--流体静力学PPT课件

.
第二章 流体静力学
流体静力学着重研究流体在外力作用下处于平衡状态的 规律及其在工程实际中的应用。
这里所指的静止包括绝对静止和相对静止两种。以地球 作为惯性参考坐标系,当流体相对于惯性坐标系静止时, 称流体处于绝对静止状态;当流体相对于非惯性参考坐标 系静止时,称流体处于相对静止状态。
流体处于静止或相对静止状态,两者都表现不出黏性作 用,即切向应力都等于零,流体只存在压应力——压强。
Pd=22.6Kpa
将以上条件代入式(2-15)积分,便可得到同温层标准大气压分布
dppgdz pgdz
RT
RT d
p dp z g
dz
pa p
zd RTd
p22 .6ex1p1( 00z0) 6334
式中z得单位为m,11000m≤z≤25000m。
35
.
2.3.2气体压强分布
2.大气层压强的分布
2.3.3压强的度量
相对压强
绝对压强
真空度 绝对压强
绝对压强、相对压强和真空之间的关系
41
.
2.3.3压强的度量
相对压强
绝对压强
真空 绝对压强
绝对压强、相对压强和真空之间的关系
42
.
2.3.3压强的度量
立置在水池中的密封罩如图所示,试求罩内A、B、C三
点的压强。
【解】:
B点: pB p0
C
A点: pAghAB pB
从11-15km,温度几乎不变,恒为216.5K(-56.5℃), 这一层为同温层。
32
.
2.3.2气体压强分布
2.大气层压强的分布
(1)对流层
dpgdz dp pg dz
p
第二章 流体静力学
流体静力学着重研究流体在外力作用下处于平衡状态的 规律及其在工程实际中的应用。
这里所指的静止包括绝对静止和相对静止两种。以地球 作为惯性参考坐标系,当流体相对于惯性坐标系静止时, 称流体处于绝对静止状态;当流体相对于非惯性参考坐标 系静止时,称流体处于相对静止状态。
流体处于静止或相对静止状态,两者都表现不出黏性作 用,即切向应力都等于零,流体只存在压应力——压强。
Pd=22.6Kpa
将以上条件代入式(2-15)积分,便可得到同温层标准大气压分布
dppgdz pgdz
RT
RT d
p dp z g
dz
pa p
zd RTd
p22 .6ex1p1( 00z0) 6334
式中z得单位为m,11000m≤z≤25000m。
35
.
2.3.2气体压强分布
2.大气层压强的分布
2.3.3压强的度量
相对压强
绝对压强
真空度 绝对压强
绝对压强、相对压强和真空之间的关系
41
.
2.3.3压强的度量
相对压强
绝对压强
真空 绝对压强
绝对压强、相对压强和真空之间的关系
42
.
2.3.3压强的度量
立置在水池中的密封罩如图所示,试求罩内A、B、C三
点的压强。
【解】:
B点: pB p0
C
A点: pAghAB pB
从11-15km,温度几乎不变,恒为216.5K(-56.5℃), 这一层为同温层。
32
.
2.3.2气体压强分布
2.大气层压强的分布
(1)对流层
dpgdz dp pg dz
p
第2节 流体流动的基本方程PPT课件

单位质量流体在流动过程中所吸的热为:qe(J/kg); 质量为m的流体所吸的热=mqe[J]。 当流体吸热时qe为正,流体放热时qe为负。
宾汉塑性流体剪应力与速度梯度的关系
四、连续性方程
在稳态流动系统中,对直径不同的管段做物料衡算
衡算范围:取管内壁截面1-1’与截面2-2’间的管段。对于
稳态流动:
ms1 ms2
m sVsuA
u1A 1 1u2A 2 2
如果把这一关系推广到管路系统的任一截面,有:
m S u 1 A 1 1 u 2 A 2 2 u A 常 数
AA
对于圆形管道, A d 2
4
u VS d2
4
d 4VS
u
——管道直径的计算式
二、稳态流动与非稳态流动
稳态流动:运动流体的流速、压强、密度等有关物理量 仅随位置而改变,而不随时间而改变
非稳态流动:上述物理量不仅随位置而且随时间变化的流 动。
三、牛顿粘性定律与流体的粘度
1. 牛顿粘性定律
粘流指数: n>1
涨塑性流体包括玉米粉、糖溶
液、含细粉浓度很高的水浆等
0
d u /d y
胀塑性流体剪应力与速度梯度的关系
3. 宾汉塑性流体
流体的应力与应变成线性关系,但存在一屈服应力 表观粘度值为一常数
τ
0
K
du dy
粘流指数:n=1
常见的宾汉塑性流体如牙 膏、肥皂、纸浆等。
0
d u /d y
③ 一般气体的粘度值远小于液体的粘度值
④ 流体的粘度是温度T的函数
气体:T↑,粘度↑ 液体:T↑,粘度↓
?
⑤ 流体的粘度值一般不随压力而变化
流体的分类:
宾汉塑性流体剪应力与速度梯度的关系
四、连续性方程
在稳态流动系统中,对直径不同的管段做物料衡算
衡算范围:取管内壁截面1-1’与截面2-2’间的管段。对于
稳态流动:
ms1 ms2
m sVsuA
u1A 1 1u2A 2 2
如果把这一关系推广到管路系统的任一截面,有:
m S u 1 A 1 1 u 2 A 2 2 u A 常 数
AA
对于圆形管道, A d 2
4
u VS d2
4
d 4VS
u
——管道直径的计算式
二、稳态流动与非稳态流动
稳态流动:运动流体的流速、压强、密度等有关物理量 仅随位置而改变,而不随时间而改变
非稳态流动:上述物理量不仅随位置而且随时间变化的流 动。
三、牛顿粘性定律与流体的粘度
1. 牛顿粘性定律
粘流指数: n>1
涨塑性流体包括玉米粉、糖溶
液、含细粉浓度很高的水浆等
0
d u /d y
胀塑性流体剪应力与速度梯度的关系
3. 宾汉塑性流体
流体的应力与应变成线性关系,但存在一屈服应力 表观粘度值为一常数
τ
0
K
du dy
粘流指数:n=1
常见的宾汉塑性流体如牙 膏、肥皂、纸浆等。
0
d u /d y
③ 一般气体的粘度值远小于液体的粘度值
④ 流体的粘度是温度T的函数
气体:T↑,粘度↑ 液体:T↑,粘度↓
?
⑤ 流体的粘度值一般不随压力而变化
流体的分类:
第二章 流体静力学ppt课件

.
2.1 静止流体上的作用力
按力的物理性分为:惯性力、重力、弹性力、粘性力 按力的表现形式分为:质量力、表面力
2.1.1 质量力(体积力、长程力)
1、定义:作用于流体的每个质点上,并与作用的流体 质量成正比。 例如:重力、直线惯性力、曲线惯性力
2、单位质量力 总的质量力以F表示,设F在各个坐标轴上的分力为:
C、导出关系式: F0
D、得出结论
. 图2.2 静止流体中的微元四面体
选取研究对象 受力分析 导出关系式 得出结论
C
O
A
B
静止流体中任何一点上各个方向作用 的静压强大小相等,与作用面方位无 关——大小特性
.
2.2 流体的平衡微分方程及其积分
2.2.1欧拉平衡微分方程
1、取研究对象:在平衡流体中取一微元六面体,边
.
即:
z
p
常数
流体静力学基本方程
对1、2两点:
z1
p1
z2
p2
当z=0时,即自由液面处,p=p0 代入静力学基本方程,得c=p0
p=p0-γz
p=p0+γh
——静力学方程基本形式二
Δh
p2=p1+γΔh
——静力学基本方程的变形
.
2.3.2 静止液体中压强计算和等压面
1、绝对静止等压面应满足的条件:
为 静水压强的方向垂直指向作用面
、
。同一点不同方向上的静水压强大小相等
.
2.3 流体静力学基本方程
绝对静止流体——质量力只有重力 表面力只有静压力
2.3.1 静力学基本方程
重力作用下静止流体质量力:X=Y=0,Z=-g 代入压强p的微分公式
d p(Xd Yxd Z ydz)
2.1 静止流体上的作用力
按力的物理性分为:惯性力、重力、弹性力、粘性力 按力的表现形式分为:质量力、表面力
2.1.1 质量力(体积力、长程力)
1、定义:作用于流体的每个质点上,并与作用的流体 质量成正比。 例如:重力、直线惯性力、曲线惯性力
2、单位质量力 总的质量力以F表示,设F在各个坐标轴上的分力为:
C、导出关系式: F0
D、得出结论
. 图2.2 静止流体中的微元四面体
选取研究对象 受力分析 导出关系式 得出结论
C
O
A
B
静止流体中任何一点上各个方向作用 的静压强大小相等,与作用面方位无 关——大小特性
.
2.2 流体的平衡微分方程及其积分
2.2.1欧拉平衡微分方程
1、取研究对象:在平衡流体中取一微元六面体,边
.
即:
z
p
常数
流体静力学基本方程
对1、2两点:
z1
p1
z2
p2
当z=0时,即自由液面处,p=p0 代入静力学基本方程,得c=p0
p=p0-γz
p=p0+γh
——静力学方程基本形式二
Δh
p2=p1+γΔh
——静力学基本方程的变形
.
2.3.2 静止液体中压强计算和等压面
1、绝对静止等压面应满足的条件:
为 静水压强的方向垂直指向作用面
、
。同一点不同方向上的静水压强大小相等
.
2.3 流体静力学基本方程
绝对静止流体——质量力只有重力 表面力只有静压力
2.3.1 静力学基本方程
重力作用下静止流体质量力:X=Y=0,Z=-g 代入压强p的微分公式
d p(Xd Yxd Z ydz)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
速v和管截面积s成反比 sv;sv
上一内容 下一内容 回主目录
返回
2020/10/10
12
b、连续性方程的适用条件:不可压缩;稳定流动。
c、sv=恒量, sv为体积流量(守恒);若管中为同
一密度为ρ的流体,则有质量流量守恒,即:
sv恒量
2、连续性方程的应用:
血液流速
人体血液平均流动速度 与血管总的截面积的关系
人体的血压是计示压强不是绝对压强?其单位?
上一内容 下一内容 回主目录
返回
2020/10/10
2
§2.1 理想流体的稳定流动
•理想液体的稳定流动 •液流连续原理
上一内容 下一内容 回主目录
返回
2020/10/10
3
1、实际流体的性质: ①粘性(内摩擦);②可压缩性;③流动性
2、实际问题中性质①②可以忽略,流动性占据主要 地位如:酒精和水的粘滞性非常小,且水增压至 1000P0其体积只减小5%
3、理想流体的性质:(为了将实际问题简单化,体 现出流体的主要特征而提出的理想模型)
①完全无粘滞性(内摩擦);②绝对不可压缩;
上一内容 下一内容 回主目录
返回
2020/10/10
4
4、一般流动: 流体中各点的流速各不相同且随时间改变
vv(x,y,z,t)
5、稳定流动(定常流动): 流体中各点的流速不随时间改变
平均流速大;
(4)流线的形状与流体质点的运动轨迹相同。
上一内容 下一内容 回主目录
返回
2020/10/10
9
流管:流线围成的管状区域,流管内外流体不会 混流。小流管可代表整个流体的运动
上一内容 下一内容 回主目录
返回
2020/10/10
10
定常流动时流管的特点: (1)流管内外无物质交换;
(2)流管的形状不随时间的推移而改变;
(3)流体在实际的河床、管道等区域中流动,这些2020/10/10
11
1、连续性方程:
v2
t
V1 s1v1t V2 s2v2t
V1 V2, s1v1 s2v2
s1
v1 t
v1
v2
s2
sv恒量
连续性方程
说明:
a、不可压缩的流体在流管中作稳定流动时,流体的流
上一内容 下一内容 回主目录
返回
2020/10/10
1
气体和液体统称流体,没有固定的形状,流动 性强.固体与流体的主要区别即在于此.而液体与气 体的可压缩性却有很大的不同.
研究静止流体规律的学科为流体静力学 如:浮力原理,帕斯卡原理
研究运动流体规律的学科为流体动力学 (本章内容)
流体力学应用广泛:航空,水利,化工,制药,人体呼吸和 血液循环系统以及相关医疗设备等…
解:水流入用户时水管截面积为S1,流速为v1;浴室 水管截面积为S2,流速为v2.将水视为理想流体, 由连续性方程可得:
v2SS 1v 11((1 0 .5 10 1 20 )2 2 )2 416m s1
又由柏努利方程 P1v2gh恒量有:
2
上一内容 下一内容 回主目录
返回
2020/10/10
4、是单位体积流体的质量; v 2 / 2是单位体积流体
的动能;gh是单位体积流体的重力势能;P是某
点的压强,相当于单位体积流体通过截面时压力所 做的功,称静压能;柏努利方程也表示单位体积 流体的动能、势能和静压能之和为常量。
上一内容 下一内容 回主目录
返回
2020/10/10
18
例1:水管中的水在压强为4×105Pa的作用下流入房间, 水管的内直径为2cm,管内水的流速为4ms-1。引入5m 高处二楼浴室的水管管内直径为1cm,求浴室里水龙 头打开时管内水的速度和压强。
上一内容 下一内容 回主目录
总截面积 大小 毛静 动动 细 脉脉 管脉
返回
2020/10/10
13
1、方程的推导: 设有一段理想流体X1Y2经某时间段流到X2Y2:
上一内容 下一内容 回主目录
返回
2020/10/10
14
则外力作功
W F1L1 F2 L2
F1=P1S1
v1 t
P1S1v1t P2S2v2t P1V P2V
h1 S1 S1’
据功能原理
v2 t
F2 S2 S2’h2
WE 可知
P 1 V P 2 V (1 2 m v 2 2 m g h 2 ) (1 2 m v 1 2 m g h 1 )
上一内容 下一内容 回主目录
返回
2020/10/10
15
移项可得:
P1V12mv12 mgh1 P2V12mv22 mgh2 PV1mv2mgh恒量
2、柏努利方程中,当P不变时有: 1v2gh恒量
2 当h不变时有: P1v2 恒量
2
当v不变时有: Pgh恒量
上一内容 下一内容 回主目录
返回
2020/10/10
17
3、方程的适用条件为:理想流体(无内摩擦,不可压 缩);稳定流动(v不随时间变化)。实际流体只 是具有近似性,对于粘性比较小的水和酒精等可较 好的符合,而对于甘油和血液等粘性较大的流体只 能粗略解释;对于气体,若不受压,可适用。
19
P 11 2v1 2gh 1P 21 2v2 2gh 2
h1 0
P2P 11 2v121 2v2 2gh2
41501309.851130(42126) 2
2.3150(P)a
vv(x,y,z)
上一内容 下一内容 回主目录
返回
2020/10/10
5
流线: 在流体流动的空间画出许多曲线,使曲线上每一 点的切线方向与流经该点的流体质点的速度方 向相同,这种曲线称为流线.
流线上每点切线方向代表粒子速度方向。 稳定流动时流线即轨迹。
vA
C
vc
B
A
vB
上一内容 下一内容 回主目录
2
由于是理想流体,即有: m V
所以有: P1v2gh恒量 伯努利方程
2
上一内容 下一内容 回主目录
返回
2020/10/10
16
说明: P1v2gh恒量
2
1、柏努利方程反映出理想流体稳定流动时各处的压强、
高度和速度的关系,方程中三项都具有压强的量纲,
其中 v 2 / 2 为动压, P为静压, gh 为位压。
返回
2020/10/10
6
A
飞 流
直
下
B
三
千
C
尺
, 疑 是 银 河 落 九 天
.
上一内容 下一内容 回主目录
返回
2020/10/10
7
流线的照片
上一内容 下一内容 回主目录
返回
2020/10/10
8
稳定流动时流线的特点:
(1)任何两条流线不可能相交; (2)流线形状不随时间的推移而改变; (3)流线疏的地方,平均流速小;流线密的地方,