midas GTS 铁道移动荷载分析(动力)
midas移动荷载加载方式

定义车辆荷载
midas移动荷载加载方式
定义移动荷载工况
注意:
横向折减系数: 多车道横向折减系数。
组合选项: 组合:按提供的系数组合各子荷 载工况。 单独:各子荷载工况独自发生作 用。
子荷载工况里的系数: 子工况计算效应的增减系数,( 类似横向分配系数的概念)。
定义车辆荷载
1)车轮荷载:一个车轮的标准中70kN。
2)分布宽度:1m 纵向宽度:1m
3)最多车道数:该横向框架分析模型上可 能作用的最多车道数。
midas移动荷载加载方式
移动荷载工况
比例系数:冲击系数
midas移动荷载加载方式
2.盖梁计算移动荷载的施加
模型的注意事项
注意:
1.对于预制结构:一般支座间距小,可不模拟横梁。 2.对整体现浇结构:一般支座较稀疏,必须模拟横梁。
midas移动荷载加载方式
定义车道荷载:
注意: 1.对于预制结构:移动荷载直接施加在盖梁上。 2.对整体现浇结构:移动荷载施加在横梁上。 3.车道起终点的设计应满足规范要求。(直接施加到盖 梁上时,应为最外侧支座之间的区域)
midas移动荷载加载方式
定义车辆
注意: 1.车辆荷载:纵向计算单车道反力的一半(车道一个车轮的 反力,但交接墩考虑两孔效应叠加)。 2.车道数量:考虑实际的车道数量。 4.特别注意车轮至路缘距离如在定义车道时已考虑这里填0 3.可以勾选中央分隔带考虑双幅桥的情况。
注意:
组合: 考虑将两侧人群荷载叠加。 即总效应最大。
对应关系: 车辆和车道对应起来。
midas移动荷载加载方式
1.桥面板计算移动荷载的施加
midas-gts数值分析方法介绍

变化较大,软硬不均; C、隧道线路存在急曲线。
七-3、抗震分析
2、反应位移法分析
1)计算荷载及其组合: A、地震作用(土层相对位移、结构惯性力和结构周围剪力作用),
可由一维土层地震反应分析得到;对于进行了工程场地地震安全 性评价工作的,应采用其得到的位移随深度的变化关系;对未进 行工程场地地震安全性评价工作的,可通过计算公式推算。 B、 非地震作用(土压、水压、自重等)取值、分类应按 《地铁设计规范》执行; C、抗震设计荷载组合应按《建筑抗震设计规范》规定执行。
或粘弹性人工边界等合理的人工边界条件,地震波通过约束边界输入。 当采用振动法输入时,一般采用输入基岩加速度,结构对于基岩
作相对运动,在结构上施加惯性力来实现,这是一种不考虑振动传播 时间的分析方法。
七-3、抗震分析
3、时程法分析 1)地震动参数。根据地勘或安评报告,选用地层动弹模、动泊
松比、加速度时程函数、地震持续时间等。采用三组50年超越概率为 10%地震(E2地震)的基岩加速度时程函数进行时程法分析,取其中 最不利影响结果与反应位移法结果比较。
地铁结构常用分析类型具体实例操作: 1、线性静力分析(荷载-结构模型); 2、施工阶段分析(地层-结构模型); 3、抗震分析。
七-2、施工阶段分析
1、一般问题可采用平面应变分析;涉及到不规则地下结构、交叉隧 道等空间问题需进程三维模型分析。 2、三维分析两种建模方法,分别生成六面体单元和四面体单元。
一般情况下,对于埋置于地层中的隧道和 地下车站结构,应按地面至剪切波速大于 500m/s且其下卧各岩土的剪切波速均不小于 500m/s的土层顶面的距离确定基岩面的深度
地震动峰值位移表 地震动峰值位移调整表
midas GTS NX的线性和非线性动力分析

MIDAS-桥梁移动荷载动力时程分析

车速
: 10 km/hr
最大位移
: 5.612 mm
通过桥梁时间
: 10.80 sec
最大位移发生时间 : 5.124 sec
: 0.900 sec
最大位移发生时间 : 0.443 sec
(c) 车速为120km/hr时的位移变化 图21. 随车速变化的位移比较
静力分析与时程分析结果比较
表1是对静力分析结果和时程分析结果进行的比较。时程分析的结果说明由于车速的变 化,结构产生了动力效应。车速为120 km/hr时,时程分析的结果比考虑冲击系数后的静力 分析的结果弯矩大13.8%,位移大24.6%。
下面通过对桥梁结构的移动荷载进行时程分析,来介绍使用MIDAS/Civil进行时程分析的方 法,其具体步骤如下。
1. 建立结构模型 2. 输入质量数据 3. 输入特征值分析数据 4. 进行特征值分析 5. 分析特征值分析结果 6. 输入时程分析数据 7. 进行时程分析 8. 查看时程分析结果
建立结果模型
使用
来输入前面将车辆荷载所近似模拟的三角形荷载。
荷载 > 时程分析数据 > 时程荷载函数
图7. 时程荷载函数对话框
点击
后,考虑模型中节点的间距和车速来输入1kN大小的车辆荷载。
若想定义成实际车辆荷载的大小,在定义节点动力荷载 时,调整其中的系数 即可。
图8. 添加时程函数对话框
输入时程荷载函数 时可使用以下三种方法。
例题如图1所示,为一30m跨的单跨桥梁,所施加的车辆荷载可将其理想化为如图2所示的 三角形荷载。
MIDAS地铁移动荷载振动响应分析

5
7
MIDAS地铁移动荷载振动响应分析
midas GTS
步骤 2.1
2
5
6
地铁移动荷载振动响应分析
1. 文件 > 导入 > DXF 2D... 2. 点击“选择AutoCAD的DXF文件” 3. 选择相应的DXF文件 4. 点击[打开] 5. 点击 [预览] 6. 点击 [确认]
3
4
MIDAS地铁移动荷载振动响应分析
8 9 10
11
MIDAS地铁移动荷载振动响应分析
midas GTS
步骤 4.4
2
3 4
5
地铁移动荷载振动响应分析
1. 网格 > 自动网格划分 > 实体... 2. 选择实体 3. 选择“土1” 4. 输入“土1” 5. 点击[确认]
MIDAS地铁移动荷载振动响应分析
midas GTS
步骤 4.5
3 2
地铁移动荷载振动响应分析
1. 几何 > 实体 > 分割实体... 2. 点击“选择分割的实体” 3.点击“选择辅助曲面” 4.点击[确认]
2 3
4
MIDAS地铁移动荷载振动响应分析
midas GTS
步骤 3.1
3 4 7
地铁移动荷载振动响应分析
1. 模型 > 特性 > 属性 2. 点击“添加”,选择“实体” 2 3. 输入名称“土1” 4. 点击“添加” 5. 输入相应的土体参数 6. 点击[确认] 7. 点击[适用] 8. 重复3-7,添加土2
midas GTS
步骤 4.2
1
4
地铁移动荷载振动响应分析
1. 显示实体土 2. 在模型窗口中,鼠标左键选择两个实 体,然后右键,选择“显示网格种子” 3. 点击[确认] 4. 点击“透明度” 5. 在“透明表现”中设置为8 6.点击[确认]
Midas-移动荷载-设置流程

midas Civil 技术资料----移动荷载设置流程目录midas Civil 技术资料1 ----移动荷载设置流程1 一、定义车道线(车道面)2 二、定义车辆荷载5 三、定义移动荷载工况7 四、移动荷载分析控制9 五、运行并查看分析结果12 参考文献14北京迈达斯技术有限公司 桥梁部 2013/05/17本章主要结合中国规范JTG D60-2004[1]进行纵向(顺桥向)移动荷载分析介绍,移动荷载分析主要是计算移动荷载(车道、车辆或人群荷载)在指定路径上(车道线、车道面)移动时产生的各种效应(反力、内力、位移、应力)的包络结果,具体分析过程如下:(1)定义车道线/面;(2)定义车辆荷载--车道荷载、车辆荷载、人群荷载等活荷载;(3)定义移动荷载工况;(4)定义移动荷载分析控制;(5)运行分析并查看结果。
一、定义车道线(车道面)荷载>移动荷载>移动荷载规范-china,定义车道线或车道面,确定移动荷载路径,程序提供车道单元和横向联系梁两种方法,其中,车道单元法是将作用在车道中心线上的荷载换算到车道单元上(换算为集中力和扭矩),单梁模型中常用;而横向联系梁法是将移图1-1车道单元法及横向联系梁法示意图动荷载作用在横梁上,然后由横梁按比例传递到临近的纵梁单元上,梁格模型中常用,此时需要将横梁定义成为一个结构组,传力示意如图1-1所示。
随后即可进行车道线定义,首先是“斜交角”设置,对于斜桥梁格模型可以输入起点和终点的斜交角度,此设置需跟横向联系梁法配合使用,车道单元法不需要设置此项。
“车辆移动方向”,对于直桥,选择三者无差别;如果是斜桥,则车辆移动方向不同,分析结果也不同,故要选择“往返”。
图1-2车道单元法及横梁联系梁法定义图示 “偏心距离”的输入,蓝色虚线为车道中心线的位置,Start-End 为车道单元,以顺桥向为基准,当车道中心线在车道单元的左侧时,偏心距离a 为负值,右侧为正值。
1MIDASGTS的分析功能

表 1.2 中 的 弹 性 模 量 是 采 用 无 裂 纹 的 小 试 验 体 在 实 验 室 通 过 实 验 获 得 的 完 整 岩 (intact rock)的弹性模量。所以具体设计中使用的弹性模量要考虑尺寸效应、岩 体 内 的 不 连 续 性 等 因 素 应 采 用 折 减 后 的 弹 性 模 量 。 图 1.3 是 各 种 岩 石 质 量 指 标 RQD(Rock Quality Designation)对应的弹性模量实测值图形。RQD是指在包含裂纹 的100cm的钻孔长度内超过10cm长度的岩心的累计长度占总长度比例。即使RQD为 100%也不能视为完整岩,但是RQD值越高,可以认为岩石品质越好。风化越严重, 岩石的RQD值越低。
ε x = ε y = −νε z
且
ε x , ε y , εz : x, y, z轴向应变
E
: 弹性模量
ν
: 泊松比
有剪切应力τ zx 时,剪切应变的计算公式如下。
γ zx
=
τ zx G
且, G 是剪切模量(shear modulus)。 剪切模量与弹性模量、泊松比的关系如下。
G
=
E
2 (1 + ν
2.2 线弹性分析
岩土分析中的线弹性分析是将围岩材料视为线弹性,分析其在静力荷载下的响应的 方法。岩土材料的线弹性阶段仅发生在荷载加载初期应变非常小时。线弹性分析不 考虑岩土破坏时的状态,将应力-应变关系理想化为直线,计算相对简单方便。从 理论上说,有限元方程式的表现形式是基于虎克(Hooke)法则的线弹性方程式,非 线性分析或弹塑性分析也可以按线弹性方程式的形式进行求解计算。
83
分析理论手册
84
According to the magnitude of the stress increment
MIDAS-GTS常见问题释疑

MIDAS/GTS常见问题释疑第一部分:程序安装 (2)1.问:启动程序时提示没有发现保护锁? (2)2.问:启动程序时提示密钥号错误? (2)第二部分:前处理 (2)1.问:顶点拟合曲面为何有时不能实现? (2)2.问:NURSS面与边界面的区别? (2)3.问:检查重复形状应注意哪些问题? (3)4.问:几何/合并面线的作用是什么? (3)5.问:利用‘填充网格’命令将二维单元转变为三维单元时,为什么提示上下面单元数不同? (3)6.问:为什么在连续点选缩放、平移、分行视图及旋转的时候功能会产生混淆? (3)7.问:将二衬定义为实体的时候需要注意什么问题? (3)8.问:“the quadratic 1-dimensional element type is supported”错误命令是什么意思? (3)9.问:匹配面线命令的作用和用法? (3)10.问:设置桩单元的时候,为什么在检查网格的时候,在桩单元处会出现自由线,这影响结果吗? (4)11.问:在加‘面压力’时,其对象类型有‘单元,单元-面’ 有什么区别? (4)12.问:GTS可以导入导出哪些格式,如何导入电子地图,电子地图抓图的精度如何? (4)13.问:我们建立地表面的栅格面都是等间距的,但实际的勘测点都是随意的不等间距点,那么该如何生成地表面?可否通过3点坐标生成地表面或地层面? (4)14.问:在水头边界定义时,怎样查看水头边界是总水头还是压力水头? (4)15.问:在几何线或面上加了荷载,可以将荷载直接转化到节点或单元上吗? (5)16.问:水头边界有哪些类型? (5)17.问:在GTS里面可不可以显示结构单元的截面特性? (5)19.问:在GTS里面可不可以对某些常用的功能设置快捷键? (5)20.问:在GTS里面可不可以实现对某个单元的显示或隐藏? (5)21.问:出现如图2所示的提示? (5)22.问:出现如图3所示的提示? (5)23.问:出现如图4所示的提示? (6)24.问:在GTS里都否实现单元、节点信息的输入输出? (6)25.问:为什么加了梯形荷载之后,窗口中显示的荷载数值是梯形变化的,而图形显示是矩形的? (6)第三部分 分析功能 (6)1.问:K0法与有限元法有什么区别? (6)2.问:计算边坡的时候需要注意的哪些问题? (6)3.问:荷载释放率如何定义? (7)4.问:本构模型采用邓肯-张模型为什么不容易收敛? (7)5.问:为什么没有勾选位移清零,在第一步里面位移值也是零? (7)6.问:GTS的动力分析,采用什么方法?可以做非线性分析吗? (7)7.问:GTS的动力分析中,阻尼是怎么考虑的? (7)8.问:GTS的动力分析中,动力荷载有哪些形式? (8)9.问:在GTS中,动力边界是如何考虑的? (8)10.问:在GTS中,质量矩阵采用何种形式? (8)11.问:在GTS中,如何模拟移动荷载? (8)12.问:在GTS中,爆破可以模拟吗?荷载是如何确定的? (8)13.问:在GTS中,可以做场地的反应谱分析吗?有国内的场地规范吗? (8)14.问:如何取得模型中某个点的加速度、速度、位移的时程图和时程序列? (8)15.问:地震荷载是否可以仅施加在子结构上,另外在动力分析中是否可以施加位移荷载? (8)16.问:在施工阶段考虑渗流问题,怎么考虑? (8)17.问:在边坡稳定计算中怎么考虑渗流作用? (8)18.问:渗流计算的时候,如何判断非稳定流和稳定流? (9)19.问:在施工阶段分析中,包含非稳定流计算时,需要注意哪些问题? (9)20.问:排水和非排水计算,在GTS中如何区别设置? (9)21.问:在施工阶段渗流分析中出现如图6所示的提示? (9)第四部分 后处理 (9)1.问:GTS里面前后处理之间可以直接切换吗? (9)2.问:GTS中单元的内力怎么考虑? (9)3.问:在特性/变形中变形前的线宽可否小于1? (9)4.问:为什么在定义剖面图时候改变定义平面命令显示不变? (10)5.问:梁单元的轴力和弯距方向怎么判断? (10)6.问:梁单元的combined 1-4是什么意思? (10)7.问:定义多个剖分面或剪切面来参看后处理结果时,为什么不能同时显示已定义的多个剖分面和或剪切面? (10)8.问:在用剖分面、剪切面查看后处理结果后,怎么退出到基本视图? (10)9.问:屈服比的定义是什么?屈服比和安全系数有什么关系? (10)第一部分:程序安装1.问:启动程序时提示没有发现保护锁?答:1.驱动程序没有安装好,请在“控制面板/添加或删除程序”中删除Sentinel Protection Inst aller 7.1.0,重新手动安装Sentinel Protection Installer 7.1.0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
路床
加固路基 上部路基 下部路基
粉沙
风化土
软岩
GTS 2D 16铁道移动荷载分析(动力)
1
01 材料特性
网格组属性
属性名称(ID) 软岩 风化土 粉沙 下部路基 上部路基 加固路基 路床 类型 平面 平面 平面 平面 平面 平面 平面 材料名称 (ID) 软岩 风化土 粉沙 下部路基 上部路基 加固路基 路床 特性名称 (ID) -
5
7
选择特殊节点,在节点对 应的时间上确认变形图表
GTS 2D 16铁道移动荷载分析(动力)
18
2
1
对应节点中载入每个荷载 进行累计由工作表格输出。 列车移动方向被模拟为在 节点间隔为2.5m,速度为1 80km/h,列车移动方向被 定义为美0.05输出一次
GTS 2D 16铁道移动荷载分析(动力) 13
12
Step
分析>分析工况
1
MIDAS IT Co., Ltd.
操作过程
2
1)在主菜单里选择【分析】 >分析工况 2)【添加】 3)【名称】处输入“铁道 移动荷载分析”,【类型】 选择“时程分析(线性)” 4)点击“分析控制” 5)频率中输入“10” 6)点击“确定” 7)如图所示,将组数据中 的单元和荷载拖放到“激 活数据” 8)点击【确定】
Step
MIDAS IT Co., Ltd.
网格组名 称 阮岩层 风化土层 分沙层 下部路基 层 上部陆基 层 加固路基 路床
•确认“GTS 2D例题16.gtb”文件中地基材质特性和材料特性
GTS 2D 16铁道移动荷载分析(动力) 2
02
Step
文件>打开
操作过程
1
MIDAS IT Co., Ltd.
风化土
粉沙 下部路基 上部路基 加固路基 路床
22.831
24.269 52.388 30.537 54.967 797.766
12.620
11.658 28.002 14.670 31.735 498.360
GTS 2D 16铁道移动荷载分析(动力)
7
07
Step
模型>单元>建立曲面弹簧
操作过程
1
3
2
注:每个岩土层的边界交 叉处必须分割,交叉分割 这一选项可以完成所有交 叉边界线的相互分割。
GTS 2D 16铁道移动荷载分析(动力) 5
05
Step
网格>映射网格>K—线面
操作过程
MIDAS IT Co., Ltd.
1)在主菜单中选择【网格】 >映射网格>K—线面 2)在“选择对象线”中按 如图所示指定 3)网格尺寸指定为“单元 尺寸”,“单元尺寸”中 输入“2.5” 4)属性上选择“ID7路 床”,网格组中输入“路 床” 5)点击“预览”,确认网 格尺寸 6)点击“适用”
2
3
4
GTS 2D 16铁道移动荷载分析(动力)
10
09
Step
模型>荷载>时程数据>时程荷载函数
操作过程
4 1
MIDAS IT Co., Ltd.
1)LS-22 标准荷载(铁路设 计基础)的荷载单位为“KN”, 工作界面右下侧将单位由 “tonf”转变为“KN” 2)点击“添加时程函数” 3)函数名称输入“开始(180 km)”,时程函数数据类型确 定为“集中力”,节点中的时 间输入“移动荷载参数”(参 考时程分析数据.xls文件中的 表1.START(180km)) 4)同样的方法输入“Mid(180k m)”“End(180km)”(参考时 程分析数据.xls文件中的表2. MID(180km)和表3.END(180k m)) 移动中节点处的时间设置为 “Mid(180km)”移动铁道移动 荷载和移动终节点处的时间设 置为“End(180km)”荷载
5
3
同样的方法生成粘土层, 风化岩层,软岩层的弹簧 软岩层底部生成弹簧,输 入底部的阻尼,Cx中输入C s,Cy中输入Cp。
6
GTS 2D 16铁道移动荷载分析(动力)
8
07
确认边界条件
Step
MIDAS IT Co., Ltd.
GTS 2D 16铁道移动荷载分析(动力)
9
08
Step
模型>荷载>时程数据>时程荷载组
1
2
3
GTS 2D 16铁道移动荷载分析(动力)
16
14
Step
结果 > 时程分析> 时程结果
操作过程
1 1 2
1
MIDAS IT Co., Ltd.
1秒和1.7秒使用同样的方 法确定位移
2
3
3
GTS 2D 16铁道移动荷载分析(动力)
17
15
Step
结果 > 时程分析> 时程结果图形
1
MIDAS IT Co., Ltd.
1)在主菜单里选择文件> 打开 2)打开GTS 2D 例题1 6.gtb
2
3)在主菜单里面选择 视 图>显示选项
4)在一般表格中指定 网 格>节点显示>False 5)点击 【确认】
3
4
5
GTS 2D 16铁道移动荷载分析(动力)
3
03
Step
模型>特性>属性
操作过程
1
MIDAS IT Co., Ltd.
3
4
5 7
8
6
GTS 2D 16铁道移动荷载分析(动力)
14
13
Step
分析 > 分析
操作过程
1
MIDAS IT Co., Ltd.
1)在主菜单里选择【分析】 >分析 2)勾选“铁道移动荷载分 析”工况 3)点击【确定】
2
3
注:分析过程中生成的信 息都可以在【输出窗口】 中显示出来。生成的警告 信息结果可能会不正常, 要注意。相关的分析信息 将生成Text文件的形式并 且选择【文件.out】格式 保存
1)在主菜单中选择【模型】 2 >特性>属性 2)确认生成的7个属性
属性在建模开始前生成
GTS 2D 16铁道移动荷载分析(动力)
4
04
Step
几何>曲线>交叉分割
操作过程
MIDAS IT Co., Ltd.
1)在主菜单里面选择 几何 >曲线>交叉分割 2)在选择工具条里点击 已 显示选择所有的线 3)点击【适用】按钮
Step
MIDAS IT Co., Ltd.
铁道移动荷载分析
midas GT分析
概要
MIDAS IT Co., Ltd.
※使用盛土模型对铁道移 动荷载进行动力分析 ※时间—列车移动荷载表 格中显示列车移动荷载的 动力分析 ※列车荷载的周边区域的 振动影响和地基的垂直沉 降分布 ※打开问件“GTS 2D 例 题16.gtb”
1
MIDAS IT Co., Ltd.
1)在主菜单中选择【模型】 >单元>建立曲面弹簧 2)对象类型中指定“单元 2 线”,单元宽度输入“1” 3)在选择单元线中如图所 示选择软岩层左右两侧 4)勾选“单位面积阻尼常 数” 5)Cx中输入“185.482”, Cy中输入“102.529” 4 6)点击【适用】
1
6 1
2
6
3 1
2
4
2
5
同样方法选择上部中间19 个节点和右侧上部的1各节 点,分别指定为“Mid(180 km)”和“End(180km)”
3
GTS 2D 16铁道移动荷载分析(动力)
12
11
Step
MIDAS IT Co., Ltd.
模型>荷载>时程数据>节点动力荷载
操作过程
1)在分析工作目录树上选 择时辰分析>节点动力荷载 对应的21个节点,右击弹 出关联菜单 2)其中菜单的到达时间设 置为从时间点(到达时间= 0)开始,每增加0.05移动 荷载表
1 2
3
4
5
6
其余地层使用同样的方法 生成网格组
GTS 2D 16铁道移动荷载分析(动力) 6
06
Step
阻尼计算
P 波 S 波
MIDAS IT Co., Ltd.
λ:粘性弹簧系数;G:剪切弹簧系数,E:弹簧系数 V:波速;A:断面面积
属性名称(ID) 软岩 cp(tonf·sec/m3) 185.482 cs(tonf·sec/m3) 102.529
GTS 2D 16铁道移动荷载分析(动力) 15
14
Step
结果 > 时程分析> 时程结果
操作过程
MIDAS IT Co., Ltd.
1)在结果工作目录树中确 认铁道移动荷载分析的结 果 2)在主菜单中选择【结果】 >时程分析>时程结果 3)分析组中确认“铁道移 动荷载”,结果中确认为 “位移”,勾选“DY”,确 认0.7秒时的垂直方向位移 等值线 确认结果中选择的位移和D XYZ 确认列车机车在进入,进 展,通过时的变形。列车 的长度为32.7,列车在长 度50m的铁道上以180km/h 的速度移动,列车机车进 入时时间为0.7秒,机车通 过后时间为1.7秒
操作过程
2 3 4 6
1)在主菜单中选择【结果】 >时程结果>时程结果图形 2)勾选“定义/修改函 数”,函数数据中的名称 中输入“节点33位移” 3)选择节点后,点击路床 上部对应的节点33 4)选择“DY”,点击“添 加”,点击“关闭” 5)勾选“节点33位移”, 点击“从列表添加” 6)点击“适用”